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Abstract: This study is an elaboration on the conference article written by the same authors, which
presented the results of laboratory tests on the biogas efficiency of the following substrates: maize
silage (MS), pig manure (PM), potato waste (PW), and sugar beet pulp (SB). This article presents
methane yields from the same substrates, but also on a technical scale. Apart from that, it presents an
original methodology of defining the Biochemical Methane Potential Correction Coefficient (BMPCC)
based on the calculation of biomass conversion on an industrial scale and on a laboratory scale. The
BMPCC was introduced as a tool to enable uncomplicated verification of the operation of a biogas
plant to increase its efficiency and prevent undesirable losses. The estimated BMPCC values showed
that the volume of methane produced in the laboratory was overestimated in comparison to the
amount of methane obtained under technical conditions. There were differences observed for each
substrate. They ranged from 4.7% to 17.19% for MS, from 1.14% to 23.58% for PM, from 9.5% to
13.69% for PW, and from 9.06% to 14.31% for SB. The BMPCC enables estimation of biomass under
fermentation on an industrial scale, as compared with laboratory conditions.

Keywords: laboratory-scale efficiency; industrial-scale efficiency; biomass conversion; Biochemical
Methane Potential Correction Coefficient; loss prevention

1. Introduction

The intensive development of agriculture causes an increase in the supply of organic waste. Waste
matter disposal technologies are often based on the anaerobic digestion (AD) process, which takes
place in biogas plants. In order to increase the efficiency of the installation, plants with high content of
organic matter are added as a substrate [1,2]. Target crops are grown for this purpose—mainly maize
and grass, which are used to produce silages [3]. Animal waste [4,5] and food waste [6,7] are also
used as substrates. Biogas plants produce biogas, which is classified as a source of renewable energy
because it contains methane. The resulting gas, which is an energy carrier, can be easily converted into
electricity and heat.

The AD process is one of the most adequate and prospective methods of organic waste disposal
and it is also a source of biofuel [8,9]. However, the process must be economically viable and stable.
The main factors which affect AD-process efficiency are as follows: the chemical composition of the
substrates, pH, temperature, the substrates mixing process, dry residue, the content of organic matter
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in the substrate, the digester load, and the concentration of inhibitors [10–12]. These parameters are
controlled both in the laboratory-scale and industrial-scale process.

A slight change in the conditions of the methane digestion in a biogas plant may upset the process
or halt it completely. Temperature is one of the factors that significantly affects the course of the
digestion process. Small changes in temperature and the retention time affect bacterial activity [13].
As a consequence, biogas production is reduced. In Poland, the digestion process is usually carried
out under mesophilic conditions at a temperature of about 39 ◦C. In Europe, mesophilic installations
are predominant, but there are also thermophilic conditions, where more heat energy is used by
the plant to sustain the process [14,15]. As mentioned before, pH is also important for methane
fermentation. It should range from 6.8 to 7.5 because this guarantees optimal conditions for bacterial
life and reproduction during all four phases of the methane fermentation process [16,17]. The biogas
yield decreases when the pH value is higher than 7.5 or lower than 6.8.

When biomass is applied to digestion chambers with high-protein substrates, excessive amounts
of ammoniacal nitrogen are usually formed. Excess ammonia significantly slows down the biogas
production process. As temperature increases, so does the effect of ammonia, inhibiting methane
fermentation [18,19]. Some substrates are rich in sulphur and they cause excessive amounts of this
element in the digester. The element may occur in the form of ions dissolved during the liquid
phase, or it may be found in hydrogen sulphide in a mixture of liquid and gas. Higher temperature
increases the solubility of hydrogen sulphide, which results in its higher concentration during the
liquid phase [20]. At the initial stage of operation of a biogas plant, it is very important to supply small
portions of substrates with a homogeneous composition. This affects the overall normal digestion by
individual bacteria at each stage of the fermentation process [21]. During the operation of a biogas
plant, it is necessary to observe the retention time for individual organic substrates. This is the time a
given substrate should spend in the digester until it achieves an appropriate level of degradation. These
are the most common problems encountered in practice, which directly affect the actual production
of biogas.

