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Abstract: Decomposing main drivers of CO2 emissions and predicting the trend of it are the key
to promoting low-carbon development for coping with climate change based on controlling GHG
emissions. Here, we decomposed six drivers of CO2 emissions in Changxing County using the
Logarithmic Mean Divisia Index (LMDI) method. We then constructed a model for CO2 emissions
prediction based on a revised version of the Stochastic Impacts by Regression on Population, Affluence,
and Technology (STIRPAT) model and used it to simulate energy-related CO2 emissions in five
scenarios. Results show that: (1) From 2010 to 2017, the economic output effect was a significant,
direct, dominant, and long-term driver of increasing CO2 emissions; (2) The STIRPAT model predicted
that energy structure will be the decisive factor restricting total CO2 emissions from 2018 to 2035;
(3) Low-carbon development in the electric power sector is the best strategy for Changxing to
achieve low-carbon development. Under the tested scenarios, Changxing will likely reach peak
total CO2 emissions (17.95 million tons) by 2030. Measures focused on optimizing the overall
industrial structure, adjusting the internal industry sector, and optimizing the energy structure can
help industry-oriented counties achieve targeted carbon reduction and control, while simultaneously
achieving rapid economic development.

Keywords: energy consumption; peak CO2 emissions; county level; LMDI; STIRPAT; scenario analysis

1. Introduction

Human health, ecosystems, and socio-economic systems are sensitive to the pace and extent of
climate change, with some adverse impacts of climate change becoming persistent or irreversible. For
example, global average surface warming by the end of the 21st century is projected to depend mainly
on accumulative CO2 emissions. The massive emissions of CO2 from various human activities are
key drivers of climate change issues such as global warming. For example, fossil fuel combustion is a
major source of CO2 emissions [1,2]. Therefore, strategies that effectively control CO2 emissions and
achieve low-carbon development are needed to mitigate climate change. The international community
has largely reached a consensus on low-carbon development, with most countries participating in
international agreements such as the United Nations Framework Convention on Climate Change
(UNFCCC), the Kyoto Protocol, and the Copenhagen Accord. In order to achieve carbon emissions
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reduction targets, each contracting party shall formulate a low-carbon economic roadmap and strategic
plan according to its individual circumstances, accelerate the development of low-carbon technologies,
take initiative in the field of climate change mitigation, and pursue the support of international partners
in these efforts in order to improve international competitiveness. In 2015, China submitted a report
titled “Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions”
to the UNFCCC Secretariat, which set several national goals. In it, China committed to reaching peak
CO2 emissions no later than 2030 and to decrease CO2 emissions per unit GDP by 60%–65% of 2005
levels. Subsequently, the Thirteenth Five-Year Plan for National Economic and Social Development
of the People’s Republic of China (hereinafter referred to as the “13th Five-Year Plan”) states that
“the total amount of carbon emissions needs to be effectively controlled” and “supports optimized
development regions to achieve carbon emissions peak” [3].

The key to predicting total CO2 emissions is to scientifically extract the driving factors of CO2

emissions. Current research methods are mainly divided into two categories: econometrics and factor
decomposition analysis. Econometric analysis has the advantage of flexibility but is prone to structural
mutation problems for long-term sequence models [4]. Factor decomposition analysis can be divided
into structural decomposition analysis (SDA), production theoretical decomposition analysis (PDA),
and index decomposition analysis (IDA), according to different decomposition methods. The SDA is a
static analysis method based on an input-output table, which is used to measure the contribution of
each variable to the change in the dependent variable. However, due to the difficulty of obtaining
input-output tables, the method is mostly used for the decomposition of carbon emissions at the
national level [5,6]. As we know, the envelopment analysis method (DEA) has been successfully applied
as models of analysis of eco-efficiency in global regions and countries [7]. Based on DEA, PDA proposed
by Pasurka [8] is a data envelopment analysis model based on a distance function and the Malmquist
Index. The advantage is that it can reflect the impact of the efficiency of various input/output factors
on carbon emissions [9–11]. Compared with other methods, IDA’s biggest advantage is that data is
relatively easy to obtain, the method is easy to use, and intuitive decomposition results are widely used
at national, regional, and city scales [12–17]. The IDA mainly includes the following decomposition
methods: Passche Index, Fisher Index, Marshall Edgeworth Index, Laspeyres Index, and Divisa
Index [18]. Ang et al. [19] proposed the Logarithmic Mean Divisia Index (LMDI), which effectively
solved the problem of residual and zero-value data processing in the exponential decomposition
method. Xu and Ang [20] analyzed the development of IDA as applied in emission studies and
concluded that LMDI has become an ideal decomposition method of IDA in the past few years.

