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Abstract: The main purpose of this paper is to present a novel algorithmic reinforcement learning (RL)
method for damping the voltage and frequency oscillations in a micro-grid (MG) with penetration of
wind turbine generators (WTG). First, the continuous-time environment of the system is discretized
to a definite number of states to form the Markov decision process (MDP). To solve the modeled
discrete RL-based problem, Q-learning method, which is a model-free and simple iterative solution
mechanism is used. Therefore, the presented control strategy is adaptive and it is suitable for
the realistic power systems with high nonlinearities. The proposed adaptive RL controller has a
supervisory nature that can improve the performance of any kind of controllers by adding an offset
signal to the output control signal of them. Here, a part of Denmark distribution system is considered
and the dynamic performance of the suggested control mechanism is evaluated and compared with
fuzzy-proportional integral derivative (PID) and classical PID controllers. Simulations are carried out
in two realistic and challenging scenarios considering system parameters changing. Results indicate
that the proposed control strategy has an excellent dynamic response compared to fuzzy-PID and
traditional PID controllers for damping the voltage and frequency oscillations.

Keywords: machine learning; microgrid control; Markov decision process; reinforcement learning

1. Introduction

In the last few years, there has been a growing interest in the development of microgrids
(MGs) for enhancing power system reliability, better power quality and reducing the environmental
impacts [1,2]. An MG is a small-scale power system with distinct electrical boundaries with the
capability of supplying its loads autonomously when it is islanded from the main grid [3]. One of the
main characteristics of MG is that it consists of different types of power sources such as distributed
generations (DGs) and energy storage systems [4,5]. While high number of DGs can increase the MG
availability when an error occurs on the main grid side in the islanded mode, the uncertain power
output of renewable power resource like PV and wind turbine generator (WTG) makes the control
of voltage and frequency of MG a challenging work, which needs more effort and new adaptive
control mechanisms [6,7]. Without a strong and high-efficiency control method, in this condition, the
frequency and voltage of the microgrid may reach undesirable values [8].

The literature on voltage and frequency control of MG shows a variety of approaches [9–11].
As reported by Hirase et al. [12], the power system inertia decreases due to the higher number of
DGs, therefore the frequency and voltage of the power system are exposed to swing. Authors in [13]
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presented a static model based on the power flow and optimal power flow in order to control the
under-frequency oscillations in an islanded microgrid. the application of this method is very limited
and it only covers frequency oscillation of the microgrid. In [14], a low voltage feedback controller was
proposed, which is based on theoretical-circuit analysis techniques in closed-loop systems. Authors
in [15], presented a control scheme based on the V-I and I-V drop characteristics for MG voltage and
current conditions. The proposed method determines the output impedance of the resource subsystem
along with the converter’s dynamics and analyzes the stability of the MG when it supplies constant
loads. The paper investigates the sustainability effects of key parameters such as loss coefficients,
local loop control dynamics and the number of resources and compares the voltage and current status
from a sustainability perspective. Asghar et al. [16] developed a new control mechanism based on
fuzzy logic and energy storage to control the frequency and voltage of the MG in the islanded mode.
In this paper, both battery storage and super-capacitor have been used to improve the MG frequency
oscillations and voltage stability, respectively. In [17] a decentralized robust fuzzy control strategy
for islanded operation of an AC microgrid with voltage source inverters has presented. The objective
of [17] is to design a robust controller for regulating the load voltage and sharing power among DGs in
the presence of uncertainties in the system and non-linear loads. Authors in [18], based on the output
regulation theory and fast-battery storage, designed a controller to improve the frequency variations
and the voltage stability of the MG. They attempted to improve the weaknesses of the drop based
controllers, including high settling time and poor transient performance.

The effect of frequency and voltage oscillations on the operational performance of the MG
was mathematically modelled in [12]. In addition, a proper control strategy based on the obtained
mathematical model has been proposed to improve the frequency fluctuations and voltage deviations of
the MG and tested experimentally. Various master-slave and drop based control methods for improving
the frequency and voltage oscillations in an MG are presented and compared in [19]. Differently
from drop-based methods, in the master-slave based methods, the converter does not participate in
the process of controlling the frequency and voltage. Although utilizing parallel converters in AC
MGs and controlling them using drop based methods make the splitting of power between lines
possible, sometimes, due to different lines impedances, a sudden load change causes the instantaneous
imbalance in the production and power absorbed by the parallel converter. Therefore, in [20], the
authors have proposed a control method to improve the voltage stability of the MG by sampling
the difference in line impedances. A modified decentralized droop controller for inverter-based PV
microgrids has presented in [21] that address the problem of instability and slower power-sharing
between PV inverters.