The pursuit of more efficient use of biomass to generate energy requires detailed verification
of methane fermentation technologies. Detailed analysis and the selection of appropriate biogas
production technologies gives investors a real opportunity to manage biogas plants effectively. Apart
from that, more efficient and effective installations give a chance to reduce the financial and social
costs of every kilowatt hour (kWh) of energy produced, as compared with the countries regarded
as pioneers in this field. Poland is still a developing country, as it is attempting to catch up with the
standard of Western European countries. Therefore, it should effectively control the expending of
funds on solutions implemented in the field of renewable energy sources [1,12,22].

At the beginning of the development of biogas installations in Poland, i.e., between 2008 and 2009,
investors were ready to expend money on large plants capable of generating a power of 2 MW or
more [23]. However, the market very quickly verified these plans and showed that it was the wrong
trend because it involved high costs of transport (it was necessary to supply thousands of tonnes of
substrates). The dispersion of Polish agriculture was not taken into consideration either. After about
3 years, investors began to prefer biogas plants capable of generating a power of 0.5–1 MW. They
were usually located on large farms [24] because it was necessary to provide a continuous supply
of substrates and to solve the deodorisation problem. However, this method was also unsuccessful
because the actual fermentation efficiency was much lower than the forecast. The energy consumption
for fittings was higher than assumed, mostly due to the increased and unstable operation of the mixing
systems in the installation [23]. These problems are still topical. Therefore, the proposed technologies
should be analysed in detail and adjusted to national and local requirements. Scientists and biogas
plant owners struggle with these problems not only in Poland but also in other countries [25–28].

So far, researchers have not prepared the assumptions that would clearly and easily verify the
operation of a biogas plant. This verification system is more and more wanted by current and future
investors. As seen in reference publications, most studies conducted by scientific institutions both
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in Poland and other countries usually refer to laboratory conditions [29–31]. The authors of most
of these studies did not analyse the operation of biogas installations, which converted biomass into
biogas/methane. However, these results directly translate into the economic and ecological effect of
bioelectric plants. In general, scientific reports very rarely provide information about the efficiency of a
particular technology proposed by researchers in terms of the relation between the amount of biogas
generated in a laboratory and the potential efficiency of this technology applied on a technical scale.
If any information is given, it is usually insufficient.

This study compares the efficiency of the anaerobic digestion technology applied on an industrial
scale with its efficiency on a laboratory scale. The comparison was made for the same substrates. The
study also verifies the level of significance of the determinants affecting the efficiency of operation of
the biogas installation. The following substrates were used in the research: maize silage (MS); and
agri-food waste, including pig manure (PM), potato waste (PW), and sugar beet pulp (SB). In view of
the fact that numerous dependencies can be observed during the AD process in a biogas plant—and due
to the fact that reference publications do not assess the efficiency of biomass conversion on an industrial
scale—the Biochemical Methane Potential Correction Coefficient (BMPCC) was defined [23]. The
coefficient provided information about the efficiency of organic matter decomposition into methane in
a biogas plant and enabled comparison of these results with the AD process conducted in a laboratory.

2. Materials and Methods

2.1. Materials

Green substrates—maize silage (MS) and agri-food waste, pig manure (PM), potato waste (PW),
and sugar beet pulp (SB) were used in the study. The waste materials were acquired from a farm and a
sugar factory in the Wielkopolska region, Poland.

Maize silage was stored in silos, where it was ensilaged. Pig manure was supplied directly from a
pig farm. Potato waste was also supplied directly after being customised. Sugar beet pulp was stored
in silage sleeves. The degree of maize compaction in the ensilage process, the weather conditions,
and storage time were the factors affecting the physicochemical properties after storage.

2.2. Physicochemical Analysis of Materials

The following standards were used in physicochemical analyses of the substrates (used organic
materials) and samples (harvested fermentation mixture): pH—the potentiometric method, PN-EN
12176: 2004; dry residue—the weight method, PN-EN 12880: 2004; roasting losses (roasting residue)
—the weight method, PN-EN 12879: 2004; sampling for chemical and physical tests, PN-EN ISO 5667-13:
2011; carbon, EN ISO 16948: 2015; hydrogen, EN ISO 16948: 2015; nitrogen, EN ISO 16948: 2015;
oxygen, based on calculations; sulphur, PN-EN ISO 11885: 2009.

2.3. Laboratory-Scale Biogas Production

The anaerobic digestion process was conducted in a periodic mode of operation of digesters,
under mesophilic conditions. The authors of this study presented a detailed diagram and described
the construction and operation of biodigesters in their previous publications [32–34].

