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Abstract: Calcium (Ca)-bearing minerals are of interest for the design of electrode materials required
for rechargeable Ca-ion batteries. Here we use classical simulations to examine defect, dopant and
transport properties of CaFeSi2O6. The formation of Ca-iron (Fe) anti-site defects is found to be the
lowest energy process (0.42 eV/defect). The Oxygen and Calcium Frenkel energies are 2.87 eV/defect
and 4.96 eV/defect respectively suggesting that these defects are not significant especially the Ca
Frenkel. Reaction energy for the loss of CaO via CaO Schottky is 2.97 eV/defect suggesting that this
process requires moderate temperature. Calculated activation energy of Ca-ion migration in this
material is high (>4 eV), inferring very slow ionic conductivity. However, we suggest a strategy to
introduce additional Ca2+ ions in the lattice by doping trivalent dopants on the Si site in order to
enhance the capacity and ion diffusion and it is calculated that Al3+ is the favourable dopant for this
process. Formation of Ca vacancies required for the CaO Schottky can be facilitated by doping of
gallium (Ga) on the Fe site. The electronic structures of favourable dopants were calculated using
density functional theory (DFT).
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1. Introduction

Over the last two decades, great progress has been made in the development of rechargeable
lithium (Li)-ion batteries. However, there is a necessity to find alternatives to Li-ion batteries as
energy demand increases rapidly with the world population. In this respect, sodium (Na) batteries
are currently being considered mainly due to the high abundance of Na [1–4]. Batteries based on
multivalent cations such as magnesium (Mg2+) and zinc (Zn2+) are also promising, as they can provide
high energy density [5–9].

A Ca-ion battery is being currently considered as an alternative to Li-ion battery mainly due to the
low cost associated with high abundance of Ca and high energy density [10]. However, Ca-ion diffusion
is expected to be slow due to its larger ion size compared to that of Li. Furthermore, it is expected that
there will be strong attractive or repulsive forces between migrating Ca ions and surrounding ions due
to the double positive charge of Ca.

A variety of compounds such as garnets (e.g., Ca3Fe2Si3O12), pyroxenes (e.g., CaMnSi2O6), double
carbonates (e.g., CaMg(CO3)2), marokites (e.g., CaMn2O4) have been tested as cathode materials for
application in Ca-ion batteries experimentally or theoretically [11,12]. In a combined experimental and
theoretical study on CaMn2O4 by Arryo-de Dompablo et al. [12], it was concluded that deinsertion of
Ca ions from CaMn2O4 is hard, and this was further confirmed by the high activation energy (1.00 eV)
calculated for the Ca-ion migration. In a DFT (Density Functional Theory) study by Torres et al. [11]
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on pyroxene, garnet and double carbonate-based minerals, it was shown that deintercalation would
provide high energy densities and Ca-ion diffusion in these materials would be slow.

“Hedenbergite” CaFeSi2O6 [13] is a silicon-based Ca-bearing mineral which is of great interest
for designing electrode material as Si and Fe are safer, abundant and cheap. Furthermore, the great
structural stability required during the intercalation is expected to be provided by strong Si–O bonds
in SiO4 units. Electrode materials based on [SiO4]4− poly anion have been synthesized and their
electrochemical activities tested for Li, Na and Mg ion batteries [14–16]. In addition, theoretical studies
have also been explored on silicate-based materials to examine defects, diffusion and dopants [17–20].

Understanding the defect and diffusion properties of energy materials via computational modelling
is an efficient complementary way for the design of promising energy devices. In many cases,
computational studies have been successful in the determination of experimental crystal structures and
ion migration pathways and prediction of promising isovalent and aliovalent dopants in many oxide
materials [21–26]. In this work, we examine the intrinsic defect processes, Ca-ion diffusion pathways
and promising doping strategies.