The use of machine learning approaches in the areas of scheduling, maintenance management,
quality improvement and control of MGs for effective solutions increased due to the development of
new data measurement and communication techniques [22]. The Markov-decision process (MDP) is
a discrete-time stochastic process partly under control of an action selector [23]. Recently, artificial
intelligence methods are more considered by researchers for solving MDPs, and among these, machine
learning techniques, including reinforcement learning (RL), are one of the most important methods.
In [24], a thyristor controlled series capacitor (TCSC) is optimally controlled in order to achieve the
stability of a multi-machine power system using the RL mechanism. According to the literature, the
RL-based methods are model-free and do not require robust and accurate assumptions about system
dynamics. In fact, these methods consider the system as a black box and model its dynamic behavior
using its inputs and outputs, meaning that they can properly cope with nonlinearities and uncertainties
despite partial information [25]. This is a useful property for controlling the nonlinear power systems,
especially when, the complex and widespread power systems are forced to experience new undesirable
conditions due to different events involving their various components. In a multi-agent system (MAS)
RL, intelligent agents are compatible with their environment (system under control), meaning that
when they perform an action, immediately receive feedback from the environment, thereby they
update the probability of re-election of the elected action based on the received reward/penalty in
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the corresponding state. One more interesting characteristic of the proposed RL based controllers
is that they can be used as supervisory controllers for the classic controllers in a way that improves
their dynamic response [25]. In [26] authors have presented a supervisory controller based on the RL
method for controlling the frequency of a hybrid MG integrated with various energy storage systems.
It is assumed the RL controller supervises the PID controller through its offset signal. Reference [27]
presents two utilization for RL, at the first one RL used as an optimization tool for tuning the PID based
power system stabilizer (PSS) control coefficients, while in the other one it is used as an appropriate
alternative for the PSS system. The results prove that the RL controller can be a complimentary as well
as a worthy alternative for classical controllers. Various parables have been reported in the literature
for RL applications in power system control such as voltage control [28], market management [29],
and stability analysis [30,31].

As it is concluded in [32], supervisory controllers such as rule-based system (RBS) and machine
learning system (MLS) schemes have found to be flexible control methods with fast dynamic responses.
RBS may be used in three categories such as fuzzy systems [33], neural networks [34], and the other
standard RBS [35,36]. Although the fuzzy-based RBS and neural network schemes are more adaptable,
still, they can produce unreliable results [32]. On the other hand, to ensure the robustness, reliability,
and flexibility of MGs, MAS based decentralized control approaches have been recommended for
MG management [25,30,37,38]. The prominent MAS intelligent agent’s characteristics in the different
aspects are classified as [32]: (i) reactivity: the ability to react to changes in the environment in a timely
manner; (ii) pro-activeness: goal-directed behavior; (iii) social-ability: interaction with other agents.
One of the main reasons for proposing the supervisory controllers in this paper is their capability
to integrate with existing traditional control methods (such as PID) and improve their performance
by adjusting their output. In other words, RL makes the traditional controllers be adaptive. This is
important for several reasons. First, traditional controllers have acceptable reliability and are now used
in various aspects of the industry. Secondly, the integration of RL supervisory control to them improves
their performance while not requiring much cost. Moreover, basic controls already exist. In summary,
the RL supervisory controller integrates the superb performance and fast dynamic response of RL
with the reliability of traditional controllers and provides a robust and compatible controller at no
much cost.

The primary objective of this paper is to formulate the problem of adaptive simultaneous control
of voltage and frequency of a microgrid using game theory concept and try to find its optimal solution
by multi-agent RL. In order to pursue the main goal of the paper, first, the dynamic nonlinear model
of the microgrid test system is mathematically formulated and modeled with SIMULINK. Then
the continuous-time nature of the system is discretized into a finite number of states to form the
MDP. At this moment, the game theory formulation is done by determining the state, action, and
reward/penalty factor characters. In this case, the complex control problem transforms into a game
environment whose answer is the stability of the system. By placing two intelligent and autonomous
agents in this environment (one for voltage and one for frequency) and giving them time to interact
with the environment in order to reach to the optimal answer of the game (system stability) through
an optimal control policy, it can be expected that these agents can always ensure the stability of the
system in online simulations. The intelligent and autonomous agent means that each of these agents
operates independently, and by using the reward/penalty that they receive from the environment can
serve the main purpose of the game, which is reaching the game’s answer. The Q-learning strategy,
which is considered, to solve the RL-based game theory problem in this paper, is a model-free and a
simple solution mechanism [39]. According to Figure 1, due to the nature of RL that learns the optimal
control policy (OCP) by interacting with the environment [40], this paper first performs the offline
simulations in which the intelligent agents use trial and error method to extract the OCP. The OCP
means to determine the state-action pairs, (s, a) in which the action a is the best choice in the state s.
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Figure 1. Multi-agent system (MAS) reinforcement learning procedure with N intelligent agents.

Eventually, the simulations are continued online where the intelligent agents use the learned OCP
in order to control the microgrid. A key point in online simulations is that each agent updates it’s
knowledge (OCP) about the environment (system under control) while performing the OCP to control
the system. Accordingly, the proposed control mechanism is adaptive and can robustly cope with
system uncertainties and operating condition changes.

The primary motivation of this work is to model the continuous-time environment of the MG
control as an MDP and solve it using multi-agent reinforcement learning. The proposed control method
is simple and adaptive and can properly cope with system nonlinearities and uncertainties. In order to
provide the possibility of simultaneous voltage and frequency controlling in an MG, the reduced Ybus
concept is used for the modeling of the system.

The innovative contributions of the present work are summarized below:

1. Modelling the continuous-time environment of MG control as an MDP and solve it using
multi-agent reinforcement learning.

2. Considering independent intelligent agents to control the voltage and frequency in order to
implement multi-agent reinforcement learning.