Numerous research methods have been used to predict total CO2 emissions and CO2 trends,
including the neural network model, global change integrated assessment model for China (IAMC),
LEAP model, MARKAL-MACRO model, grey prediction model, gene expression programming
model, IPAT model, and Stochastic Impacts by Regression on Population, Affluence, and Technology
(STIRPAT) model, and others. Sangeetha and Amudha [21] used the BP neural network model based
on particle swarm optimization to predict CO2 peaks at the national scale and found the method to
be more precise than several different linear regression models. However, artificial neural networks
can produce complex network structures that require a lengthy learning time. Chai and Xu [22] used
the IAMC model to predict China’s total carbon emissions peaks and per capita carbon emissions.
They found that the method is very suitable for carbon emissions prediction at the national scale and
that it incorporates the costs of climate change and carbon emissions into a model that can be used to
study the interactions between climate and economy. The LEAP model is a widely used bottom-up
energy-environment analysis model based on scenario analysis. However, Nieves et al. [23] pointed
out limitations in the search and identification of information required to construct LEAP analysis
scenarios. The MARKAL-MACRO model, proposed by Manne and Wene [24], is a macroeconomic
model based on nonlinear dynamic programming that uses the Cobb-Douglas production function.
The MARKAL-MACRO model can calculate the costs of reducing and predicting carbon emissions
on a global scale but is unable to analyze the impacts of carbon reduction policies on industries [25].
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Ding et al. [26] proposed a new multivariate grey prediction model in which they improved the time
response function through heuristic optimization. However, they found that it may be ill-suited for
estimating the parameters of unknown coefficients. Hong et al. [27] developed an optimized gene
expression programming model that used a meta-heuristic algorithm to predict CO2 emissions from
Korea’s construction industry for the year 2030. They found that the algorithm not only improved the
accuracy of the model, but also reduced the costs and time associated with establishing the database.
By analyzing the relationship between environment, human activities, technological production, and
other factors, Ehrlich and Ehrlich [28] established a model of how social and economic development
factors affect the environment. This was the I = PAT equation, which identifies the impacts of human
activities on the environment based on population scale, economic development level, and scientific
and technological progress. Although the IPAT model can analyze the impacts of driving forces
on environmental load in a simple and intuitive way, it ignores interactions between driving forces.
Dietz and Rosa [29] introduced an index based on the IPAT model and Kaya identities to establish a
multivariate nonlinear randomness environmental impact assessment model called STIRPAT, which is
a modified/derived IPAT model. Its advantage lies in its applicability to a broad range of scenarios.
For example, some scholars have used it to study the impacts of ecological footprint and household
consumption/lifestyle on environmental load [30], whereas others have used it to investigate the
impacts of industrial development [31].

As previously mentioned, many studies that predict CO2 emissions have been conducted on
global, national, regional, and urban scales. However, as early as 2005, China’s total CO2 emissions
from 1414 counties (only three of which had incomplete reporting data, including the Hong Kong
Special Administrative Region, Macao Special Administrative Region, and Taiwan Province) accounted
for about 68.4% of the whole country. Despite rapid economic growth in the past decade, 1414 counties’
GDP at the end of 2015 accounted for only 45.9% of China’s total GDP [32]. At the county scale,
economic development and carbon emissions cannot be easily decoupled [33]. Therefore, studying
CO2 emissions at the county level will help accelerate China’s comprehensive low-carbon development
and achieve sustainable development. In this study, we used the LMDI model to decompose the
driving factors affecting CO2 emissions at the county scale. Based on scenario analysis, we constructed
a revised STIRPAT model to predict whether and when total CO2 emissions and per capita CO2

emissions would peak in Changxing County in order to propose targeted CO2 emission reduction
measures to accelerate low carbon development.

2. Methodology

We constructed a flowchart to reveal the technical route of the research intuitively and clearly
(Figure 1).

2.1. Study Area

Changxing County is affiliated with Huzhou City, Zhejiang Province, P.R. China and is located at
30◦43′–31◦11′ N and 119◦33′–120◦06′ E. The county’s economy is relatively developed. For example,
Changxing’s per capita GDP reached 10,536.36 USD in 2015. Although this is lower than Zhejiang’s per
capita GDP of 12,466.12 USD, it is much higher than China’s per capita GDP of 8048.13 USD. The county
is dominated by industry, among which new batteries, modern textiles, and electromechanical devices
account for 73.35% of the industrial economy. However, a shortcoming of Changxing’s development is
its need to improve energy efficiency. In 2015, the county’s energy intensity (energy consumption per
unit of GDP) was 1766.10 tce/USD, which was higher than that of China (995.44 tce/USD) and Zhejiang
Province (738.55 tce/USD). Changxing’s per capita energy consumption in 2015 was 7.13 tce, which
was 2.28 times that of China’s average and 2.01 times that of Zhejiang’s average [34–36]. We selected
Changxing County as our study area to explore the conditions under which small industrial regions
can continue to pursue economic development, while simultaneously and rapidly achieving peak
CO2 emissions.
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Figure 1. Technical route of the research.

2.2. Analysis of CO2 Drivers Based on the LMDI Method

In this study, we used the LMDI method proposed by Ang [37] to analyze energy-related drivers of
CO2 emissions, which can be decomposed into six types: population (P), per capita GDP (R), industrial
structure (S), energy intensity (U), energy structure (V), and carbon emission coefficient (W). The LMDI
formula may be written as Equation (1), which can be simplified as Equation (2).

C =
∑

i j

Ci j =
∑

i j

P ·
G
P
·

G j

G
·

E j

G j
·

Ei j

E j
·

Ci j

Ei j
(1)

C =
∑

i j

Ci j =
∑

i j

P ·R · S j ·U j ·Vi j ·Wi j (2)

where the subscript i denotes energy sources and j denotes industrial sectors. C is total energy-related
CO2 emissions, Cij denotes CO2 emissions from industry j of energy i, and P denotes the total population.
G and Gj denote GDP and GDP output of industry j, respectively. Eij denotes energy consumption
from industry j of energy i. R (=G/P) is GDP per capita, Sj (=Gj/G) is the industrial structure, Uj (=Ej/Gj)
is energy intensity, Vj (=Eij/Ej) is energy mix, and Wij (=Cij/Eij) is the carbon emission coefficient.