2. Computational Methods

Computational simulations were performed using classical simulation and DFT simulation.
Classical simulations as implemented in the generalized used lattice program (GULP) [27,28] allowed
the modelling of the energy minimized crystal structure with equilibrium lattice constants, calculation
of the lowest energy defect process, identification of the promising dopants at different cation sites and
the simulation of the Ca-ion diffusion pathways with the respective activation energies of migration.
This method consists of two main ionic interactions, namely, long range (Coulombic) and short
range (repulsive—Pauli—and attractive—van der Waals). Buckingham potentials were used to model
short-range interactions. Point defects were modelled using Mott-Littleton method [29], as adopted in
the GULP code. Core-shell model was applied to consider the polarization of ions in the lattice. In line
with the previous studies [30], Ca-ion migration calculations were performed by following the method
developed by Catlow et al. [31].

Electronic structures of the most favourable dopants were calculated using a plane wave DFT code
VASP (Vienna ab initio simulation program) [32,33], which uses projected augmented wave (PAW)
potentials [34] and plane wave basis sets. A plane wave basis set with a cut-off of 500 eV and Monkhorst
pack [35] k-points (4 × 4 × 4) were used in all calculations. For defect modelling, a supercell containing
80 atoms was used. Exchange correlation was modelled using generalized gradient approximation
(GGA) implemented by Perdew, Burke, and Ernzerhof (PBE) [36]. Both atomic positions and the cell
parameters optimized using conjugate gradient algorithm [37]. Short range attractive interactions
arising from dispersion were modelled using a semi-empirical scheme (DFT+D3) as implemented in
the VASP code [38].

3. Results

3.1. Crystal Structure of CaFeSi2O6

CaFeSi2O6 is monoclinic with space group of C2/c (no. 227). Zhang et al. [13] reported the
crystal structure of CaFeSi2O6 with experimental values are a = 9.8107 Å, b = 8.9856 Å, c = 5.2245 Å,
α = γ = 90◦ and β = 104.593◦. The crystal structure consists of corner sharing FeO6 octahedral and
SiO4 tetrahedral units as shown in Figure 1. To validate the Buckingham potentials (Table S1 in the
supplementary information) used in the classical simulation and PAW potentials used in the DFT
simulation, energy mimisation calculations were performed and the calculated lattice parameters
were compared with corresponding experimental values. The theoretical method reproduced the
experimetal structure with the error margin being less than 2% (refer to Table 1).
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Figure 1. Crystal structure of monoclinic-CaFeSi2O6. 

Table 1. Calculate and experimental structural parameters of monoclinic CaFeSi2O6. 

Parameter 
Calculated 

Experiment [13] 
|∆|(%) 

Force Field DFT Force Field DFT 
a (Å) 9.8716 9.9900 9.8107 0.62 1.83 
b (Å) 8.9569 8.9373 8.9856 0.32 0.54 
c (Å) 5.2459 5.2256 5.2245 0.41 0.02 
α = γ (°) 90.00 90.00 90.00 0.00 0.00 
β (°) 105.16 104.01 104.59 0.54 0.56 

V (Å3) 447.7095 452.6849 445.7081 0.45 1.56 

3.2. Intrinsic Defect Processes 

Point defects in materials are important as they control many physical properties of solids, 
including diffusion properties and thermodynamic properties. Classical simulations were used to 
calculate two principle intrinsic point defect energies (vacancies and interstitials). To calculate the 
Schottky and Frenkel defect processes, energies of point defects were then combined. Anti-site defect 
in which cations exchange their atomic positons were also calculated. Fourteen intrinsic defect 
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Figure 1. Crystal structure of monoclinic-CaFeSi2O6.

Table 1. Calculate and experimental structural parameters of monoclinic CaFeSi2O6.