3. Using model-free Q-learning to cope with system nonlinearities.
4. Suggesting a simple strategy to assign the proper instant reward to the voltage and frequency

agents according to system dynamics.
5. Employing the nonlinear model of a real microgrid at realistic scenarios for assessing the proposed

MDP-based control strategy.

2. Materials and Methods

Reinforcement learning is originally developed for MDPs. In fact, the MDP provides a
mathematical structure for modeling decision making in situations where outcomes are partly random
and partly under the control of an agent [41]. Therefore, to employ RL in control theory, it is necessary
to model the system under control as a finite MDP [24,42,43]. Given that the strategy of this paper is to
control the frequency and voltage of the MG, in the following the control problem is modeled as a finite
MDP and then solved using RL. Consequently, in this section, a short review of MDPs is provided
and then the MG control modeling based on MDP along with solution methods using MAS-RL and
Q-learning are proposed.
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2.1. The Suggested Game Theory Approach

2.1.1. Markov Decision Process

As shown in Figure 2, the MDP is a stochastic process, which is comprised of discrete states along
with a number of feasible actions for each state that are selected randomly by an action selector based
on a distributed probability function [23,44]. In this paper, MDP is considered as a discrete-state and
discrete-time systematic method to model the control of the MG. In the proposed MDP model in this
paper, the set of states is referred to as the system states that are obtained using the rotational speed
of the axis of system synchronous generators. The set of actions is indicated the available actions
for system states. In addition, to show satisfaction with the action chosen by the intelligent agent, a
reward/penalty function is considered. In the following, reinforcement learning is presented as an
MDP solution method, and then the details of modeling the microgrid control problem using the MDP
are expressed mathematically.

1

2

N

1

2

N

System states 

(in time st )
System states 

(in time st+1 )

Time 

Actions 

selected by 

Agents
a1,1

a2,2

an,mn

A1 = {a1,1 , a1,2 ,  , a1,m1}

A2 = {a2,1 , a2,2 ,  , a2,m2}

An = {an,1 , an,2 ,  , an,mn}

Set of available 

actions

t t+1

Figure 2. Stochastic Markov decision process (MDP) problem with states and the set of available actions.

2.1.2. Reinforcement Learning

Reinforcement learning refers to the process of learning using the interaction [45]. An algorithmic
approach, which one or more agents learn the OCP by interacting with the environment [46]. In this
strategy, a fundamental assumption is that the environment is comprised of a finite number of states,
each with a set of feasible actions to select. Continuous-time environments must be discretized into
discrete spaces. The OCP means the intelligent agents determine the optimal action to be selected in
each state [47]. Several model-based and non model-based methods such as adaptive heuristic critic
(AHC), average reward (AR), and Q-learning are usually used for solving the RL problems. In this
paper, the well-known Q-learning method, which is model-free with a simple mechanism is used [48].

2.1.3. Q-Learning

Q-learning is one of the most interesting non-model based forms of RL. It can also be considered
as a scheme of asynchronous dynamic programming. It is adaptive and can robustly cope with system
uncertainties and changes in operating conditions without any strong assumptions about the system
dynamics [49]. In this method, agents have the ability to learn to act optimally and autonomously in
Markovian regions by receiving the feedback from the consequences of actions, without needing to
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establish maps of the regions [48]. In order to mathematically model the proposed Q-learning strategy,
suppose the system under control is comprised of a finite number of states (n) denoted by S.

S = {s1, s2, s3, . . . , sn}, (n ∈ N) < ∞, (1)

where, S refers to system states and N is the set of natural numbers. For each intelligent agent, a
competency matrix is formed, which is called the Q matrix that accommodates the score of the selection
of each action (a) for each state (s) of the system. In other words, the intelligent agent in each state of
the system decides on the basis of the data in this matrix to select the appropriate action. The initial
value of this matrix is set to zero for all pairs of (s, a), which are gradually updated as the learning
process progresses. One of the acceptable criteria for ending the learning process is that the Q matrix
remains constant for two consecutive episodes. For example, assume an environment with n states,
which m actions are available at each state. The initial Q matrix is defined as given by (2).

Qo =



a1 a2 a3 . . . am

s1 0 0 0 . . . 0
s2 0 0 0 . . . 0
s3 0 0 0 . . . 0
...

...
...

...
. . .

...
sn 0 0 0 . . . 0


. (2)

At each time step of the simulation, the autonomous agents obtain their current state (st) using
a predetermined algorithm at the pre-processing stage. They then select the proper action using the
ε-greedy method. In this way, in the current state st, with a probability of ε, the agent chooses an action
with the highest value among the all available actions in st accordance to Q matrix, otherwise (with
the probability of 1− ε), randomly chooses one of all actions available in-state st. The mechanism
of ε-greedy is illustrated in Figure 3. Adjusting the amount of ε can distinguish the learning and
exploitation phases. The amount of ε in the learning phase should be small enough to allow the agent
to gain new experiences to achieve the OCP, but in the exploitation phase, the larger value should be
selected so that the agent can perform the OCP while updating its knowledge (Q matrix).

Each agent in 

state (st)

Randomly select an action in 

the action set of st 

Ast = {a1,1 , a1,2 ,  , a1,m1}

Select the action with the 

highest Q value

max{ ( ,:)}
st

t t
A

a Q s

OR
Perform the selected 

action (at)

With the probability 

of (1-ε) 

With the probability 

of (ε)

Figure 3. The ε-greedy mechanism for selecting the proper action.

