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Abstract: Targeting existing residential buildings for retrofit improvement presents significant
prospects for global reduction of energy-usage and carbon footprints. Energy consumption of the
existing single-family building in the hot-humid climate zone needs to be targeted for improvement
due to their potential energy-savings and sizeable market share. This paper proposes and evaluates
energy savings and cost-effectiveness of a whole building retrofit package for single-family residential
buildings built between 1950 and 1970. The study outlined a survey conducted using the clustering
data mining technique on Florida Single-Family Residential (SFR) homes to determine the essence
of the building envelope, patterns of construction, and Heating, Ventilation, and Air-Conditioning
(HVAC) systems. The evaluation of the energy efficiency measures (EEMs) effectiveness is performed
utilizing Autodesk Revit and a Six-Step modeled framework. This framework consists of baseline
model development, validation of the model with an actual case study building, identification of
potential EMMs, evaluation of EEMs individually and incorporating the selected EMMs into retrofit
package and maximizing the energy-saving and cost-effectiveness of the proposed retrofit package.
The study develops proposed retrofit improvement package detailing replacement & improvement
EEMs, implementation cost, annual energy savings (kWh), cost-saving ($), and payback period (years)
for each individual EEM as well as the combined/total energy improvement package. The paper
further explored the usage of solar photovoltaics (PV) energy generation options to offset the remaining
energy-use after the implementation of the proposed retrofit package.

Keywords: single-family buildings; energy efficiency; energy simulation analysis; energy consumption;
hot-humid climate zone; and building energy retrofits

1. Introduction

The growing concerns about climate change and continuous rise in energy cost have prompted
public interest in energy efficiency and conservation measures. According to the Energy Information
Authority (EIA) [1], the total energy consumption in the United States for both residential and
commercial sectors contributed about 40% (or about 40 quadrillion British thermal units) in 2018.
Residential buildings utilize 22% of total consumption in the United States from which Single-Family
residential buildings are responsible for 80% total energy consumed, multi-family buildings consumed
15%, and 5% consumption is attributed to mobile homes. The diversity of energy consumption across
the United States is as a result of the different home types, sizes, structures, and climate zones [2].
A survey conducted by the United States Census Bureau 2013 [3] found that more than 60% of the
United States’ housing stock is 30 years old and energy inefficient and consumes more energy compared
to new buildings [3]. There is a need to address the existing residential building stocks to reduce the
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high energy consumption, focusing on older single-family residential homes [4]. Emrath et al. [5]
concluded in their study that the newer the house, the less energy it uses per unit area basis.

Wang et al. [6] defined energy retrofit as the physical and operational change of a building itself,
its energy end users, or occupants’ behavior. They found that a combination of passive and active
measures can be adopted to achieve the required levels of energy efficiency. Active measures offer the
necessary flexibility to cut-down the excess costs of the utility bills through continuous monitoring
while passive strategy scrape pares unnecessary surplus energy consumption. Betharte et al. [7]
studied the effect of various potential passive and active EEMs for energy efficiency improvement of
an office building in Melbourne, FL. They selected the most promising EEMs based on their potential
for energy savings as well as estimated implementation cost and achieved about a 50% reduction
in total annual building energy consumption. D’Agostino et al. [8] used EnergyPlus to determine
the impacts of passive and active approaches on energy savings in buildings and concluded that
passive building design strategies should be prioritized. The authors found the effectiveness of active
strategies in terms of total energy reduction varies between the original design and the re-design.
Fairey et al. [9] examined the opportunities for cost-effective energy efficiency and renewable energy
retrofits in residential archetypes constructed before 1980 (pre-code) in 14 U.S cities. The critical finding
from [9] investigation indicated that the energy efficiency of even older, poorly insulated homes across
U.S. climates could be improved dramatically with favorable economics, they can reach performance
levels of near net-zero energy when assessed on an annual basis. Also, the indication in their findings
stated retrofit financing alternatives and whether equipment requires replacement had a considerable
impact on the achievable source energy reduction.