Parameter
Calculated

Experiment [13]
|∆|(%)

Force Field DFT Force Field DFT

a (Å) 9.8716 9.9900 9.8107 0.62 1.83

b (Å) 8.9569 8.9373 8.9856 0.32 0.54

c (Å) 5.2459 5.2256 5.2245 0.41 0.02

α = γ (◦) 90.00 90.00 90.00 0.00 0.00

β (◦) 105.16 104.01 104.59 0.54 0.56

V (Å3) 447.7095 452.6849 445.7081 0.45 1.56

3.2. Intrinsic Defect Processes

Point defects in materials are important as they control many physical properties of solids,
including diffusion properties and thermodynamic properties. Classical simulations were used to
calculate two principle intrinsic point defect energies (vacancies and interstitials). To calculate the
Schottky and Frenkel defect processes, energies of point defects were then combined. Anti-site defect in
which cations exchange their atomic positons were also calculated. Fourteen intrinsic defect processes
were identified, as outlined in Equations (1)–(14) using the Kröger-Vink notation [39].

Ca Frenkel : CaX
Ca → V′′Ca + Ca••i (1)

Fe Frenkel : FeX
Fe → V′′Fe + Fe••i (2)

Si Frenkel : VX
Si → V′′′′Si + Si••••i (3)

O Frenkel : OX
O → V••O + O′′i (4)

Schottky : CaX
Ca + FeX

Fe + 2 SiXSi + 6 OX
O → V′′Ca + V′′Fe + 2 V′′′′Si + 6 V••O + CaFeSi2O6 (5)

CaO Schottky : CaX
Ca + OX

O → V′′Ca + V••O + CaO (6)

FeO Schottky : FeX
Fe + OX

O → V′′Fe + V••O + FeO (7)

SiO2 Schottky : SiXSi + 2 OX
O → V′′′′Si + 2 V••O + SiO2 (8)

Ca/Fe antisite (isolated) : CaX
Ca + FeX

Fe → CaX
Fe + FeX

Ca (9)
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Ca/Fe antisite (cluster) : CaX
Ca + FeX

Fe →
{
CaX

Fe : FeX
Ca

}X
(10)

Ca/Si antisite (isolated) : CaX
Ca + SiXSi → Ca′′Si + Si••Ca (11)

Ca/Si antisite (cluster) : CaX
Ca + SiXSi →

{
Ca′′Si : Si••Ca

}X
(12)

Fe/Si antisite (isolated) : FeX
Fe + SiXSi → Fe′′Si + Si••Fe (13)

Fe/Si antisite (cluster) : FeX
Fe + SiXSi →

{
Fe′′Si : Si••Fe

}X
(14)

Table 2 reports the defect energies of Frenkel, Schottky and anti-site defect processes. The
lowest formation energy is calculated for the Ca-Fe anti-site defect (0.42 eV/defect). This is due to
the same charge (+2) of both Ca and Fe. Other anti-site defects (Ca-Fe and Ca-Si) are slightly high
due to the charge mismatch. Anti-site defects are common in many oxide materials and have been
observed experimentally and theoretically [40–43]. The O Frenkel (2.87 eV/defect) and CaO Schottky
(2.97 eV/defect) energies are close to each other and their energies are lower than the other Frenkel or
Schottky energies. However, those defects are not significant at normal temperatures. Both Ca and Fe
Frenkel energies are ~4.90 eV, suggesting that their formation is unlikely to occur at room temperature.
Si Frenkel energy is 9.18 eV/defect inferring the absence of this defect at any conditions.

Table 2. Defect formation energies of intrinsic defect process calculated in monoclinic CaFeSi2O6.