It should be noted that although the agents operate independently of each other and they are
completely autonomous, they all operate within the overall goal of the system. For this reason, each
agent immediately receives feedback from the environment after selecting an action, so that if the
action selected is in line with the overall goal, it will be rewarded but if it is in conflict with the overall
goal it will be penalized. The value of this feedback is added to the knowledge of the intelligent agent
by updating the Q matrix and the agent will consider it in subsequent decisions. The flowchart of the
proposed Q-learning strategy is depicted in Figure 4.



Energies 2020, 13, 1250 7 of 22

Start

Define the sets of 

States {S}, Actions 

{A}, reward/penalty 

function, α, γ, and ε.

Initialization the Q 

matrix

Gather the data 

from observers

Calculate the current 

state of the system

Select a proper action among 

available actions for current 

state using ε-greedy

(0.01< ε <0.03)

 Apply the selected action to the 

system for next time slot, 

immediately get reward/penalty 

and calculate the next state.

Update the corresponding 

element in Q matrix

End of Episode?
Yes

No

Go to the 

next Episode

Next state         Current state 

A

A

Did the agent 

experience all 

Episodes?

No

Yes
Export the 

obtained OCP

B

Gather the data 

from observers
B

Calculate the current 

state of the system

Select a proper action among 

available actions for current 

state using ε-greedy

(0.1< ε <0.3)

 Apply the selected action to the 

system for next time slot, 

immediately get reward/penalty 

and calculate the next state.

Update the corresponding 

element in Q matrix

Online Simulation 

(Exploitation phase)

Offline simulation

 (Learning phase)

Export the results at the 

end of simulation time

End

Figure 4. The flowchart of the proposed Q-learning control strategy.

In Figure 4, after defining the states, actions, and reward/penalty function, the intelligent agent
interacts with the environment (system under control) to extract the OCP in the offline simulation.
Once the learning process is complete (point B in Figure 4), the agent controls the system utilizing the
OCP extracted in the previous step. After selecting and implementing the action, agents measure the
satisfaction of the environment from the action selected through a concept known as the discounted
long-term reward. The discounted long-term reward is calculated by (3) based on the instant feedback
that is received from the environment [49]. In fact, the overall goal for all autonomous agents is to
maximize the discounted long-term reward by finding the best action in each system state.

Rt =
∞

∑
k=0

γkrt+k+1, γ ∈ [01], (3)

where, rt is the feedback that the agent receives from the environment after performing action at at
time step t and Rt indicates the discounted long-term reward. According to (3), the expected value of
the Q matrix is calculated by (4).

Qπ(s, a) = Eπ

{
∞

∑
k=0

γkrt+k+1|st=s, at=a

}
, (4)

where, π and π∗ are the current and optimal control policies, respectively. Considering the Bellman
optimal equation, which is expressed by (5) [24,50,51], the Q matrix elements are updated by (6) at
each time step.

∆Q = α {rt+1 γ maxaQ(st+1, at+1)−Q(st, at)} (5)

Qt+1 = Qt + ∆Q, (6)

where, α is attenuation factor and α ∈ (0, 1). It is worth remembering that the Q-learning-based
controller’s performance highly depends on how the states, actions, and feedback are defined, which
are described in more detail below.

2.1.4. States

The MDP allows a single agent to learn a policy that maximizes a possibly delayed reward signal
in a stochastic stationary environment. It guarantees convergence to the optimal policy, provided
that the agent can sufficiently experiment and the environment in which it is operating is Markovian.
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However, when multiple agents apply reinforcement learning in a shared environment, conditions may
be a little different. The central idea of game theory is to model strategic interactions as a game between
a set of players. A game is a mathematical object which describes the consequences of interactions
between player strategies in terms of individual payoffs. In such systems, the optimal policy of an
agent depends not only on the environment but on the policies of the other agents as well [52]. In the
proposed framework two agents for frequency and voltage are considered that try to obtain the OCP.
Note that, although the agents affect the other agent’s operations, they are naturally autonomous.
Figure 5 shows the suggested game-theory RL framework.

MG

MDP model
Frequency

agent

Voltage 

agent
Action

Action

Feedback received 

from own action

Feedback received from voltage agent action

Feedback received from frequency agent action

Feedback received 

from own action

Figure 5. The proposed game-theory based reinforcement learning (RL) framework description
considering the frequency and voltage agents.