Despite the number of different entities providing resources on the retrofit process, the research
into this vital subject matter influencing decision remains limited. The selection process of a retrofitting
strategy is a trade-off between the capital investment and the benefits derived from energy retrofitting.
These energy retrofitting benefits can be economical, environmental, or social (enhancing occupants’
comfort and health) [10].

Building Energy Retrofit in Hot-Humid Climate

Building researchers and industry professionals have made significant efforts towards the
development and application of various retrofit technologies and decision support tools to enhance
building energy performance. This section relates to the study conducted in terms of energy efficiency
retrofits, energy modeling/analysis, and economic analysis in hot-humid climates.

McIlvaine et al. [11] conducted a study in central Florida to examine the efficiency of retrofit
opportunities, typical renovation practices, and pathways for achieving U.S. Department of Energy
(DOE) goals of energy-efficient existing homes for the region. The authors conducted renovation
activities on 70 foreclosed homes built from the 1960s through the 2000s.The average improvement
for the 70-house dataset was a 34% decrease in the Home Energy Rating System (HERS) index.
Annual average projected energy cost savings were 25%. Silvero et al. [12] evaluated the thermal
performance of a dwelling located in a humid climate. The authors assessed several retrofitting solutions
for the building envelope to determine the most efficient solution for the building and the climate zone.
The results indicated that the implemented strategy contributed to the reduction of the overheating
problem of the building and maintained comfortable indoor conditions adding to the improvement
of occupant well-being. Burgett et al. [13] demonstrated the application of energy simulation as an
effective tool for specifying cost-effective residential packages that will reduce energy consumption
by 30%. The authors used single-family buildings in the hot-humid climate in the southern USA to
demonstrate the application. The study found that replacing lights with CFLs, installing low-flow
water fixtures, providing programmable thermostats, applying window films, and reducing standby
power loss were constantly cost-effective. The study recommended that if all EEMs proposed were
implemented together, the energy use would reduce from 20% to 25% with a simple payback period of
fewer than two years. The study also highlighted the value that computer simulation models could have
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on the development of energy efficiency packages and cost-effectiveness in relation to homeowner’s,
location and housing type. Retrofitting existing buildings offers significant opportunities for reducing
global energy consumption and greenhouse gas emissions [14]. Ma et al. [14] evaluated a systematic
approach to proper selection and identification of the best retrofit options for existing buildings. The
authors suggested a whole building retrofit with comprehensive energy simulation, economic analysis,
and risk assessment as an effective approach to identify the best retrofit solutions. The authors further
recommended more research and investigation to facilitate energy and cost-effective building retrofits.
Al-Saadia et al. [15] investigated different energy-efficient retrofitting strategies, including insulation
for both walls and roof, upgrading to LED lights, and improving the air tightness. The study concluded
that, when combining the best strategy from each category, the annual energy consumption can be
reduced as much as 42.5%. Alam et al. [16] carried out a comprehensive review of barriers to retrofitting
guidelines and progress. The authors categorized barriers to energy retrofitting as regulatory, economic,
knowledge, or social. The study found, existing research, had shown the importance of conducting a
risk assessment in building a retrofitting process. None of the currently available retrofit guidelines
includes a risk assessment. Also, some guidelines have no recommendation for post-occupancy
evaluation of installed retrofit measures. Goldman et al. [17] introduced energy savings and the cost
of conservation measures in U.S. multifamily buildings based on the analysis of measured data of over
25,000 dwelling units. The majority of the processes can be applied to single-family homes. Median
energy savings were 1450 kWh/unit in electric-heated buildings and 14 MBtu/unit in fuel-heated
buildings. The results show that the retrofit costs of ($370/unit) for fuel-heated buildings were much
lower than that of electric-heated buildings ($1600/unit). The payback periods for fuel-heated buildings
and electric-heated buildings were six years and 20–25 years, respectively. Deep Energy Retrofit (DER)
performance in the U.S. has been assessed in 116 homes in the United States [18], using actual and
simulated data gathered from the available domestic literature. The results indicated that annual
energy costs were reduced by $1283 ± $804 from a pre-retrofit average of $2738 ± $1065 to $1588
± $561 post-retrofit. These results provide estimates of the potentials of deep energy retrofits to
address energy use in existing buildings. Building Energy Optimization Tools (BEopt) has been
used extensively in the U.S. Department of Energy’s Building America program to direct research,
assess emerging technologies, evaluate innovative prototype buildings, and estimate energy savings
potential [19]. According to Christensen et al. [20], BEopt software is designed to find optimal building
designs along the path to Zero Net Energy [20], the software provides either a user-defined base-case
building or a climate-specific Building America Benchmark building automatically generated by
BEopt and the user can also review and modify detailed information on all available options in a
linked options library spreadsheet. Simulations of building energy use can give insights into how
energy efficiency retrofits and operational changes can influence a building’s total and temporal energy
use [20]. Rhodes et al. [21] determined model accuracy by considering 54 homes in Austin, TX, that
are part of a smart grid demonstration project. Lee et al. [22] investigated retrofit tools both in the
public domain as well as in the private sector to better understand the diverse approaches currently
in use to evaluate retrofit methods, measures, interoperability, target audiences, as well as interface
types and accessibility. Shabunko et al. [23] used the EnergyPlus simulation tool to benchmark the
energy performance of 400 residential buildings from which three types of buildings were classified.
The EnergyPlus models produced the energy use intensity (EUI) per year for these buildings, with
values ranging from approximately from 64.2 to 47.8 kWh/m2.