2.4. The Construction and Operation of an Industrial Installation

The biomass conversion tests were conducted for 6 months in an agricultural biogas plant. The
facility was fed with the substrates listed above. Samples of the substrates were collected at monthly
intervals because their physicochemical properties may have changed during storage.

The biogas plant consisted of two main digesters (F1 and F2) and a third tank, where digestate
pulp was stored. The first tank (F1) was used for primary digestion, and the second tank (F2) was
used for secondary digestion. The installation was also equipped with a primary tank (PT), into which
waste potatoes were fed because they may have been contaminated with soil. Pig manure, which was
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the agent liquefying the entire fermenting mass, was also fed into this tank. The annual production
capacity was about 3.5 million m3 of biogas. The installation was equipped with a cogeneration system,
whose power was 1 MWel.

2.5. Collection of Samples for Tests

Samples for tests were collected once a month. Six samples of each substrate were tested during
the six-month experiment. The following aspects were taken into account when collecting the samples:
access to the sampling point, the possibility to safely interrupt the stream of material when samples were
collected manually, and the type of construction of the fermentation chamber—due to the stratification
of the material collected for tests. The safest and most practical station for manual sample collection
was selected. The practicality of this location was analysed in terms of the representativeness of the
material collected for tests. Each time, at least 3 samples were collected to increase confidence in the
representativeness of the material collected.

2.6. Qualitative and Quantitative Analysis of Biogas

The quality and quantity of the biogas produced was analysed once a day. In order to make
effective measurements of the biogas quality, a minimum quantity of 0.4 L had to be produced daily.
When a smaller amount of biogas was produced, the chemical composition was not analysed. The
measurement methodology was adopted from the German standard DIN 38414/S8, which was modified
by the author in order to reduce measurement errors [35]. The qualitative composition of biogas was
analysed by measuring the content of CH4, CO2, NH3, and H2S.

The quality and quantity of the biogas produced in the installation under real conditions was based
on the measuring systems in place. These systems were permanently installed and met the German
standard DIN 38414/S8. There were no breakdowns during the entire period under study. When
estimating the uncertainty of measurement in this article, the procedures followed Polish standards
and German standard [35–37].

2.7. Biochemical Methane Potential Correction Coefficient (BMPCC)—Calculation Methodology Based on

First, the yield of biogas from the substrate was measured (m3
·Mg−1 fresh matter (FM)) in a

laboratory. Simultaneously, the composition of biogas was analysed by measuring the content of CH4

and CO2 (the concentrations of NH3 and H2S were omitted). Then, the biogas composition was used
to calculate the volume of methane. At the next stage, the mass of methane contained in the biogas
was measured under laboratory conditions (the mass of methane in the biogas obtained from the
fresh matter of the substrate under laboratory conditions, MMB-L). The third stage involved analysing
the substrate for dry residue, roasting losses, and the content of carbon, hydrogen, oxygen, nitrogen,
and sulphur. Then, knowing the content of C, H, O, N, and S, the amount of methane that could
theoretically be obtained was calculated (theoretical methane mass, TMM) according to the principle
of mass conservation.

The fourth stage involved calculation of the conversion of organic matter contained in the biomass
under laboratory conditions (conversion of organic matter under laboratory conditions—the laboratory
degree of biomass conversion, COM-L). The following Equation (1) was used:

COM− L =
MMB− L

TMM
. (1)

The fifth stage involved calculation of the conversion of organic matter contained in the biomass
under the operating conditions of the installation (conversion of organic matter in the installation—the
industrial degree of biomass conversion, COM-I). The following Equation (2) was used:

COM− I =
MMB− I

TMM
. (2)
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At the last stage, the BMPCC of each substrate was calculated as the ratio between the mass of
methane produced in the installation and the mass of methane produced under laboratory conditions.
The following Equation (3) was used:

BMPCC = 100−
COM− I
COM− L

× 100. (3)

3. Results

3.1. Physicochemical Parameters of Substrates—Laboratory-Scale Measurements

3.1.1. pH of Substrates

The pH of maize silage used for the tests ranged from 4.21 (1MS) to 4.39 (3MS). The pH values
of pig manure were similar during the entire test and ranged from 7.22 (5PM) to 7.56 (1PM). They
were similar to data provided in reference publications [38,39]. The concentration of hydrogen ions in
waste potatoes ranged from 7.44 (3PW) to 7.78 (4PW). As seen in results from the research on methane
fermentation of waste potatoes conducted by [40], the pH of the substrate was 7. The pH of beet pulp
ranged from 5.01 (1SB) to 5.18 (3SB). Table 1 shows the pH values of the substrates.