As it was stated before, the control of frequency and voltage is the primary objective of this paper,
therefore, the ∆ω and ∆V signals are used as the feedback from the system under control to form
the proposed MDP model. It should be noted that the angular velocity of synchronous generators in
combined heat and power (CHP) units directly affects the frequency of the MG. According to literature,
different signals can be considered to determine the state of the system [31], in this paper a combination
of the angular velocity of the synchronous generator of CHP unit located at bus 01, ∆ω1, along with the
voltage deviation of bus 01, ∆V1 are considered for determination of the system oscillatory state, that
is because the MGs are small and interconnected systems. Given the permissible range for frequency
deviation (in p.u. system ∆F is equal to ∆ω) [53,54], the span of −0.02 to +0.02 is divided into 50 equal
segments and (7) is utilized at each time step to determine the state of the system [31]. Figure 6 shows
the discrete environment of the proposed MDP system. According to Figure 6, the zero-centred states
that have been marked with the green box, are called the normal states, and the intelligent agent does
not do anything in these states. In fact, this area is considered as the goal of the agents, meaning
that their actions rewarded/penalized based on the distance from this area. According to (7), the
mechanism of determining the state of the system consists of two components. The actual values
of ∆ω and ∆V plus their derivatives are intended to detect the severity and the elapsed time from
the moment when the oscillation commences. The intelligent agents consider the sign of derivative
components to make it clear whether the oscillations are going to the instability or moving towards
the establishment [30].

st = ζ(∆ω1
t ,

d∆ω1
t

dt
, ∆v1

t ,
d∆v1

t
dt

), (7)

where, ∆ωi
t and ∆V j

t are the angular velocities of the generation unit i and voltage deviation at bus
j, respectively. The agent will analyze the feedback signals in pre-processing stage and detects the
disturbance occurrence after an acceptable time. The process of determining the real state of the system
in the pre-processing stage is illustrated in Figure 7.
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Figure 6. The two-dimensional perspective of the discrete environment of the proposed MDP model.

Derivative

System state

Generator
ζ 

v

Figure 7. The process of determining the current state of the system.

2.1.5. Actions

Determining the accurate actions for different states of the system is a relatively complex issue.
Since there is no specific law, it relies more on trial and error methods [55]. However, using the output
of traditional control methods in the same application can be a good aid for this matter [31]. The
set of feasible actions can be different for various states of the environment. Moreover, the number
of actions can be greatly increased. Although this may improve the quality of the control system,
from another side it increases the learning time extremely so it may make it impossible to obtain
the OCP. For simplicity, this paper considers the same set of available actions for all states of the
environment. According to (8) for each state, ten actions are suggested that five actions are considered
for the frequency agent and five actions for the voltage agent.

A =

{
[−0.002,−0.001, 0, 0.001, 0.002] For Freq.

[−0.0002,−0.0001, 0, 0.0001, 0.0002] For Volt.

}
(8)

The proposed strategy for defining actions is shown in Figure 8. As can be seen from Figure 8,
in the pre-processing stage, the information is gathered from the environment (system under control)
and then the action set is defined based on a few simple assumptions about the range, size and number
of actions.

PID 
Trial and error 

method

Considering some simple laws:

1- Selecting a value out of the [Umin Umax] makes the system unstable. 

2- Increasing the number of actions increases the time of learning phase.

3- It is recommended that the actions be symmetrical.

Output oscillations

Umax

Umin

ADiscretization

Figure 8. A simple description for generating the action set.
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2.1.6. Reward/Penalty Function

The reward/penalty function is important because it assesses the degree of satisfaction from the
action taken in the previous state in line with the overall goal. In the event that the system state is
st, the agent utilizes its experience to perform the best action at among the actions available for state
st. Immediately, the agent receives feedback (reward/penalty) from the (environment) system under
control concerning the performed action. This scheme is depicted in Figure 9. Based on this feedback,
the agent assigns a score (positive for reward and negative for the penalty) for the pair of (st, at) and
updates the corresponding element of Q matrix. If the score is positive, the probability of performing
the action a at the state st increases for the next time’s experiences. Otherwise, if the score is negative
(penalty), the agent selects the action with a lower probability in the state st, next time.

+  

Time

st st+1 st+2 sn

t t+Δt t+2Δt t+kΔt 

Agent Agent Agent Agent

Environment

ta t ta  2t ta  tr t tr  2t tr  

Figure 9. The operating process of the agent in a discrete environment in time steps.

With this intention that the primary objective of this paper is voltage and frequency control,
therefore ∆ω and ∆v signal of all generation units are selected for determination of reward/penalty
for corresponding (st, at) pairs. In essence, if an action causes the system to go out of the normal
state (towards the red area in Figure 6), it will be marked as a wrong action in the current state and
will be penalized. In return, if an action causes the system to go to the normal state (towards the
green area in Figure 6), will receive the highest reward. In summary, the reward/penalty function is
described by (9)–(12), in this paper. Based on these equations, it is assumed the reward/penalty factors
of frequency (voltage) is 80% related to the action of frequency (voltage) controller and 20% related to
voltage (frequency) controller.

r f
t =

G

∑
i=1

[
1(

1 + ∑t
k=t−1(∆ωi(k)

) ,

]
(9)

where, G is number of generation buses. r f
t and rv

t indicate the frequency and voltage viewpoint of the
reward, respectively.

rv
t =

G

∑
j=1

[
1(

1 + ∑t
k=t−1(∆vj(k)

)] (10)

< f
t =


+1 st+1 normal state
−1 st+1 worst state

0.8× r f
t + 0.2× rv

t Otherwise

 (11)

<v
t =


+1 st+1 normal state
−1 st+1 worst state

0.2× r f
t + 0.8× rv

t Otherwise

 , (12)

where, < f
t (<v

t ) is the score of the selected action at at state st and time step t for frequency (voltage)
agent. The implementation idea of the proposed control method based on RL is depicted in Figure 10.
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Voltage action

+

f v

+

Figure 10. The implementation idea of the proposed control method based on RL.