Defect Process Equation Number Defect Energy (eV) Defect Energy (eV)/Defect

Ca Frenkel 1 9.92 4.96

Fe Frenkel 2 9.74 4.87

Si Frenkel 3 18.36 9.18

O Frenkel 4 5.74 2.87

Schottky 5 38.40 3.84

CaO Schottky 6 5.94 2.97

FeO Schottky 7 6.72 3.36

SiO2 Schottky 8 14.28 4.76

Ca-Fe anti-site (isolated) 9 0.90 0.45

Ca-Fe anti-site (cluster) 10 0.86 0.42

Ca-Si anti-site (isolated) 11 9.06 4.53

Ca-Si anti-site (cluster) 12 5.26 2.63

Fe-Si anti-site (isolated) 13 5.98 2.98

Fe-Si anti-site (cluster) 14 2.84 1.42

3.3. Calcium Ion Diffusion

To examine the Ca-ion diffusion pathways and their corresponding activation energies, classical
simulationes were performed. For a potential high-rate electrode material, ion diffusion with low
activation energy of migration is an important factor. The experimental observation of diffusion
pathways and their energetics is challenging. In that respect, computational modelling has been
useful in providing valuable information on migration pathways and their activation energies [44–48].
We identified two Ca local hops (A and B), as shown in Figure 2. Table 3 reports the Ca-Ca distances
and activation energies. In Figure 3, energy profile diagrams for each local hops are shown.
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Table 3. Ca local hop distances and their activation energies as shown in Figure 3.

Migration Path Ca-Ca Separation (Å) Activation Energy (eV)

A 4.47 4.36

B 5.02 4.49

Calculations show that activation energies are high for both local hops inferring slow diffusion of
Ca ions in this material. To construct long-range diffusion pathways, local Ca hops were connected.
Two different long-range pathways were identified. The first pathway (A→A→A→A) exhibits a
zig-zag pattern in the bc plane with overall activation energy of 4.36 eV. The second pathway consists of
local hops B (B→B→B→B) and Ca ions migrate in the ab plane with overall activation energy of 4.49 eV.
High activation energies reveal that very slow Ca-ion diffusion would be expected in CaFeSi2O6.
Table 4 reports the activation energies calculated in previous DFT modelling in different Ca-based
electrode materials [11,12]. In general, high activation energy is noted. CaMn(SiO3)2 exhibits a very
high activation energy. This should be due to the long Ca-Ca distances. Notably, both CaFeSi2O6 and
CaMn(SiO3)2 have the same crystal structures. Both classical and DFT modelling methods provide
similar activation energies for these types of materials.
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Table 4. Activation energy calculated for Ca-ion migration in Ca-based electrode materials.

Material Activation Energy (eV)

CaMn (SiO3)2 4.60 [11]

Ca3Cr2 (SiO4)3 2.07 [11]

Ca3Mn2 (SiO4)3 2.09 [11]

Ca11Mn12 C24O72 2.80 [11]

CaMn2O4 1.00 [12]

3.4. Solution of Dopants

Performance of an electrode material can be improved by doping aliovalent or isovalent dopants
via introducing charge compensating point defects (vacancies and interstitials) in the lattice. Here we
investigated the substitution of a range of dopant ions in CaFeSi2O6 using classical simulation to test
the most favourable dopants experimentally.

3.4.1. Divalent Dopants

Both Ca and Fe sites were considered for substituion with some divalent cations (M = Ni, Mg, Co,
Zn, Mn, Sr and Ba) and the following reaction equations were used to calculate reaction enthalpies.
Substitution of divalent cations at the divalent cation sites in the lattice does not require another defect
for charge compensation.

MO + CaX
Ca →MX

Ca + CaO (15)

MO + FeX
Fe →MX

Fe + FeO (16)

Figure 4 reports the solution enthalpy as a function of the radius of the dopant ion. The lowest
solution enthalpy (0.01 eV) is calculated for Sr2+ ion at the Ca site (refer to Figure 4a). The ionic radius
of Ca2+ is 1.00 Å. The preference of Sr2+ can be due to position of both Ca2+ and Sr2+ ions in the same
group. The second favourable dopant is Mn2+ with the soultion enthalpy of 0.56 eV and its ionic
radius (0.96 Å) is very close to that of Ca2+ (1.00 Å). Solution enthalpy decreases with the increase of
ionic radius from Ni2+ to Sr2+. This is mainly due to the decrease in the cation mismatch. The soution
enthalpy of Ba2+ is 1.03 eV due to its larger ionic radius than that of Ca2+.