Table 1. Physicochemical properties and the laboratory-scale biogas efficiency of the substrates with
the uncertainty of results, based on [1].

Substrate pH (-) TS (%) VS (%) Biogas
(m3
·Mg−1 FM)

Biogas
(m3
·Mg−1 TS)

Biogas
(m3
·Mg−1 VS)

CH4 (%)

1MS 4.21 ± 0.06 32.68 ± 0.51 95.15 ± 1.76 188 ± 3.6 575 ± 12.6 605 ± 13.4 51.2 ± 1.29
2MS 4.28 ± 0.06 32.21 ± 0.50 94.61 ± 1.75 183 ± 3.5 568 ± 12.4 601 ± 13.4 52.3 ± 1.31
3MS 4.39 ± 0.06 32.11 ± 0.50 94.21 ± 1.75 181 ± 3.5 564 ± 12.3 598 ± 13.3 50.4 ± 1.27
4MS 4.31 ± 0.06 31.86 ± 0.50 93.65 ± 1.74 178 ± 3.4 559 ± 12.2 595 ± 13.2 50.9 ± 1.28
5MS 4.35 ± 0.06 31.45 ± 0.49 94.83 ± 1.76 180 ± 3.5 572 ± 12.5 604 ± 13.4 51.6 ± 1.30
6MS 4.28 ± 0.06 31.06 ± 0.48 93.88 ± 1.74 184 ± 3.5 592 ± 12.9 631 ± 14.0 50.4 ± 1.27

1PM 7.56 ± 0.10 4.86 ± 0.08 76.16 ± 1.41 17 ± 0.3 350 ± 7.6 459 ± 10.2 52.6 ± 1.32
2PM 7.44 ± 0.10 4.32 ± 0.07 76.88 ± 1.43 19 ± 0.4 440 ± 9.6 572 ± 12.7 51.1 ± 1.28
3PM 7.31 ± 0.10 4.94 ± 0.08 78.49 ± 1.46 20 ± 0.4 405 ± 8.9 516 ± 11.5 51.8 ± 1.30
4PM 7.28 ± 0.10 4.65 ± 0.07 81.32 ± 1.51 22 ± 0.4 473 ± 10.3 582 ± 12.9 51.4 ± 1.29
5PM 7.22 ± 0.10 5.06 ± 0.08 80.11 ± 1.49 21 ± 0.4 415 ± 9.1 518 ± 11.5 51.3 ± 1.29
6PM 7.36 ± 0.10 5.01 ± 0.08 79.84 ± 1.48 18 ± 0.3 359 ± 7.8 450 ± 10.0 50.8 ± 1.28

1PW 7.36 ± 0.10 21.31 ± 0.33 94.87 ± 1.76 68 ± 1.3 319 ± 7.0 336 ± 7.5 51.6 ± 1.30
2PW 7.41 ± 0.10 21.33 ± 0.33 94.61 ± 1.75 69 ± 1.3 323 ± 7.1 342 ± 7.6 50.7 ± 1.27
3PW 7.44 ± 0.10 21.45 ± 0.33 94.83 ± 1.76 67 ± 1.3 312 ± 6.8 329 ± 7.3 51.4 ± 1.29
4PW 7.78 ± 0.11 21.85 ± 0.34 95.01 ± 1.76 70 ± 1.3 320 ± 7.0 337 ± 7.5 51.1 ± 1.28
5PW 7.65 ± 0.10 21.78 ± 0.34 95.12 ± 1.76 71 ± 1.4 326 ± 7.1 343 ± 7.6 52.2 ± 1.31
6PW 7.71 ± 0.10 21.86 ± 0.34 95.92 ± 1.78 70 ± 1.3 320 ± 7.0 334 ± 7.4 51.8 ± 1.30