2.2. Dynamic Modelling of the Microgrid Test Case

In order to assess the effectiveness of the proposed RL based control strategy, here, a typical
distribution network located in Denmark with 10 loads and six generating units is considered. The
microgrid understudy consists of 3 wind turbine generators namely WTG1, WTG2 and WTG3 along
with three gas turbine generators called CHP1, CHP2 and CHP3. The WTG units operation power
factor is assumed close to unit (suppose they are equipped with proper compensators ). A normal
operating point is considered for microgrid operation, which it is assumed the output power of each
WTG units is 0.08 MW and the output power of the CHP units are 2.5, 2.8, and 2.8 MW for CHP1,
CHP2, and CHP3, respectively. The single-line representation of the proposed test microgrid with the
location of loads and generating units is shown in Figure 11 [56].

Figure 11. The single line diagram of the proposed real micro-grid (MG).

2.2.1. Fixed-Speed Wind Turbine Generator Model

The third-order model of the asynchronous generator is used in the present work. In the model
shown in Figure 12, Ci

p, λi, βi, and Ti
rot are the aerodynamic power coefficient, speed ratio, pitch

angle, and aerodynamic torque of the ith WTG, respectively. These components can be modelled
by (13)–(15) [57].

βi

li

Cp
i

ωrot
i

Trot
i

Pwt

ωgen
i

Vi

υ 

Mechanical 

model 

(14)

Asynchronous 

Generator

Speed Ratio

(11)
Aerodynamic 

Power Coefficient 

(12)

Aerodynamic 

Torque 

(13)

Figure 12. Conceptual model of the Fixed-speed wind generator [57].
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λi = Riω
i
rotV

−1 (13)

Ci
p = (0.44− 0.0167βi) sin

[
3.1415(λi−3)

15−0.3βi

]
−0.0184(λi − 3)βi

(14)

Ti
rot =

1
ωi

rot
Ci

p

[
ρiπR2

i V3

2

]
, (15)

where ρi, Ri, v, and ωi
rot refer to air density, rotor radius, wind speed, and rotor speed, respectively.

Finally, the dynamic model of the mechanical part of the asynchronous generator is described by (16)

dωi
rot

dt
=

ωo

2Hi

[
Ti

rot − Ti
e − Di

ωi
rot

ωo

]
(16)

2.2.2. Combined Heat and Power Plant Model

In general, a CHP unit consists of a gas turbine mechanically coupled with a synchronous
generator and a droop controller is used to regulate the frequency. In this paper, a modified gas
turbine model is used [56]. Since the operation of a CHP in the islanded mode of MG faces to complex
challenges, the conventional droop controllers cannot properly regulate the frequency. Because their
parameters are set once and at one operating point. Therefore, a supervisory RL based PID controller is
added to the control loop of the gas turbine. Figure 13 shows the modified gas turbine model of a CHP.

ω 

ωref 

-
+

R -1

RL-PID

 (Frequency)

+
+

Pref 

min
1

1

1T s  2

1

1T s 
+

-

Vmax

Vmin

3

1

1T s 
-K+

+
AT

+

DTurbine

Pm 

Figure 13. The modified model of the gas turbine of combined heat and power (CHP) with an extra
adaptive controller [57].

In addition, the IEEE’s type AC5A excitation system is used as the synchronous generator’s
excitation system [56]. As shown in Figure 14, an adaptive RL-PID controller is added to the typical
AC5A as the secondary control tool.

RL-PID

 (Voltage)
+
+

1

a

a

K

T s 
+

-

VRmax

VRmin

Efd

PF 

measurement

Qg

Pg

PFref PI

1

1Ts 
Vt -1

Selector

Vref

V

f

-

1

eT s

Ke+
+

Se

2

3

1

1

f

f

s T

s T



11

f

f

K

sT

Figure 14. The modified IEEE’s type AC5A with secondary voltage controller.

Load, WTG, and exciter system data are taken from [56]. The well-known reduced admittance
matrix Yred

bus [58] is utilized here for modelling the proposed test system. For this aim, firstly the impact
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of loads, capacitor and reactor compensators entered in the modelling as a constant admittance, which
can be calculated using (17).

yi =
Pi − jQi

Vbase
, (17)

where Pi, Qi, and Vbase are the active power, reactive power at bus i, and the base voltage, respectively.
The parameter yi is used as a shunt admittance in the corresponding bus and is entered into
transmission admittance matrix Ybus. The size of Ybus can be reduced by removing load buses from the
original Ybus. In this method, the impact of non-generator buses is transferred into generator buses
using (18).

Yred
bus = YGG −YGN ×Y−1

NN ×YNG, (18)

where

Ybus =

[
YGG YGN
YNG YNN

]
. (19)

As an illustration, Figure 15 shows the final modeling stage, in which the dynamics of the micro
energy grid can be evaluated.

V

I

WTG1 WTG2 WTG3CHP3CHP2CHP1 I = V ×Ybus
red

Figure 15. Dynamic Yred
bus− based model of the considered MG.