Next, the effects of the above forces are the so-called factors that influence CO2 emissions. These
factors were calculated by Equations (3)–(8) and include: the population scale effect (Dpop), the
economic output effect (Dgdp), the industrial structure effect (Dstr), the energy intensity effect (Dint),
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the energy mix effect (Dmix), and the carbon emission coefficient effect (Demf).We assessed changes
in energy-related CO2 emissions from CO to CT during the period O to T. Applying multiplicative
decomposition, the contributions of the six factors to the changes in CO2 emissions were expressed as
Equations (3)–(8):

Dpop = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO

ij )

(CT −CO)/(ln CT − ln CO)
ln

(
PT

PO

) (3)

Dgdp = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO

ij )

(CT −CO)/(ln CT − ln CO)
ln

(
RT

RO

) (4)

Dstr = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO

ij )

(CT −CO)/(ln CT − ln CO)
ln

 ST
j

SO
j


 (5)

Dint = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO

ij )

(CT −CO)/(ln CT − ln CO)
ln

 UT
j

UO
j


 (6)

Dmix = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO
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(CT −CO)/(ln CT − ln CO)
ln

 VT
ij

VO
ij


 (7)

Demf = exp

∑
i j

(CT
ij −CO

ij )/(ln CT
ij − ln CO

ij )

(CT −CO)/(ln CT − ln CO)
ln

 WT
ij

WO
ij


 (8)

And the total effect can be expressed as follows, Equation (9):

Dtot = CT/CO = Dpop ·Dgdp ·Dstr ·Dint ·Dmix ·Demf (9)

2.3. Construction of a CO2 Emission Prediction Function Based on the STIRPAT Model

The logarithmic form of the STIRPAT model was used to predict the trend of CO2 emissions.
Subsequently, the model was improved by: (1) combining the falsification test with the environmental
Kuznets curve (EKC) to increase the nonlinear influence of the driving force factor on the environmental
effect and adding the binomial form of richness to the logarithmic formula [38] and (2) further
decomposing the population variable into two variables: the total population and the urbanization
rate [39]. The STIRPAT formula may be written as Equation (10) and the logarithmic form as
Equation (11).

I = aPbAcTde (10)

ln I = ln a + b1 × ln P + b2 × ln U + c1 × ln A + c2 × (ln A)2 + d× ln T + e (11)

where I is CO2 emissions, P is population, A is affluence (usually expressed as per capita GDP), and T
is technology (usually expressed in terms of pollutant emission intensity).

This study combined the six driving factors described for the LMDI method (Section 2.2) and
added new parameters to the formula, as shown in Equation (12).

ln C = ln a + b1 × ln P+b2 × ln U + c1 × ln A + c2 × (ln A)2+d× ln I
+ f× ln T1 + g× ln T2+h× ln E + e

(12)

where C is CO2 emissions (104 tCO2), P is population (104), U is urbanization rate (%), A is affluence
expressed as per capita GDP (USD), T is technology expressed as energy intensity (tce/USD) and carbon
emission coefficient of the electric power sector (tCO2/104 kWh), I is industrial value added (USD), E is
energy consumption (coal consumption, 104 tce), lna is a constant, and e is error.
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2.4. Simulation of CO2 Emissions Based on Scenario Analyses

2.4.1. Scenario Design

Our study established five scenarios, including business as usual (BAU), enhanced low-carbon
(ELC), moderate progressive (MP), industry-oriented development (IOD), and low-carbon development
in the electric power sector (LCEP). The different scenarios focus on different priorities and were
designed based on a gradient, emphasizing different key parameters and policy portfolios (Table 1).
We set 2017 as the baseline year and 2018–2035 as the outlook period. The goal of the scenario analysis
was to predict the energy-related CO2 emissions in Changxing in each scenario and to determine
whether there is a possibility of reaching peak CO2 during the outlook period.

Table 1. Parameter levels used in five scenarios.

BAU ELC MP IOD LCEP

Growth rate of population M M M M M
Growth rate of urbanization M M M M M

Growth rate of GDP H L M H M
Decline rate of industrial

proportion L H M L M

Decline rate of energy intensity M H M H H

Decline rate of CO2 emission
coefficient of electric power sector L H M M H

Decline rate of coal consumption M H M M H

Note: “L”, “M,” and “H” represent low, medium, and high parameter levels, respectively. Five scenarios
are established, including business as usual (BAU), enhanced low-carbon (ELC), moderate progressive (MP),
industry-oriented development (IOD), and low-carbon development in the electric power sector (LCEP).

(1) BAU
This scenario assumes that the county will maintain conservative policy objectives and a gradual

pace of technology development, which will promote existing energy conservation and emissions
reduction measures and their possible effects. During the outlook period, economic development will
grow rapidly, optimization of the industrial structure will progress slowly, and manufacturing will
continue to play a leading role in industry. With the development of technology, energy efficiency will
improve gradually. Coal demand will rise but at a slower pace than in 2017. The proportion of clean
energy use will gradually increase but will not dominate energy use from fossil fuels or fundamentally
reduce the total consumption of energy from fossil fuels.

(2) ELC
In this scenario, the goal of achieving peak carbon emissions as early as possible will be guided

by policies. Specific emissions control and carbon reduction compliance rates will be established for
various fields to maximize the potential for emissions reduction. During the outlook period, the growth
rate of economic development will be affected to some extent by the implementation of low-carbon
standards in various fields. Targeted adjustments to industrial structure will support the service
industry. The implementation of laws and regulations related to low carbon will be most effective
for achieving peak carbon emissions in this scenario, and performance appraisals for government
sub-sectors should continue to enhance compliance. As more breakthroughs in low-carbon technology
emerge, energy use efficiency will increase rapidly. Renewable energy consumption will gradually
become predominantly driven by economic incentives such as fuel tax, carbon tax, and subsidies for
clean energy vehicles.

(3) MP
This scenario represents moderate transformation of the different parameters, including optimizing

industrial structure, improving energy efficiency, adjusting energy structure, increasing urbanization
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rate, increasing population, and improving economic development. Each parameter develops at
medium speed.

(4) IOD
In this scenario, industrial upgrades are implemented to achieve high quality and high efficiency

manufacturing. On the one hand, this scenario emphasizes adjustments to current industrial structure
and product variety that increase the added value of products. Industries such as new energy
automobiles and high-end equipment manufacturing will scale up rapidly. Traditional industries such
as batteries, printing and dyeing, and industrial furnaces will be upgraded to improve their efficiency
and competitiveness. On the other hand, the energy intensity of new industrial projects will be set at a
high threshold.