Exoergic solution enthalpy is calculated for Mn2+ at the Fe site. The ionic radius of Fe2+ in an
octahedral environment is 0.61 Å. Solution enthalpies for Co2+, Ni2+, Mg2+ and Zn2+ are very small
and range between 0.02 eV and 0.10 eV meaning that they are also candidate dopants. Both Sr2+ and
Ba2+ exhibit high solution enthalpies.This is beacause of their larger ionic radii than that of Fe2+ ion.
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3.4.2. Trivalent Dopants

Additional Ca2+ ions can improve its capacity and then enhance ionic conductivity in CaFeSi2O6.
Here we suggest a stratergy to form Ca interstitials by doping trivalent cations (Al, Sc, In, Y, Gd, La
and Ga) at the Si site. Previous modelling studies also considered the same strategy in different battery
materials and validity of this stratergy has been confirmed by experimental studies in Li2RuO3 [49].
The solution of M2O3 (R = Al, Sc, In, Y, Gd, La and Ga) was considered using the following reaction (in
Kröger-Vink notation).

M2O3 + 2SiXSi + CaO → 2 M′Si + 2 Ca••i + 2 SiO2 (17)

Figure 5a reports the solution enthalpies of M2O3. The current simulations show that the most
favourable dopant is the Al3+ but the solution enthalpy is highly endothermic. This indicates that
the additional Ca can be formed in the form of interstitials into CaFeSi2O6. Experimental verification
is needed to determine the exact concentration of the composition. The possible structure of doped
compound can be written as CaFeSi2−xAlxO6 (x = 0.0–1.0).

Doping of trivalent dopants at the Fe site can facilitate the formation of Ca vacancies required
for the vacancy assisted Ca diffusion and CaO Schottky formation. Figure 5b reports the solution
enthalpies calculated using the following reaction equation.

M2O3 + 2FeX
Fe + CaX

Ca → 2 M•Fe + V′′Ca + CaO + 2FeO (18)

In all cases, solution enthalpies are endothermic, suggesting that a high temperature is required for
this process. Current calculations were performed at 0 K and it is anticipated that at high temperature,
solution enthalpy values would be less positive. A favourable dopant in this process is Ga. This could
be due to the very small difference between ionic radii of Ga3+ (0.62 Å) and Fe2+ (0.61 Å). The highest
solution enthalpy is calculated for Al3+. Both Sc and In exhibit almost similar solution enthalpies
deviating only by ~0.08 eV from the value calculated for Ga3+. From Y to La, solution enthalpies
increase gradually with ionic radius.
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Here we calculate the activation energies for Ca-ion diffusion in the presence of Al3+ on the Si site.
Figure 6 shows the energy profile diagrams for the local Ca hops.
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Figure 6. Energy profile diagrams for the Ca local hops (a) A and (b) B in the presence of Al on the Si
site (refer to Figure 2).

There is a slight reduction (by 0.02 eV) in the activation energy for the local hop A. In the case of
hop B, activation energy is reduced by 0.48 eV. In both cases, Ca-Ca distances have been elongated
compared to the distances present in the pure crystal structure. This perturbation in the distances can
be due to the charge and ionic radius mismatch between Al3+ and Si4+. Our simulation predicts that
doping Al on the Si site would not only increase the concentration of Ca2+ ions in the lattice but also
reduces the activation energy of the Ca-ion migration.

3.4.3. Tetravalent Dopants

Here we discuss the results obtained from doping of some tetravalent dopants (Ge4+, Ti4+, Sn4+,
Zr4+ and Ce4+) at the Si site. Solution enthalpy was calculated using the following reaction equation.