3. Simulation Results

In this paper, the design of the controller for WTG generation units is ignored in order to simplify
the MG control strategy using the MDP system and solve it using RL. This is a reasonable assumption
because the share of wind units is negligible compared to the total system power production. Since the
CHP units are quite similar, the same controllers are considered for all of them. So, two intelligent
agents are considered. One agent that is responsible for controlling the frequency oscillations and
the other one is responsible for controlling the voltage fluctuations of all CHP buses. As mentioned
earlier, these two intelligent agents (frequency agent and voltage agent) are completely independent
of each other and operate autonomously. In this section, the effectiveness of the suggested RL-PID
controller is evaluated compared to a classical PID and a fuzzy PID (F-PID) [59]. The optimal design
procedure of the PID and F-PID controllers is not in the scope of this paper and therefore is ignored.
The optimal setting of the controllers can be done in various methods including numerical methods
such as Ziegler–Nichols and metaheuristic algorithms. In this paper, it is assumed the PID and F-PID
controllers have optimized using the salp swarm algorithm (SSA) [60] and the results are available as
tabulated in Table 1.

The details of the F-PID controller are given in [59]. Finally, two realistic scenarios are considered
as challenging operating conditions of the MG in island mode.
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Table 1. Control gains of fuzzy proportional integral derivative (F-PID) and PID controllers optimized
by salp swarm algorithm (SSA).

Control Type F-PID Control

Param. K f
1 K f

2 K f
3 K f

4

Value 0.8812 1.8235 1.6520 0.9512

Param. Kv
1 Kv

2 Kv
3 Kv

4

Value 0.0758 1.4510 1.3851 0.0851

Control Type PID Control

Param. K f
p K f

i K f
d Kv

p Kv
i Kv

d

Value 0.4978 0.1408 0.00117 0.0704 0.0383 0.0012

3.1. Scenario 1: Symmetric Three-Phase Fault

In this scenario it is assumed that the MG is operated at its normal conditions and the parameter
T2 of gas turbine model of Figure 13 is changed +50%. At these conditions, a three-phase symmetrical
fault occurs at time 5 sec near the bus 11. The fault causes the line between bus 10 and 11 to be tripped
out and then re-connected after fault clearance in 40 ms. The ∆ω and ∆v signals of all generators are
plotted in Figures 16 and 17.
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Figure 16. The oscillations of the angular velocity of generation units in scenario 1; black(solid): RL-PID,
blue(dashed-dotted): F-PID, red(dotted): PID.

As can be seen from Figures 16 and 17, the proposed RL-PID controller has an extraordinary
ability to stabilize the test system frequency and voltage variations compared to the traditional PID and
F-PID controllers thanks to its flexible structure, which combines the machine learning compatibility
feature along with PID controller precision and quick response property.
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Figure 17. The oscillations of voltage at the generator buses in scenario 1; black(solid): RL-PID, blue
(dashed–dotted): F-PID, red (dotted): PID.

Results show that the RL-PID makes the system dynamics better from the perspective of deviation
overshoot(OS)/undershoot (US), decreasing settling time, and elimination of steady-state error.

3.2. Scenario 2: Sudden Load Connection/Disconnection

In this scenario, it is assumed the parameter T2 has decreased 50% and STNO load at bus 15 is
off. At time 5 sec, the heavy load of STNO is connected suddenly. Immediately the generation units
affected by increasing the load of the system and then their angular velocity is decreased. The control
strategies try to damp the oscillations of ∆ω and ∆v by modulating the error signal and applying it to
the system through the turbine and excitation system of the generators. After a while, the oscillations
will be damped and the system situation becomes stable again. Figures 18 and 19 show the ∆ω and ∆v
dynamics in scenario 2, respectively.

As can be seen from Figures 18 and 19, the proposed RL based controller has a superb dynamic
characteristic compared to F-PID and PID controllers. In this study, the pre-processing analysis will be
calculated in each 50 ms. This time is very important because it affects directly on the output of the RL
controller. This means when a disturbance occurs, the agents can sense the effect of the disturbance
utmost 50 ms after the occurrence regardless of the occurred disturbance’s due. From Figures 18
and 19, that is why the RL controller has a poor effect on the first overshoot/undershoot after the fault
occurrence. Furthermore, Figure 20 shows the actions were taken by the frequency and voltage agents
in scenarios 1 and 2. It can be seen from Figure 20 that, the RL controller is inactive when the state
of the system is normal but when the frequency/voltage of the system becomes unstable following a
disturbance, RL starts generating the suitable control action. When oscillations are well-damped, the
RL controller becomes inactive again.
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Figure 18. The oscillations of the angular velocity of generation units in scenario 2; black(solid): RL-PID,
blue (dashed–dotted): F-PID, red (dotted): PID.
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Figure 19. The oscillations of voltage at the generator buses in scenario 2; black(solid): RL-PID, blue
(dashed–dotted): F-PID, red (dotted): PID.
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Figure 20. Actions selected by the RL frequency/voltage agents in different scenarios.

4. Discussion

According to simulation results provided in Section 3, the preponderance of the presented RL-PID
controller compared to F-PID and PID control methods is evident. This paper has introduced a novel
strategy for multi-agent learning used for integrated controlling the frequency and voltage of an
MG. For more distinguishing the capabilities of the proposed game-theory based control strategy,
time-domain analysis is provided in this section. For this purpose, two suitable time-domain indices
based on the conventional integral of time multiplied by absolute error (ITAE), and integral of square
error (ISE) are calculated and tabulated in Tables 2 and 3. The utilized ITAE and ISE indices are
expressed by (20) and (21).