An economic analysis that facilitates the comparison among alternative retrofit measures can
indicate whether the retrofit alternatives are energy-efficient and cost-effective. Jafari et al. [24]
proposed a decision-making framework that calculates the economic benefits of energy retrofitting in
terms of reduction of life-cycle cost for a specific building during its service life and determines the
optimum retrofitting budget that minimizes the total life-cycle cost of the building during its service life.
The framework also allows for the selection of optimum energy retrofitting strategies (among available
energy retrofitting measures) to maximize the homeowner’s economic benefits during the service life of
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the building. According to the Whole Building Design Guide (WBDG) Cost-Effective Committee [25],
an economic analysis was performed for six formulated refurbishment scenarios to determine which
of the scenarios will demonstrate optimal performance both in energy and cost-efficiency. A variety of
economic analysis methods were used to evaluate the economic viability of building retrofit measures.
Some of them, such as net present value (NPV), internal rate of return (IRR), overall rate of return
(ORR), benefit-cost ratio (BCR), discounted payback period (DPP), and simple payback period (SPP),
can be used to assess the economic feasibility of a single retrofit measure. Alternatively, the life
cycle cost method, the levelized cost of energy, and other advanced analysis methods can be used
to evaluate the cost-effectiveness of multiple retrofit alternatives [25,26]. All sectors of the energy
community need guidelines for making economically efficient energy-related decisions [27]. Beyond
social responsibility, more and more data are making it clear that it makes economic sense for landlords
to retrofit their buildings and make them sustainable and energy-efficient [28]. A dynamic investment
analysis utilizing the discounted cash flow (DCF) method was conducted for a series of energy-efficient
retrofit packages that were applied to a specific model building [29]. The investigation provided a
rational basis for decisions by house owners. Nguyen et al. [30] proposed an approach to enhance data
interoperability to allow for seamless integration of design and energy analysis processes. The authors
used Autodesk Revit software to design a BIM-Based architectural model as a case study. The study
found that a suitable combination of design, energy modeling, and data exchange interface tools will
help improve the project cost and schedule overruns.

The literature, as described above, portrays the very diverse nature of energy retrofit and also the
influences of numerous uncertainty factors. A favorable prediction of the uncertainty factors regarding
the choice and combination of the proposed EEMs is vital to help select the best retrofit option to
maximize the building energy efficiency during its whole service life.