(5) LCEP
In this scenario, we focused on adjusting energy structure and promoting technological

advancement. First, we slowed down the pace of coal-fired power construction and strictly controlled
the scale of coal-fired power. Second, we strengthened the scale and market application of renewable
energy power generation from biomass, solar, and wind in Changxing County. Energy efficiency in
this scenario will be greatly improved by optimizing the processing technology for raw materials,
improving equipment design, improving the capacity and thermal efficiency of new power plant units,
and shutting down small and inefficient power plants.

2.4.2. Parameter Design

The parameters used in the scenario analysis were selected based on the deconstruction of the
CO2 driving factors by the LMDI method. We chose parameter settings based on Changxing’s level of
development and the polices or planning objectives formulated by the state or province (Table 2).

(1) Population
We used the population prediction software PADIS-INT, which uses the cohort-component method,

to forecast the registered household population in Changxing from 2018 to 2035. We chose low-speed,
medium-speed, and high-speed parameter settings for the development of Changxing’s total fertility
rate (TFR) that were based on China’s “two-child policy” and the goals of the 13th Five-Year Plan for
Health and Family Planning in Huzhou City [40]. The TFR of Changxing in 2017 was 1.67. When
the population of Changxing was set to grow at low speed, the effect of the two-child policy was not
obvious by considering the rising costs of raising children, and the growth rate of the TFR in Changxing
was the slowest of the three parameter settings, reaching 1.55 in 2035. When the population was set
to grow at medium speed, the growth rate of TFR in Changxing remained at 1.67 in 2035. When the
population was set to grow at high speed, the effect of the two-child policy became significant. TFR
was predicted to increase steadily until reaching 1.78 by 2035.

(2) Urbanization
Urbanization is an important indicator of social development level. In 2017, the Changxing’s

urbanization rate was 53.90%, which was lower than China’s rate of 57.96% [41]. The 13th Five-Year
Plan sets an urbanization rate goal for permanent residents in mainland China of 60% by 2020. The
“2016–2020 China Urbanization Rate Growth Forecast Report” predicted that China’s urbanization
rate will reach 63% by 2020 [42]. Meanwhile, the “Blue Book of Macroeconomics” issued by the
Chinese Academy of Social Sciences predicted that China’s urbanization rate will reach 67.81% in
2030. Therefore, we used 57.96%, 60%, and 63% as the minimum, medium, and maximum thresholds,
respectively, of the urbanization rate in 2020. Jian and Huang [43] predicted that China’s urbanization
rate would enter a flat S-shaped slow development stage after 2020. In other words, the growth rate of
urbanization would gradually slow after 2020.
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Table 2. Parameter settings in low (L), medium (M), and high (H) speed development conditions.

2018–2020 2021–2025 2026–2030 2031–2035

L M H L M H L M H L M H

Growth
rate of

population
0.41% 0.47% 0.55% 0.17% 0.24% 0.31% −0.09% −0.01% 0.04% −0.28% −0.20% −0.14%

Growth
rate of

urbanization
2.45% 3.64% 5.34% 1.45% 2.14% 2.84% 0.95% 1.64% 2.34% 0.45% 1.14% 1.84%

Growth
rate of
GDP

6.50% 8.50% 9.65% 5.90% 7.30% 8.75% 4.10% 5.00% 7.55% 2.30% 3.50% 6.05%

Decline
rate of

industrial
proportion

−1.57% −2.07% −2.57% −1.07% −1.57% −3.57% −0.57% −1.07% −3.57% −0.27% −1.57% −3.57%

Decline
rate of
energy

intensity

−4.39% −7.26% −8.31% −4.00% −6.00% −7.00% −3.50% −5.00% −6.00% −3.00% −4.00% −5.00%

Decline
rate of
CO2

emission
coefficient
of electric

power
sector

−3.64% −4.14% −5.04% −3.64% −4.14% −5.04% −3.64% −4.14% −5.04% −3.64% −4.14% −5.04%

Proportion
of coal in
primary
energy

consumption

80.00% 77.00% 74.00% 75.00% 70.00% 64.00% 70.00% 63.00% 54.00% 65.00% 56.00% 44.00%
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(3) Per capita GDP
Per capita GDP was calculated using population and estimates of GDP growth rate. We selected

6.5% as the low GDP growth rate from the 13th Five-Year Plan issued at the national level [3]. The
economic growth rate is expected to slow to 5.9% between 2021 and 2025 and then to around 5%
from 2026–2030 [44]. We selected 8.5% as the medium GDP growth rate from the 13th Five-Year Plan
issued at the county level [45]. Finally, we averaged the annual GDP growth rate for Changxing from
2010–2017 (using the 2010 constant price) to determine a value for the high speed of economic growth,
9.65%, from 2018 to 2020 [35].

(4) Industrial value added
Industrial value added was calculated by designating industrial proportion. From 2010 to 2017,

the annual average rate of decline in the industrial share of GDP in Changxing County was 1.57%. This
was used as the parameter setting for optimizing industrial structure at a low speed of development.
At a medium speed of development, the average annual rate of decline in the proportion of industry
that includes manufacturing was −2.07% from 2018 to 2020. At a high speed of development, the rate
of decline was −2.57%.

(5) Technology
We used energy intensity and the carbon emission coefficient of the electric power sector to

characterize its level of technological development. According to the 13th Five-Year Plan for Energy
Development, China’s energy intensity needs to decrease by 15% between 2016 and 2020. This value
was used as the minimum constraint level. The average annual rate of decline in energy intensity in
Changxing County from 2010 to 2017 was 7.26%, which was used as the medium constraint level. The
Changxing County Master Plan (2017–2035) stipulates that the energy consumption per unit of GDP
will fall to around 481.66 tce/USD in 2035, so we used this value as the high constraint level of energy
intensity in 2035.