MO2 + SiXSi →MX
Si + SiO2 (19)

Promising dopant for this process is Ge with the lowest solution enthalpy of 0.65 eV (see Figure 7).
This is because of the fact that ionic radii of both Ge4+ (0.39 Å) and Si4+ (0.40 Å) are very close. Solution
enthalpy for the doping of Ti4+ is 3.20 eV higher by ~2.50 eV than that calculated for Ge4+. Solution
enthalpy increases with ionic radius from Sn to Ce. Solution enthalpy for CeO2 is 4.19 eV meaning that
this highly endoergic process mainly occurs at high temperatures.
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3.5. Electronic Structures of Doped CaFeSi2O6

We employed DFT to examine the electronic structures of defect free and doped-CaFeSi2O6

configurations. The promising dopants were only considered as discussed in the previous sections.
Previous DFT simulations by Streltsov et al. [50] discussed the electronic structure of CaFeSi2O6.

Their calculation show that CaFeSi2O6 is a wide gap semiconductor with the band gap of 3.80 eV which
is in agreement with the calculated band gap of 3.40 eV in this study (see Figure 8c). Furthermore, the
total DOS (density of states) plot shows that there should be a net magnetic moment present as spin-up
and spin-down states are not symmetric.

First we considered the electronic structure of Sr substituted at the Ca site in CaFeSi2O6. The Sr-O
bond distances are slightly longer than the Ca-O bond distances. This is due to the larger ionic radius
of Sr2+ (1.26 Å) than that of Ca2+ (1.00 Å). Fermi energy and band gap were almost unaltered with the
doping of Sr (see Figure 8d). However, the states occupied in the gap region sligltly perturbes. Atomic
DOS of Sr is shown in Figure 8e.Energies 2020, 13, 1285 9 of 16 
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Next we discuss the electronic structure of Mn substituted at the Fe site. Calculated Fe-O and
Mn-O bond distances are almost the same. This is due to the similar ionic radius of Fe2+ (0.61 Å) and
Mn2+ (0.67 Å). Doping of Mn reduces the Fermi energy slightly (by 0.05 eV) and band gap significantly
(by 0.80 eV) (see Figure 9).Energies 2020, 13, 1285 10 of 16 
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Doping of Al at the Si site was next considered. Al-O bond distances are slightly longer than Si-
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tetrahedral coordination. Fermi energy is shifted by 0.21 eV upon doping. Fermi energy level is 
occupied by additional states mainly arising from p states of Al (see Figure 10d and e). Substitution 
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Figure 9. (a,b) Distorted FeO6 and MnO6 octahedral units showing bond lengths in defect free and
defect (Mn-doped) configurations respectively, (c,d) corresponding total DOSs (e) atomic DOS of Mn
and (f) constant charge density around the dopant.

Doping of Al at the Si site was next considered. Al-O bond distances are slightly longer than
Si-O bond distances (see Figure 10). This is due to the larger ionic radius of Al3+ than that of Si4+ in
a tetrahedral coordination. Fermi energy is shifted by 0.21 eV upon doping. Fermi energy level is
occupied by additional states mainly arising from p states of Al (see Figure 10d,e). Substitution of Al at
the Si site introduces an electron in the lattice and makes the resultant compound metallic.
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Calculated bond lengths show that Fe-O bond distances are shorter than the Ga-O bond 
distances. Ionic radii of both Fe2+ and Ga3+ ions are close to each other. However, charge density of 
Ga3+ is greater than that of Fe2+ due to the higher charge (+3) of Ga than that of Fe (+2). Shorter Ga-O 
bond distances are due to the strong ionic interaction between Ga3+ and O2−. Fermi energy increase 
by 0.35 eV upon Ga doping (see Figure 11). There are no significant peaks arising from Ga near Fermi 
energy level or in the gap according to the atomic DOS of Ga. However, there is a significant 
reorientation of spin states and the resultant doped configuration exhibits metallic character. 

Figure 10. (a,b) Distorted SiO4 and AlO4 octahedral units showing bond lengths in defect free and
defect (Al-doped) configurations respectively, (c,d) corresponding total DOSs (e) atomic DOS of Al and
(f) constant charge density around the dopant.