2. Methodology

The methodology for this research adopted an approach that includes an extensive study targeted
at improving the energy performance of existing single-family residential buildings in the state of
Florida, which also applies to other hot-humid climate zones. The purpose is to establish energy
efficiency measures (EEMs) capable of reducing building energy consumption coupled with the lowest
retrofit cost. This section develops six-step modeled framework that includes: the baseline model
definition; verification of the model with an actual building; identification of the EEMs; estimating
the cost of the EEMs; evaluating the effectiveness of the EEMs; and eventually developing the retrofit
package aligned with the objective of this study.

2.1. Define Baseline Model

An actual building is considered to represent the target class of single-family residential buildings.
The building is modeled via Autodesk Revit (Autodesk, Inc., San Rafael, CA, USA) and used as the case
study building for further analysis. The case study building was built in 1959 and has an approximate
footprint of 168 m2. Section 4 provides a full development of the baseline model.

2.2. Verify Baseline Model with the Actual Data

The verification process is performed by comparing the predicted energy consumption data to the
actual electric bill data. A meter-level utility data, i.e., an average monthly electric bill for the year
2018 with an annual energy consumption of 19,081 kWh/year, was the basis of comparison for the
simulation analysis.

2.3. Identify EEMs

Identification of EEMs depends mostly on the results of an energy audit conducted in Section 4.1.
and energy end-use estimate process as described in Section 4.4. These two activities presented the
real state of the case study building that led to the identification and selection of the EEMs.
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2.4. Estimate the Cost of EEMs

The initial retrofit cost is an essential determinant for the selection of a proposed EEMs. The cost
estimate for the EEMs is performed using industry published data such as RSMeans [31], manufacturers
cost/user guide and vendor prices provided by national retail vendors the reliance of local general and
subcontractors, as well as historical data from previous projects.

2.5. Evaluate the Effectiveness of EEMs

This step deals with the simulation of the energy savings of the selected EEMs. Multiple
simulations of EEMs are performed to predict the optimal retrofit package with the highest cumulative
energy savings, which corresponded with the lowest up-front cost.

2.6. Develop Retrofit Package

The procedure for developing the retrofit package is fully described in Section 6. The approach
defines a customized automation process of selecting and simulating the individual EEMs making up
the combined retrofit package. Figure 1 shows the summarized six-step modeled framework for the
methodology as described above.

Figure 1. Six-Step modeled framework approach.

3. Single-Family Building Survey for Florida

A survey of Florida Single-Family Residential (SFR) buildings constructed between the years 1950
and 1970 was conducted to collect data associated with the properties. The search aimed at establishing
each building’s architectural style, roof profile, building envelope type, and HVAC system type.
The study used the Clustering data mining technique for the search of property appraisal databases.
Clustering, also called data segmentation, as large data groups are divided by their similarities. A total
number of 2,621,262 residential buildings were surveyed through the property appraisal database
across the sixty-seven counties in Florida [32–98]. Table 1 shows the breakdown of data for each county.
Out of the total number surveyed, the authors selected 6,700 buildings for further analysis. Figures 2–5
provides results of typical exterior walls, roofing, windows, and building footprints, respectively.
Figure 2 shows 85% of the buildings use concrete masonry units (CMU) as exterior walls, while Figure 3
shows 90% of the roofing types are asphalt shingles. Figure 4 indicates two major types of windows of
which, single-pane windows constitute 80%. Figure 5 shows the average footprint of all buildings
across the counties. The buildings’ square footage is grouped into seven categories according to the
sizes of the buildings’ footprints as the indicated figure below. The majority of the building footprints,
according to the survey results, are centered between 186 m2 and 279 m2, respectively. The majority
of the buildings, 92%, uses a central air-conditioning HVAC system while 8% attributed to Heating
Force-Air. 95% of the homes have an electric power source. There was no information discovered on
lighting systems and fixtures. Other patterns related to the building shape include rectangular, "L
or U" shape, and or low pitch roof with extended eaves. They have an attached garage and a large
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picture window facing the street. The houses are generally three (3) bedrooms on average across
all counties. The buildings’ exterior features are predominantly made of masonry concrete blocks,
as indicated in Figure 2 for exterior walls types, drywall for interior partition, slab-on-grade, and
carpet, or vinyl for floor. Based on the age of these buildings, it is safe to assume that the majority of
them are energy inefficient. About 80% of the windows are a single uninsulated pane, evident from
their visibly deteriorated nature. Some of the gaping holes noticed along the joints of the building
envelopes make it reasonable to say that they are not sealed correctly from the air leakages.