From 2010 to 2017, the carbon emission coefficient of the electric power sector in Changxing County
dropped from 10.97 to 8.46 tCO2/104 kWh. We used the average annual rate of decline (−3.64%) as the
minimum constraint level for the carbon dioxide emission coefficient of the power sector. The average
annual rate of at a medium speed of development was −4.14% and, for high-speed development, was
−5.04% from 2018 to 2020.

(6) Energy structure
We estimated future coal consumption in Changxing by determining the proportion of coal used in

primary energy consumption and combined it with a forecast of growing energy demand. Changxing
relies heavily on coal for energy, and its proportion of coal use is significantly higher than both the
national average and the average in Zhejiang Province. Therefore, we did not use the national or
provincial values to determine the constraint levels. Instead, we chose the constraint levels based on
the actual situation in Changxing. We assumed that the proportion of coal used for energy would
decline by 15% between 2018 and 2035 at the low constraint level, by 21% at the medium constraint
level, and by 30% at the high constraint level.

2.5. Data

CO2 emissions in the study refer to those from the combustion of fossil fuels. Data related to
energy consumption were collected by sectors and published in the “Report on the Greenhouse Gas
Inventory of Changxing County” by the Development and Reform Commission of Changxing, which
included industry, construction, electric power, transportation, services, residential living, agriculture,
forestry, animal husbandry, and fisheries. The data related to social and economic development
were published in the Changxing Statistical Yearbook and included data on urbanization, GDP, and
industrial proportion. Population data were collected by the Public Security Bureau of Changxing.
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3. Results and Discussion

3.1. Six Drivers Impacting CO2 Emissions

From 2010 to 2017, the total effect of all six drivers of CO2 emissions was between 0.91 and 1.09
and the fluctuation from year to year was consistent with changes in CO2 emissions (Figure 2). This
suggests that the cumulative total effects of CO2 emissions measured by the LMDI decomposition
model coincided with trends in actual CO2 emissions. This also verifies the robustness of factor
decomposition by the LMDI method. The individual drivers affecting CO2 emissions are shown in
Figure 3 and include population, GDP per capita, industrial structure, energy intensity, energy mix,
and carbon emission coefficient.

Dpop ranged from 0.90 to 1.17 and fluctuated greatly between 2010 and 2017, which demonstrates
the inconsistent nature of the effects of this driving factor. When population increased, Dpop promoted
CO2 emissions, and when the population decreased, Dpop inhibited CO2 emissions. However, the
number of floating populations in Changxing has changed greatly and has been constrained by
industrial transformation and employment. From 2012 to 2016, 758 enterprises, mainly textile, printing
and dyeing, cement, and electronic appliances, were listed as having backward production capacities
and were shut down. This loss of jobs initially led to a decline in the floating population, but the
population rebounded in 2017 when the government created new jobs and urged enterprises to
adopt industrial chain automation and intelligence, optimize resource allocation, and lower energy
consumption and pollutants emissions.

Dgdp is traditionally the most iconic factor driving CO2 emissions. This was confirmed in the
current study with Dgdp showing the highest values (1.07–1.23) of the driving factors we analyzed
from 2010 to 2016. However, by the end of 2017, although GDP continued to rise, a sudden increase in
population led to a lower per capita GDP than in 2016, resulting in a Dgdp of less than 1 in 2016–2017.
This suggests that when population is stable, Dgdp will play a long-term, direct, and dominant role in
promoting CO2 emissions.
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Dstr was the key factor exerting a sustained inhibiting influence on CO2 emissions and ranged
between 0.97 and 1.00. The industrial structure of Changxing is characterized by a declining secondary
industry, with an average annual decline of −1.38%, and a rising tertiary industry, with an average
annual growth rate of 2.77%. In other words, optimization of the overall industrial structure and
adjustment of the internal industry sector will cause Dstr to exert a sustained inhibitory effect on CO2

emissions. Therefore, Changxing needs to accelerate the development of emerging industries, such as
new energy vehicles, high-end equipment manufacturing, and the redevelopment of traditional pillar
industries such as batteries and textiles.

Dint exerted a sustained inhibiting influence on CO2 emissions during most of the period between
2010 and 2017, with Dint ranging between 0.85 and 0.97. Values rose above 1 only during 2014–2015 (1.03)
and 2016–2017 (1.01). This was due to a continuous decline in energy consumption from 2010–2014
and an increase in GDP, which led to a decline in energy intensity indicators and suppression of CO2

emissions. From 2015 to 2017, energy consumption climbed and exceeded 2010 levels. Meanwhile,
GDP growth rate in 2015 and 2017 was lower than the 2010–2014 average, causing Dint to promote
CO2 emissions.

Dmix decreased CO2 emissions during most years, with a mean Dmix value of 0.99. This was due
to a gradually decreasing proportion of coal consumed for primary energy, with the exception of 2014
to 2015 when the proportion increased from 81.51% to 85.08% and Dmix increased to 1.02 (>1).

Demf contributed to CO2 emissions in most years. We found that changes in the carbon emission
coefficient were closely related to the industry sector and the electric power sector. When the carbon
emission coefficients of the industry sector and the electric power sector both increased simultaneously,
Demf rose rapidly; when both coefficients decreased simultaneously, Demf declined rapidly. For
example, from 2010 to 2011 the coefficient of the electric power sector increased by 0.01 tCO2/tce and
the coefficient of the industry sector increased by 0.05 tCO2/tce, causing Demf to increase to 1.02 (>1). In
contrast, from 2011 to 2012 the coefficient of the electric power sector decreased by 0.001 tCO2/tce and
the coefficient of the industry sector decreased by 0.01 tCO2/tce, causing Demf to decrease to 0.98 (<1).