ITAEy = log10

(∫ 40

0
t× |y|dt

)
(20)

ISEy = log10

(∫ 40

0
1000× y2dt

)
. (21)

As it can be seen from Tables 2 and 3, the suggested MDP based RL control scheme is successful
in damping the oscillations of voltage and frequency of the test MG compared to F-PID and PID
controller from the perspective of time-domain performance indices.

Table 2. Time domain performance indices in scenario 1.

Signal ITAE ISE

PID FPID RLPID PID FPID RLPID

∆ωCHP1 81.687 80.602 50.0690 2.143 1.949 1.783
∆ωCHP2 78.603 76.702 50.028 2.137 1.945 1.781
∆ωCHP3 78.603 76.602 50.012 2.102 1.938 1.695
∆ωWTG1 62.781 60.813 54.851 1.155 1.023 0.635
∆ωWTG2 62.760 60.934 54.721 1.124 1.003 0.642
∆ωWTG3 62.766 60.950 54.896 1.121 1.003 0.642
∆vCHP1 13.130 10.259 2.896 0.595 0.496 0.446
∆vCHP2 3.050 10.132 2.901 0.596 0.496 0.435
∆vCHP3 13.030 10.102 2.901 0.578 0.486 0.446
∆vWTG1 27.243 26.425 5.135 0.552 0.428 0.387
∆vWTG2 14.209 11.164 5.135 0.561 0.418 0.376
∆vWTG3 13.787 10.102 3.790 0.564 0.431 0.377
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Table 3. Time domain performance indices in scenario 2.

Signal ITAE ISE

PID FPID RLPID PID FPID RLPID

∆ωCHP1 4.124 4.026 3.604 2.562 2.397 1.959
∆ωCHP2 4.012 4.007 3.597 2.456 2.333 1.932
∆ωCHP3 4.035 4.006 3.589 2.465 2.334 1.954
∆ωWTG1 3.562 3.215 2.903 1.021 0.987 0.891
∆ωWTG2 3.452 3.198 2.903 1.102 0.996 0.889
∆ωWTG3 3.465 3.198 2.893 1.125 0.991 0.883
∆vCHP1 3.452 3.292 2.994 1.452 1.298 1.060
∆vCHP2 3.326 3.207 2.996 1.432 1.189 1.059
∆vCHP3 3.326 3.208 2.994 1.441 1.196 1.059
∆vWTG1 3.652 2.953 2.688 0.856 0.517 0.333
∆vWTG2 3.652 2.952 2.698 0.857 0.510 0.323
∆vWTG3 3.654 2.953 2.689 0.858 0.510 0.332

It can be noted that the RL based controller has enhanced the ITAE criteria 1.1% to 10.44%
compared to F-PID and 2.5% to 23.45% compared to PID controller. The ISE index is enhanced 1.45% to
12.54% and 4.1% to 26.89% compared to F-PID and PID controllers, respectively. In order to clarify the
conclusion of the simulation results and the data of Tables 2 and 3, the graphic diagram of Figure 21 is
depicted in various scenarios.
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Figure 21. The presentation of the time domain performance indices in various scenarios.

5. Conclusions

The primary goal of the presented work is to design an adaptive integrated voltage/frequency
controller for damping the oscillations in a microgrid with penetration of wind power using the
machine learning theory concept and trying to find its optimal solution by utilizing the multi-agent
reinforcement learning. For this aim, first, the dynamic nonlinear model of the microgrid test system is
mathematically formulated and modeled with SIMULINK. Then the continuous-time nature of the
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system is discretized into a finite number of states to form the Markov decision process (MDP). At this
moment, the game theory formulation is done by determining the state, action, and reward/penalty
factor characters. Each state of the system represents the condition of the MG from the viewpoint of
frequency and voltage oscillations. In addition, there are some feasible control actions at each system
state, that can be applied in a way that the stability of the MG is ensured. Then the problem of the
stability of the voltage/frequency of the MG is formulated as a multi-agent reinforcement learning
problem. Finally, the defined control strategy is solved using the Q-learning modeling of RL. In this way,
the independent autonomous agents are assigned to control the voltage and frequency simultaneously.
Each agent tries to control its corresponding parameter(voltage or frequency) regardless of the behavior
of the other agents. Once independent agents in the offline simulation learned the optimal control
policy by interaction with the environment (test system), they can simultaneously control the MG and
also update their knowledge about the system under study. For assessing the dynamic response of
the presented control scheme compared to fuzzy PID (F-PID) and traditional PID controllers, a real
island MG is considered and simulated using MATLAB/SIMULINK. Simulations were carried out
in two realistic and challenging scenarios such as symmetric three-phase fault and load shedding
considering system parameter changes. Results indicate that the proposed control strategy has an
excellent dynamic response compared to F-PID and PID controllers for damping the voltage/frequency
oscillations. It has improved the performance of the F-PID controller approximately 1% to 34% and
the PID controller 10% to 55%. From the research that has been conducted it is possible to show
the awesome capabilities of reinforcement learning based controller which can cope with system
nonlinearities. It is model-free and can control the system without any initial strong assumptions.
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