Table 1. Single family residential (SFR) building survey from each county.

County Number of Buildings County Number of Buildings County Numb of Buildings

1. Alachua 620,858 24. Gadsden 10,960 46. Walton 14,001
2. Baker 98,481 25. Oskaloosa 12,000 47. Collier 12,000

3. Bradford 117, 601 26. Hardee 15,068 48. Lee 9299
4. Brevard 600,381 27. St. John 15, 008 49. Sarasota 30,270
5. Broward 211,199 28. Nassau 21,570 50. Dixie 12,440
6. Calhoun 21, 411 29. Santa Rosa 13,001 51. Franklin 11,748
7. Charlotte 28,288 30. Osceola 15,283 52. Columbia 11,309

8. Citrus 79,368 31. Suwanee 13,856 53. Gilchrist 16,600
9. Hillsborough 34,760 32. Flagler 11,721 54. Hamilton 6720

10. Pinellas 4639 33. DeSoto 15,887 55. Holmes 15,300
11. Polk 32,183 34. Bay 14,001 56. Jackson 12,000

12. Volusia 10,060 35. Monroe 5001 57. Hernando 9782
13. Palm Beach 41,000 36. Orange 101,000 58. Jefferson 11,831

14. Duval 10,000 37. Okeechobee 13,745 59. Lafayette. 13,239
15. Pasco 85,770 38. Leon 11,161 60. Levy 11,075

16. Escambia 13,001 39. Madison 9960 61. Taylor 11,173
17. Wakulla 11,916 40. Gulf 14,140 62. Union 8778
18. Manatee 14,290 41. Liberty 12,203 63. Washington 10,820

19. Sumter 15,275 42. Clay 11,080 64. Indian
River 17,559

20. Hendry 15,727 43. Lake 3760 65. Marion 11,999
21. Glades 5002 44. Seminole 48,606 66. Martin 2870

22. Saint Lucie 45,589 45. Putnam 12,950 67. Highland 17,734
23. Miami

Dede 311,000 Total No. of Buildings Surveyed: 2,621,262

Figure 2. Type of exterior walls.
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Figure 3. Type of roof materials.

Figure 4. Per unit area of windows and types for selected buildings in each county.

Figure 5. Average areas of building footprints grouped from the smallest to the largest sizes.
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4. Baseline Model

A residential building located in Melbourne, FL (28.070071, 80.525198), was chosen as a
baseline for the study. Concrete block walls, asphalt shingle roofing, single pane glazed windows,
and wood/aluminum frame glass doors make up the predominant features of the building envelope.
These characteristics represent approximately 85% of the features discovered through the single-family
residential survey conducted by the authors. The majority of counties have a similar type of structure.
Five people occupied the building, two adults, and three children. The residence was built in 1959 with
a 168 m2 footprint, including both conditioned and unconditioned (garage) areas, 1133 m2 lot size,
three bedrooms, and two baths. The building has one HVAC system type: a “Package Terminal AC
with electric resistance heat,” including DX coils as a cooling source and electric resistance for a heating
source. An EER of the Terminal HVAC unit was 11.3 found from the manufacturer’s label. Zone group
definitions were used to allocate the HVAC units. The HVAC system operates all day.

Table 2 shows the window-to-wall ratio (WWR) of the building and the window types installed.
WWR is an essential variable affecting energy performance. The building has a light color strip asphalt
shingle on a wooden rafter. The energy audit Section 4.1, outlines the detailed characteristics of
the building.

Table 2. Window-to-wall ratio.