3.2. CO2 Forecast Model Based on Ridge Regression

Data availability was limited in this study, so we employed bootstrap random simulation to
expand the sample size and increase the robustness of model estimation for small sample sizes [46].
The samples were analyzed and tested using ordinary least squares (Table 3), which indicated severe
multicollinearity between the variables (i.e., the variance inflation factor (VIF) was larger than 10).
In order to improve the stability of the estimated parameters, we used the ridge regression method,
which is essentially an improved least squares estimation method. Ridge regression is a biased
estimation regression method dedicated to collinear data analysis. It produces more realistic and
reliable regression coefficients, but at the cost of losing some information and accuracy.

Table 3. Least squares multicollinearity.

Independent Variable Variance Inflation R-Squared vs. Other X’s Tolerance

lnP 56.0128 0.9821 0.0179
lnU 136.8043 0.9927 0.0073
lnA 42,475.4 1 0

(lnA)2 46,913.21 1 0
lnI 535.5884 0.9981 0.0019

lnT1 126.2288 0.9921 0.0079
lnT2 6.427 0.8444 0.1556
lnE 14.395 0.9305 0

Note: P: population, U: urbanization, A: affluence (expressed as per capita GDP), I: industrial value added, T1:
technology (expressed as energy intensity), T2: technology (expressed as carbon emission coefficient of the electric
power sector), and E: energy consumption. Take the logarithmic form for all the independent variables.
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Based on the STIRPAT model, we obtained a formula for predicting CO2, as shown in Equation (13):

ln C = 0.8979279 + 0.07874562× ln P + 0.03355597× ln U + 0.03752399× ln A + 0.0017604× (ln A)2

+0.05296875× ln I + 0.03148769× ln T1 + 0.00054033× ln T2 + 0.8248055× ln E
(13)

The equation shows that, for every 1% change in the following indicators (population,
urbanization, per capita GDP, industrial value-added, energy intensity, the carbon emission coefficient
of the electric power sector, and coal consumption), CO2 emissions will increase by 0.07874562%,
0.03355597%, (0.03752399 + 0.001760419lnA)%, 0.05296875%, 0.03148769%, 0.000540327%, and
0.8248055%, respectively. Therefore, the order of the magnitude of the effect of the different indicators
on CO2 emissions is: coal consumption > population > industrial value added > per capita GDP >

urbanization > energy intensity > the carbon emission coefficient of the electric power sector.
Graphs of the ridge trace and the VIF plot show that, when k = 0.1, ridge trace changes tend to

be stable, VIF tends to be stable, VIF approaches 1, and residual distribution conforms to a normal
distribution (Figure 4). Analysis of variance (Table 4) produces the following results: R2 is equal to
0.926, the root mean square error (RMSE) is approximately 0.011, and the p-value of the variance
analysis is 0.000. Therefore, the regression equation passes the significance test.
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lnC, (c) histogram of lnC residuals, and (d) normal probability plot of lnC residuals. C: CO2 emissions.
lnC: the logarithmic form of C.
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Table 4. Analysis of variance for k = 0.1.

Source Degree of
Freedom

Sum of
Squares

Mean
Square F-Ratio Prob Level

Intercept 1 5262.104 5262.104
Model 8 0.131719 0.01646488 142.3876 0.000000
Error 91 0.01052272 0.0001156342
Total(Adjusted) 99 0.1422418 0.001436785
Mean of Dependent 7.254036
Root Mean Square Error 0.01075334
R-Squared 0.9260
Coefficient of Variation 0.001482393

3.3. Forecast of CO2 Emissions

Predicted total CO2 emissions for the five scenarios in 2035 were sorted from high to low: BAU >

IOD > MP > LCEP > ELC (Figure 5). The growth rate of energy-related CO2 emissions in Changxing
slowed under all five scenarios. An annual growth rate of CO2 emissions ≥ 2% is a high speed, 1% ≤
CO2 emissions < 2% is a medium speed, 0 < CO2 emissions < 1% is a low speed, and CO2 emissions <

0 is a negative growth rate. The five scenarios can be classified into three CO2 growth rate categories,
as follows.

(1) Under the BAU scenario, the growth rate of CO2 emissions is predicted to decrease from high
speed (2018–2030) to medium speed (2031–2035). The annual growth rate of CO2 emissions will
decrease from 4.10% in 2018 to 1.61% in 2035, but CO2 emissions in 2035 will still be 1.57 times the
level in 2017, reaching 24.71 million tons. Under this scenario, although low-carbon technology
has improved, Changxing cannot significantly reduce CO2 emissions during the outlook period if
existing energy conservation and emissions reduction policies are extended without adopting
stricter restraint measures.

(2) The IOD and MP scenarios produced the same trend. The growth rate of CO2 emissions is
expected to decrease from high speed (2018–2025) to medium speed (2026–2030) to low speed
(2031–2035). In the IOD scenario, CO2 emissions in 2035 will reach 1.38 times the level in 2017,
or 21.72 million tons, and will not peak during the outlook period. In the MP scenario, CO2

emissions in 2035 will reach 1.34 times the level in 2017, or 21.11 million tons, and will also not
reach peak CO2. This suggests that even when the parameter settings are moderately constrained
and total CO2 emissions are lower than the BAU scenario, peak CO2 cannot be reached during
the outlook period.