1SB 5.01 ± 0.07 23.88 ± 0.37 94.16 ± 1.75 99 ± 1.9 415 ± 9.1 440 ± 9.8 50.2 ± 1.26
2SB 5.08 ± 0.07 23.44 ± 0.36 94.02 ± 1.74 97 ± 1.9 414 ± 9.0 441 ± 9.8 50.8 ± 1.28
3SB 5.18 ± 0.07 23.58 ± 0.37 93.88 ± 1.74 96 ± 1.8 407 ± 8.9 434 ± 9.6 51.4 ± 1.29
4SB 5.16 ± 0.07 23.41 ± 0.36 93.32 ± 1.73 93 ± 1.8 397 ± 8.7 426 ± 9.5 52.1 ± 1.31
5SB 5.11 ± 0.07 23.67 ± 0.37 93.46 ± 1.73 94 ± 1.8 398 ± 8.7 425 ± 9.4 50.7 ± 1.27
6SB 5.09 ± 0.07 23.33 ± 0.36 94.12 ± 1.74 95 ± 1.8 407 ± 8.9 433 ± 9.6 51.5 ± 1.29

3.1.2. Total Solids in Substrates

The content of total solids (TS) in the maize silage used in the installations ranged from 32.21%
(2MS) to 31.06% (6MS). The TS content in the pig manure ranged from 4.32% (2PM) to 5.06 (6PM) and
was consistent with the data provided in reference publications [41]. The TS content in the potato
waste ranged from 21.33% (2PW) to 21.86% (6PW). The TS content in the beet pulp ranged from 23.33%
(6SB) to 23.88% (1SB). The results were comparable with the data published in the study by [42]. Table 1
shows the TS content in the substrates.
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3.1.3. Volatile Solids in Substrates

The content of volatile solids (VS), i.e., roasting losses, was another parameter under analysis.
Substrates with high content of organic matter are a valuable raw material for biogas installations.
There are three basic groups of organic matter in substrates: carbohydrates, protein, and fats. The
materials used in this study mainly contained sugars and protein. The roasting losses for maize silage
ranged from 93.88% (6MS) to 95.15% (1MS). The VS content in the pig manure ranged from 76.88%
(2PM) to 81.32% (4PM). These values were similar to the data reported in reference publications [43,44].
The quality of liquid manure depends on the animals it comes from, their diet, and the degree of
dilution with water. The VS content in the potato waste ranged from 94.61% (1PW) to 95.92% (6PW).
Due to the content of carbohydrates in sugar beet pulp, this material positively influences the methane
fermentation efficiency per digester volume unit. The VS content in the material used in the tests
ranged from 93.32% (4SB) to 94.16% (1SB). Table 1 lists the results of this experiment.

3.2. Laboratory-Scale Biogas Efficiency of Samples

3.2.1. Volume of Biogas Obtained from Substrates per Fresh Matter

The yield of biogas obtained from maize silage amounted to 183 m3
·Mg−1 FM. The biogas volumes

obtained in the experiment were consistent with the data provided by other researchers [33]. The
yield of biogas obtained from liquid manure amounted to 20.1 m3

·Mg−1 FM. It was lower than the
data provided in reference publications [45]. The volume of biogas obtained from waste potatoes
amounted to 69.2 m3

·Mg−1 FM. The volume of biogas obtained from the fresh matter of sugar beet pulp
amounted to 96.4 m3

·Mg−1 FM. There were similar values reported in reference publications [46,47].
Table 1 provides data on the volume of biogas obtained from the substrates.

3.2.2. Volume of Biogas Obtained from Substrates per Total Solids Content

Literature data provide the volume of biogas obtained in the AD process as the number of total
solids contained in the samples so as to standardise the results without water. In this study, similar
calculations were also performed. The volume of biogas obtained from maize silage at individual
sample collection terms ranged from 559 (4MS) to 592 (6MS) m3

·Mg−1 TS. The yield of biogas obtained
from pig manure per TS in individual samples ranged from 350 (3PM) to 473 (4PM) m3

·Mg−1 TS. In
reference publications, there are big differences in the data on the biochemical methanogenic potential
of pig manure obtained per TS [48]. The yield of biogas obtained from waste potatoes ranged from 323
(3PW) to 326 (5PW) m3

·Mg−1 TS. The biochemical methanogenic potential of sugar beet pulp ranged
from 397 (4SB and 5SB) to 415 (1SB) m3

·Mg−1 TS. The volume of biogas obtained in this study was
lower than in the study by [46]. The data on the volume of biogas per total solids content are shown in
Table 1.