The Building Glazing System

Zone Orientation WWR Glass
South 10.23% Double-pane conventional windows
East 8.83% Single-pane conventional windows

North 6.40% Single-pane conventional windows
West 3.73% Single-pane conventional windows

A baseline must be defined appropriately in order to accurately determine the effectiveness of the
EEMs in next steps. The authors developed a model based on the actual building using Autodesk Revit
as shown in Figures 6 and 7. With the aid of the Autodesk Revit, the model was created to support the
energy modeling and simulation analysis process for the determination of the cost-effectiveness and
energy efficiency of the chosen EEMs/retrofit package.

Figure 6. The baseline building model in Revit.
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Figure 7. Floor layout of the baseline building.

4.1. Energy Audit

A level 1 energy audit to ASHRAE Standards was conducted on the case study building to
understand baseline energy consumption, end users and potential energy-related opportunities.
The main components observed throughout the audit process include:

• Primary Energy Use Analysis (PEA);
• Walk-through survey;
• Identifying low-cost/no-cost energy saving opportunities;
• Identifying capital improvements.

The survey was administered three times within six months to obtain the actual data for the building.
Total Annual Energy Use (kWh/m2) per the Florida Power and Light (FPL) bills was 19,018 kWh/m2

for the year 2018. During the walk-through excise, we posed a series of questions to the owner and
the other occupants. The electricity bills for two years (2017 and 2018) were obtained from the owner
to conduct the actual energy usage analysis. Table 3 depicts the summary of monthly and annual
energy consumption breakdown and cost. More detailed energy audit on the equipment, lighting
fixtures, and HVAC units was necessary to establish the point of reference for the energy analysis.
Manufacturers’ data sheets played a significant role in developing a credible schedule for the baseline
building. There were no energy-efficient light fixtures. Tables 4–8 presents the summarized findings
of the energy audit. Tables 4–8 contains the windows schedule, list of exterior doors, plug loads,
equipment, lighting schedule, and Heating/Cooling set-points, respectively.

Table 3. Summary of Utility Bills for 2017 and 2018.

2017 2018

Months Electric
(kWh) Electric ($) Water

(Gal) Water ($) Months Electric
(kWh) Electric ($) Water

(Gals) Water ($)

22nd Jan 1261 149.16 700 27.83 23rd Jan 1126 141.16 600 26.68
20th Feb 890 117.01 830 29.23 21st Feb 940 120.96 960 32.11
19th Mar 1206 136.11 800 29.00 22nd Mar 1296 154.66 920 30.68
20thApr 908 110.21 800 29.00 20th Apr 1006 124.32 700 27.83

22nd May 1214 159.29 950 31.20 22nd May 1308 155.92 900 30.11
23rd Jun 1481 176.30 1100 32.89 21st Jun 1304 155.54 1400 34.54
22nd Jul 2160 193.98 900 30.50 23rd Jul 2474 287.06 900 30.10

22nd Aug 1642 260.10 800 29.00 22nd Aug 2576 289.66 800 29.00
21st Sept 2402 201.98 650 26.32 21st Sept 2192 250.54 650 26.32
23rd Oct. 2768 271.27 700 27.83 22nd Oct 2466 285.82 700 27.83
20th Nov 1522 191.81 820 29.64 20th Nov 1318 155.58 820 29.64
20th Dec 1318 183.98 700 27.83 21st Dec 1012 120.10 700 27.83

Total 18772 2103.31 9350 350.2 Total 19018 2361.46 10050 352.67
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Table 4. Window characteristics.

Direction Number Glass Type Frame Type Size (m) Dist. to Gnd. (m)

East 3 Clear Wood/Aluminum 0.8 × 1.2 0.9
East 1 Clear Wood/Aluminum 0.6 × 1.2 0.9

North 1 Clear Wood/Aluminum 0.6 × 1.2 0.9
North 3 Clear Wood/Aluminum 0.8 × 1.2 0.9
South 1 Clear Wood/Aluminum 0.8 × 1.2 0.9
South 2 Clear Wood/Aluminum 2.3 × 1.5 0.6
West 1 Clear Wood/Aluminum 0.8 × 1.2 0.9

Table 5. Exterior doors characteristics.