(3) The LCEP and ELC scenarios produced the same trend, with the growth rate of CO2 emissions
predicted to decrease from medium speed (2018–2025) to low speed (2026–2030) to negative speed
(2031–2035). In the LCEP scenario, CO2 emissions in 2035 will reach 1.09 times the level in 2017,
or 17.19 million tons, which is equivalent to the level first reached in 2023. Peak CO2 emissions
of 17.95 million tons are expected to occur in 2030, followed by an average annual decrease of
−0.86%. In the ELC scenario, peak CO2 emissions of 17.49 million tons are expected to be reached
in 2030, followed by an average annual decrease −1.06%. CO2 emissions in 2035 are predicted
to be 1.06 times the level in 2017, reaching 16.58 million tons, which is equivalent to the level
first reached in 2021. In these two scenarios, three parameters are the most constrained: coal
consumption, energy intensity, and the carbon dioxide emission coefficient of the electric power
sector. Equation (14) shows that the coefficient of coal consumption is the largest of the coefficients,
which indicates that the impact of energy structure on CO2 emissions is absolutely dominant.
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Figure 5. CO2 emissions forecast for Changxing County. BAU: business as usual, ELC: enhanced
low-carbon, MP: moderate progressive, IOD: industry-oriented development, and LCEP: low-carbon
development in the electric power sector.

From 2018 to 2035, carbon intensity (at the 2010 constant-price GDP) in the five scenarios was
predicted to decline to varying degrees. The predicted values for 2035, ranked from high to low,
are: MP > ELC > BAU > LCEP > IOD (Figure 6). The carbon intensity of ELC is 2228.98 tCO2/USD,
which is similar to that of MP (2270.72 tCO2/USD). Clearly, there is no advantage to the ELC approach.
Despite producing the lowest CO2 emissions, ELC largely constrains the economic development of
Changxing. IOD is expected to produce the lowest carbon intensity of 1661.02 tCO2/USD. However,
the total amount of CO2 emissions expected in this scenario is relatively high. In other words, the
IOD scenario sacrifices the environment to develop the county’s economy and is therefore not an
appropriate development mode.

Energies 2020, 13, x FOR PEER REVIEW 16 of 21 

 

carbon dioxide emission coefficient of the electric power sector. Equation (14) shows that the 
coefficient of coal consumption is the largest of the coefficients, which indicates that the impact of 
energy structure on CO2 emissions is absolutely dominant. 

From 2018 to 2035, carbon intensity (at the 2010 constant-price GDP) in the five scenarios was 
predicted to decline to varying degrees. The predicted values for 2035, ranked from high to low, are: 
MP > ELC > BAU > LCEP > IOD (Figure 6). The carbon intensity of ELC is 2228.98 tCO2/USD, which 
is similar to that of MP (2270.72 tCO2/USD). Clearly, there is no advantage to the ELC approach. 
Despite producing the lowest CO2 emissions, ELC largely constrains the economic development of 
Changxing. IOD is expected to produce the lowest carbon intensity of 1661.02 tCO2/USD. However, 
the total amount of CO2 emissions expected in this scenario is relatively high. In other words, the IOD 
scenario sacrifices the environment to develop the county’s economy and is therefore not an 
appropriate development mode. 

 
Figure 6. CO2 emissions intensity forecast for Changxing County. 

Considering carbon intensity and total carbon emissions, we found that LCEP is the most 
promising scenario for Changxing to achieve low-carbon development in the future. By 2035, carbon 
intensity under this scenario would be low (1849.69 tCO2/USD), which is lower than the peak CO2 
levels reached by the United States in 2005. Moreover, under LCEP, the urbanization rate is expected 
to reach 76.54%, which is similar to the average urbanization level of 76.34% reached by other 
countries when they hit peak total carbon emissions, including the United States, Canada, Germany, 
the United Kingdom, and the European Union (Chai and Xu, 2015). In addition, industry’s share of 
GDP under the LCEP scenario drops to 37.73%, coal’s share of primary energy consumption drops 
to 56%, and the CO2 emission coefficient of the power sector drops to 3.95 tCO2/104 kWh. By 2030, per 
capita CO2 emissions in Changxing would reach 23.68 t, which is close to the peak of 22.2 t reached 
by the United States in 2005. 

3.4. Relationship between CO2 Emissions and Economic Development 

Overall, the degrees of coupling and decoupling of CO2 emissions growth (ΔCO2) from economic 
growth (ΔGDP) in Changxing experienced two phases, changing from strong decoupling (elasticity 
< 0) to weak decoupling (0 < elasticity < 0.8). Among them, abnormal results (expansive coupling and 
elasticity > 0.8) appeared in 2015, along with the large increase of CO2 emissions (Figure 7). It shows 
that with the economic growth, the environmental pressure is increasing, and the relationship 
between CO2 emissions and economic development is getting tense. 

Figure 6. CO2 emissions intensity forecast for Changxing County.

Considering carbon intensity and total carbon emissions, we found that LCEP is the most
promising scenario for Changxing to achieve low-carbon development in the future. By 2035, carbon
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intensity under this scenario would be low (1849.69 tCO2/USD), which is lower than the peak CO2

levels reached by the United States in 2005. Moreover, under LCEP, the urbanization rate is expected to
reach 76.54%, which is similar to the average urbanization level of 76.34% reached by other countries
when they hit peak total carbon emissions, including the United States, Canada, Germany, the United
Kingdom, and the European Union (Chai and Xu, 2015). In addition, industry’s share of GDP under
the LCEP scenario drops to 37.73%, coal’s share of primary energy consumption drops to 56%, and the
CO2 emission coefficient of the power sector drops to 3.95 tCO2/104 kWh. By 2030, per capita CO2

emissions in Changxing would reach 23.68 t, which is close to the peak of 22.2 t reached by the United
States in 2005.