3.2.3. Volume of Biogas Obtained from Substrates per Volatile Solids Content

The yield of biogas obtained from maize silage per VS ranged from 595 (4MS) to 631 (6MS) m3
·Mg−1

VS. The results of this experiment were in line with the data presented by [44]. The yield of biogas
obtained from pig manure ranged from 450 (6PM) to 582 (3PM) m3

·Mg−1 VS. The biogas volume
was comparable to the results presented by [45]. The volume of biogas obtained from waste potatoes
ranged from 329 (3PW) to 342 (2PW). The volume of biogas obtained from beet pulp ranged from 425
(5SB) to 440 (1SB and 2SB) m3

·Mg−1 VS. The values reported in reference publications were lower
than the results presented by [46], where the biochemical methanogenic potential of sugar beet pulp
amounted to 504 m3

·Mg−1 VS. The range of the results is given in Table 1.
The volume concentration of methane in the biogas obtained from the maize silage ranged from

50.4% (3MS) to 52.3% (2MS), see Table 1. The concentration noted in the presented experiment was
identical with the data reported by [44]. The methane content in the biogas obtained from pig manure
ranged from 50.8 (2PM) to 52.6% (5PM). According to the authors of scientific studies, the methane
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fraction in the biogas obtained as a result of the methane fermentation of pig manure was above
53% [48]. The concentration of methane in the biogas obtained from waste potatoes ranged from
50.7% (2PW) to 52.2% (5PW). These values were similar to the data presented by [49]. The volume
concentration of methane in the biogas obtained from beet pulp ranged from 50.2% (1SB) to 52.8%
(4SB). According to [50], the concentration is usually about 52%.

The pH range corresponding to the maize silage proved that the ensilage process was successful.
During storage, the total solids as well as volatile solids of this substrate were reduced. It is most likely
that it was caused by microorganisms responsible for the conservation of MS. However, despite the
decrease in the MS organic matter, the amount of biogas produced in the following months was not
reduced. The physicochemical properties of pig manure depend on the way animals are fed and their
age. This significantly affects the biomethane efficiency of this material. It is similar with potato waste,
which is a waste material but is not cultivated for energy purposes. However, as the table shows, this
did not affect the values of the parameters corresponding to this material. Slight differences in the
biogas yields of the sugar beet pulp were caused by the fact that there were various sugar beet species
in this substrate.

3.3. pH—Industrial-Scale Measurements

In the PT tank, waste potatoes were comminuted and solid contaminants were removed. They
were mixed and liquefied with pig manure (see Section 2.4). During the entire experiment, the pH in
the PT tank ranged from 6.91 (3PT) to 7.34 (6PT). Samples were continuously fed from the PT tank to
F1 and F2 (primary and secondary digestion), where all the substrates used in the experiment were
mixed and underwent primary (F1) and secondary digestion (F2). There were the following pH values
in the digesters: ranging from 7.02 (6F1) to 7.23 (1F1) in the first tank and from 7.19 (5F2) to 7.21 (6F2)
in the secondary tank, as shown in Figure 1.
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3.4. Temperature—Industrial-Scale Measurements

The large volume of liquid manure fed into the predigester significantly reduced the temperature,
which was the lowest in this tank. This tank was not intended for the methane fermentation process.
The temperature ranged from 12.4 ◦C to 18.2 ◦C for preliminary tank. The temperature in the first tank
ranged from 38.4 ◦C to 40.3 ◦C, whereas in the secondary tank it ranged from 39.4 ◦C to 40.4 ◦C.

3.5. The Actual Amount of Substrate Fed each Month

The amount of substrates to be fed into the installation was planned on the basis of the results of
laboratory tests. The amount was sufficient to generate a power of 1 MWel. Depending on the month,
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the mass of maize silage fed into the installation ranged from 1668 Mg to 1910 Mg, pig manure—from
4540 Mg to 5160 Mg, waste potatoes—from 62 Mg to 186 Mg, and beet pulp—from 165 Mg to 217 Mg.

3.6. The Mass of Methane Produced from Each Substrate Each Month

Methane is one of the most important components of the biogas mixture as it is responsible for its
calorific value.

Figure 2 shows the mass of methane obtained from each substrate in each month of the study.
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The installation was equipped with devices that measured the volume of biogas produced and its
percentage (volumetric) composition. The biogas volume was converted into mass. The resulting mass
of methane refers to each month of the experiment. The average methane content in biogas ranged
from 50.4% to 52.1%. These are standard values for substrates used in biogas installations.