Calculated bond lengths show that Fe-O bond distances are shorter than the Ga-O bond distances.
Ionic radii of both Fe2+ and Ga3+ ions are close to each other. However, charge density of Ga3+ is
greater than that of Fe2+ due to the higher charge (+3) of Ga than that of Fe (+2). Shorter Ga-O bond
distances are due to the strong ionic interaction between Ga3+ and O2−. Fermi energy increase by 0.35
eV upon Ga doping (see Figure 11). There are no significant peaks arising from Ga near Fermi energy
level or in the gap according to the atomic DOS of Ga. However, there is a significant reorientation of
spin states and the resultant doped configuration exhibits metallic character.
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Finally, Ge was introduced at the Si site. Though Ge and Si are isovalent atoms, their ionic radii 
are different (Si4+: 0.26 Å and Ge4+: 0.39 Å). Larger ionic radius of Ge4+ reflects in the longer Ge-O bond 
distances (see Figure 12). Total DOS plot of Ge-doped CaFeSi2O6 is almost unaltered near the Fermi 
level. This is further confirmed by the atomic DOS of Ge. The Fermi energy is lowered only by 0.08 
eV upon Ge substitution. Charge density plot shows that there is a slight perturbation of electron 
charge density around Fe atoms only. However, charge localization is not observed around the Ge 
due to the isoelectronic nature of both Si and Ge.  

Figure 11. (a,b) Distorted FeO6 and GaO6 octahedral units showing bond lengths in defect free and
defect (Ga-doped) configurations respectively, (c,d) corresponding total DOSs (e) atomic DOS of Ga
and (f) constant charge density around the dopant.

Finally, Ge was introduced at the Si site. Though Ge and Si are isovalent atoms, their ionic radii
are different (Si4+: 0.26 Å and Ge4+: 0.39 Å). Larger ionic radius of Ge4+ reflects in the longer Ge-O
bond distances (see Figure 12). Total DOS plot of Ge-doped CaFeSi2O6 is almost unaltered near the
Fermi level. This is further confirmed by the atomic DOS of Ge. The Fermi energy is lowered only by
0.08 eV upon Ge substitution. Charge density plot shows that there is a slight perturbation of electron
charge density around Fe atoms only. However, charge localization is not observed around the Ge due
to the isoelectronic nature of both Si and Ge.
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4. Conclusions 

We used computational techniques to provide a detailed atomistic level understanding of key 
defect processes, diffusion mechanisms and dopant properties in CaFeSi2O6. Calculations show that 
the Ca-Fe anti-site defect would be dominant in this material. The formation of Frenkel defects is 
unlikely under normal conditions though the O Frenkel exhibits the lowest Frenkel energy of 2.87 
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Doping of Al at the Si site is anticipated to improve the capacity and ion diffusion. Formation of Ca 
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Figure 12. (a,b) Distorted SiO4 and GeO4 tetrahedral units showing bond lengths in defect free and
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4. Conclusions

We used computational techniques to provide a detailed atomistic level understanding of key
defect processes, diffusion mechanisms and dopant properties in CaFeSi2O6. Calculations show that the
Ca-Fe anti-site defect would be dominant in this material. The formation of Frenkel defects is unlikely
under normal conditions though the O Frenkel exhibits the lowest Frenkel energy of 2.87 eV/defect.
The loss of CaO in this material requires a moderate temperature and can be facilitated by introducing
additional Ca vacancies. Ca-ion diffusion in this material is found to be very slow. Doping of Al at the
Si site is anticipated to improve the capacity and ion diffusion. Formation of Ca vacancies required
for the CaO Schottky can be facilitated by doping Ga at the Fe site. Electronic structure calculations
show that CaFeSi2O6 is a wide-gap semiconductor. While isovalent dopants do not affect the electronic
structure much, aliovalent dopants alter the electronic structure and gap states.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/5/1285/s1,
Table S1: Interatomic potential parameters used in the atomistic simulations of CaFeSi2O6.

Author Contributions: Computation, N.K.; Writing, N.K.; Analysis and Editing, A.C. All authors have read and
agreed to the published version of the manuscript.
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