3.4. Relationship between CO2 Emissions and Economic Development

Overall, the degrees of coupling and decoupling of CO2 emissions growth (∆CO2) from economic
growth (∆GDP) in Changxing experienced two phases, changing from strong decoupling (elasticity <

0) to weak decoupling (0 < elasticity < 0.8). Among them, abnormal results (expansive coupling and
elasticity > 0.8) appeared in 2015, along with the large increase of CO2 emissions (Figure 7). It shows
that with the economic growth, the environmental pressure is increasing, and the relationship between
CO2 emissions and economic development is getting tense.Energies 2020, 13, x FOR PEER REVIEW 17 of 21 
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Under the five scenarios, we found that only in LCEP and ELC could Changxing achieve strong
decoupling in 2035. However, in other scenarios, it remains weak decoupling (Figure 8). Hence,
combined with the conclusion of Section 3.3, we provide abundant evidence to conclude that LCEP is
the optimal strategy for Changxing to achieve low-carbon development. It shows that, to realize the
decoupling of economic development and carbon emissions, two ways can be effective: optimizing
energy structure and promoting low-carbon technological advancement.

For those industry-oriented regions similar to Changxing, we should give priority to optimizing
the energy structure, especially by eliminating dependence on fossil fuels for power generation, to
reduce CO2 emissions. Electricity decarbonization has been explored in the recent research [47,48]. On
the other hand, the promotion of low-carbon technology is equally important. However, at the county
scale, the development of low-carbon technology is also subject to marketing efforts, the transfer of
intellectual property, and high input costs [49,50]. Therefore, counties are suggested to emphasize
site-specific recommendations on exploring low-carbon technology, such as studying the possibility
of energy recovery by thermal conversion of combustible residual materials or local agricultural and
forestry waste, and focusing on one or two key techniques for reducing costs [51,52]. Besides, based
on the results of decomposing drivers (Section 3.1), we also need to focus on optimizing the overall
industrial structure and adjusting the internal industry sector to promote economic development while
simultaneously inhibiting CO2 emissions. Other factors, such as urbanization population, are also
important but not as critical for those regions. The growth of carbon emissions due to urbanization is
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limited because industry-oriented counties already have infrastructure that is mostly developed. In
addition, such counties provide new employment opportunities for populations, which will be largely
affected by the growth of emerging industries, the redevelopment of traditional pillar industries, and
the closing of outdated or inefficient industries. This process will cause the size of floating populations
to fluctuate, which then affects total population.
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emissions due to urbanization is limited because industry-oriented counties already have 
infrastructure that is mostly developed. In addition, such counties provide new employment 
opportunities for populations, which will be largely affected by the growth of emerging industries, 

Figure 8. Degrees of decoupling of CO2 emissions growth (∆CO2) from economic growth (∆GDP) for
Changxing County in five scenarios.

In the future scenarios, we emphasize the importance of both quantity (reducing fossil fuels
consumption) and quality (promoting low-carbon technology) in low-carbon development. First to
optimize the energy structure, especially in electric power sector, by significantly reducing dependency
on fossil fuels. Some studies have shown that at the national scale, cutting CO2 emissions in electric
power sector could be vital for achieving low-carbon society [53,54]. Not only that, in review of
the literature, we found that nearly all industries are pursuing a rapid shift toward such a green
transformation. Electrification of transportation at the larger scale is required for the road transport
sector to achieve low-carbon mobility [55]. Transport structure adjustments and alternative fuels
are required for the civil aviation sector to achieve decoupling [56]. The nonmetallic sector of Italy
reduced 1.2 million tons of CO2 emissions between 1995 and 2009, benefiting from the cleansing of the
energy structure (the share of conventional energy consumption declined by approximately 7%) [57].
Second to import/create core low-carbon technology, especially the integration of resource advantages
and technical cooperation, Ubran [58] pointed out the importance of low-carbon technology in the
further global political and economic power and considered that, in the energy sector (for example
wind and solar energy), many firms and governments around the world are looking for partnerships
and technology cooperation with China, as China can deliver advanced low-carbon technology at
competitive prices. It not only helps to create new markets and employment but also accelerate global
low-carbon transitions and climate change mitigation.

4. Conclusions

From the perspective of decomposing drivers, we found that optimizing the economic development
mode and adjusting the energy structure of Changxing are key to slowing down CO2 emissions in
the county during the outlook period. It was because of this that Dgdp was the most iconic factor
driving CO2 emissions from 2010 to 2017, playing a long-term, direct, and dominant role, while Dmix

had an inhibitory influence on CO2 emissions during most of the same period. Therefore, reducing
the proportion of secondary industry (especially industry) and increasing the proportion of green
industries emerged as the main factor capable of inhibiting CO2 emissions.

From the perspective of scenario/development strategy, a scenario focused on low-carbon
development in the electric power sector (LCEP) is the optimal strategy for Changxing to achieve
low-carbon development. This scenario is predicted to achieve the goal of peak CO2 emissions around
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2030 with CO2 emissions per unit GDP lower than 2005 levels by 60%–65%, which meets China’s
autonomous action goal declared to the UNFCCC.

Technology improvement and energy structure optimized are focused in LCEP scenario. Targeted
measures for optimizing energy structure and promoting energy efficiency are proposed to ensure
that Changxing reaches peak CO2 emissions as soon as possible. Such efforts include: (1) developing
local support policies and regulations that guide the development of renewable energy in different
areas, such as feed-in tariffs, renewable energy quotas, and fiscal tax support policies for the renewable
energy power generation industry; (2) using advanced technologies to improve the energy efficiency of
existing generators, including the production of supercritical and ultra-supercritical coal-fired power
plants and the implementation of integrated gasification combined cycle power generation technology;
and (3) increasing the proportion of non-fossil fuel power generation and accelerating the development
of non-fossil fuel technologies based on biomass power generation and wind power to replace coal-fired
power generation, while reducing the cost of new energy power generation.

The limitations of research using STIRPAT were presented in the parameter settings required
for scenario analysis. Moreover, this method is a one-way information flow transmission that
cannot dynamically reflect information interactions and lacks a feedback mechanism. Combining the
method with the advantages of system dynamics might improve its flexibility and applicability to
different scenarios.
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