3.7. Biomass Conversion in Laboratory

The degree of biomass conversion into biogas (methane and carbon dioxide) is important for
the efficiency of the process. The content of methane in biogas is important because this compound
determines its calorific value. The higher the methane volume concentration is, the less biogas is
needed to produce the same amount of energy. It also reduces the demand for substrates because a
smaller amount of inert gas (carbon dioxide) is necessary for the combustion process. Therefore, it is
important to optimise the process in terms of the methane content in biogas. By testing the biochemical
methanogenic potential of a particular organic material, it is possible to select the right amount of
substrates for installations capable of generating a specific power.

Figure 3 shows the degree of biomass conversion into biogas (calculations based on Equation (1)).
The maize silage was characterised by the best values of its conversion into biogas in the laboratory.
However, the distribution of this biomass varied in individual periods of analysis and ranged from
78.8% (2) to 84.2% (6). The highest data amplitude was noted for pig manure, i.e., from 59.8% (6) to
76.9% (4). This indicates that the pig manure used in the test was not homogeneous and contained
chemical compounds inhibiting the methane fermentation process, e.g., antibiotics and heavy metals
from the feed provided to animals. The lowest degree of biomass conversion into biogas was noted for
waste potatoes, i.e., from 43.54% (3) to 45.49% (2). Such poor results indicate that the potatoes may
have contained residues from plant protection products, which inhibited biodegradation processes.
Moreover, the potatoes were stored in open ground, which caused their decomposition. The degree
of the conversion of beet pulp into biogas ranged from 55.90% (4) to 58.86% (2). This percentage of
conversion was caused by the composition of organic matter contained in the pulp.
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3.8. Biomass Conversion under Industrial Conditions

In order to verify the degree of biomass conversion under the operating conditions of the
installation, the amount of biogas obtained from each substrate was measured. It is easy to calculate
the amount of methane from the biogas composition (Figure 4).
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The values of biomass conversion conducted on a technical scale (Equation (2)) were lower than
the results noted in the laboratory. This situation was caused by the fact that model tests are conducted
in laboratories. However, by analysing the results of biomass conversion on an industrial scale, it is
possible to verify the operation of the installation and implement a recovery plan to improve its
efficiency. This procedure protects the owners of biogas plants from financial loss because each tonne
of biomass which has not been converted into biogas/methane generates additional handling costs.
The industrial-scale conversion of maize silage into biogas ranged from 66.44 (2) to 76.46 (6). For pig
manure, it ranged from 52.10 (1) to 67.40 (4). Similar to the laboratory tests, the lowest conversion was
obtained for waste potatoes, i.e., from 38.41 (2) to 40.27 (4). The conversion of beet pulp into biogas
ranged from 49.17 (5) to 51.88 (6). Figure 5 shows the values of biomass conversion into biogas during
the operation of the installation.

As resulted from the BMPCC values (Equation (3)), in comparison with the amount of methane
obtained under technical conditions, the volume of methane produced in the laboratory was
overestimated. There were differences noted for each substrate (see Figure 5). They ranged from 4.7%
(6) to 17.19% (2) for maize silage, from 1.14% (4) to 23.58% (1) for pig manure, from 9.5% (4) to 13.69%
(2) for waste potatoes, and from 9.06% (3) to 14.31% (5) for beet pulp.
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To sum up, the biochemical methanogenic potential of the substrates used in the laboratory
investigations was comparable to the data provided in reference publications [51–54]. The values of
biogas and methane obtained in the industrial-scale production were lower than in the laboratory
tests due to the disturbances that occurred in real installations. However, biogas plant owners should
attempt to achieve a comparable efficiency of their facilities to the amounts obtained in laboratory tests.
Model tests are used to estimate the amount of batch for the installation and the economic result of the
project. Excessive losses of industrial-scale production cause owners to bear additional costs due to the
need to purchase additional substrates.
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4. Conclusions

The BMPCC enables estimation of the industrial scale under fermentation of biomass compared
with the laboratory conditions. Thus, it is possible to analyse the operation of the installation more
accurately and eliminate the substrates that may inhibit the methane fermentation process. Waste
potatoes seemed to be such a substrate in the installation analysed in this study because they were
poorly converted in the laboratory. They may have been contaminated with the substances that
weakened the methane fermentation process. When the substrate was fed into the digestion chambers,
it may have reduced the process efficiency. In consequence, the biomass conversion in the entire
bioreactor was affected, as was proved by the BMPCC.

The Biochemical Methane Potential Correction Coefficient is a solution that can be used as a
system diagnosing a methane fermentation plant in a specific (selected) time interval. It can also be
used to verify the biochemical methanogenic potential of individual substrates.
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