Direction Number Type Size (m)

North 1 Sliding Glass 1.1 × 2.1
South 1 Embossed Panel (Garage) 4.9 × 2.1
East 1 Metal 0.9 × 2.1
West 1 Half Flat Glass-Wood Clad 0.9 × 2.1

Table 6. Plug loads and equipment.

Type Location Number Wattage Hours/Year

Computer Bedrooms 3 80 4380
Refrigerator Kitchen 1 160 8742
Microwave Kitchen 1 1200 125
Dishwasher Kitchen 1 3600 730

Oven Kitchen 1 2000 2519
Washer/Dryers Laundry Room 1 2400 216

TV Living Room 1 300 1250
Coffee Maker Dining Area 1 750 500

Table 7. Lighting systems.

Type Location Number Wattage Hours/Year

Recessed Bedrooms/Living/Dining 36 75 2190
T2 Bath 6 15 300

A19 Closet 1 35 15
A15 Closet 1 55 15

GU24 Garage 6 13 150

Table 8. Heating/cooling set-points in Fahrenheit.

Season
Split System Unit

Cooling Heating

Winter 76 69
Spring and Fall 75 68

Summer 74 68

4.2. Energy Modeling and Simulation Process

Energy modeling plays a vital role in determining potential energy savings from retrofit projects.
To reliably predict energy savings from a class of identified EEMs, the energy simulation model
must represent the building’s operational characteristics. Hence, the energy audit and the measured
electricity consumption also become integral to the modeling process. If the baseline model can
generate outcomes that closely match monitored energy consumption of the building, then it is likely
to predict reliable estimates of the energy savings from the planned retrofits. This section takes a
Whole-Building detailed modeling approach to estimate the energy use and also defines the energy
performance of each EEM/proposed retrofit package.
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Different levels of energy settings are necessary to establish the bases for the simulation analysis,
including the building type, location, and average energy cost. The following settings are specifically
made to model; the building type is single-family; the assign location is Melbourne, FL (latitude
28.07, and longitude 80.60) as well as the energy cost of $0.1142/kWh/m2. The authors created eleven
spaces and two thermal zones for the model. The occupancy schedule was set to home occupancy
(24 hours occupancy), lighting, and power schedule was set to residential light (All Day). Cooling and
heating set-points were set at 78.00 ◦F and 60.00 ◦F year-round. The building infiltration class was
set to “medium.” All lights fixtures/bulbs were changed from incandescent/ compact bulbs to LED
lights (15 Watts) as part of the retrofit process. These and other assumptions made at the later stages
of the simulation analysis served as a basis for all the comparative analysis for the retrofit scenarios
considered. The Revit architectural baseline model was link to MEP Revit template for all the energy
simulation analysis. We used both Revit architectural and the MEP model as a simulation tool to
create the baseline model. In the MEP model, spaces were created and assigned to the thermal zone(s).
Each area (space) created tagged to a specific room with detailed designated functions. It is vital to
create spaces with assign zones to help manage the simulation and data export. The detailed results of
the data sent through gbXML are analyzed by Green Building Studio (GBS) over the cloud. Any input
made into the baseline model will yield the resultant output.

4.3. Actual and Baseline Energy Use

To verify the model, as shown in Figure 8, the monthly electric bill data for 2018 are obtained
from the utility company and compared against the calculated values from the model. The model
result is in very good agreement with the actual utility bill consumption data. This section, including
Section 4.4 and Section 4.5, plays a vital role in the selection and application of the EEMs.

Figure 8. Comparison between actual and baseline energy usage.

4.4. Energy End Use Estimate

The energy end-use estimate is developed, as shown in Figure 9 is as a result of the energy audit
conducted in Section 4.1. using Autodesk Revit.

Figure 9. End-use energy estimate.

The cooling system is the largest energy end-user, followed by lighting systems and equipment
loads. Hot water and heating loads shared the lowest consumption levels, respectively. The End-Use
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analysis presented the opportunity for the authors to properly defined EEMs for areas that demand
more attention in terms of energy consumption. (Cooling, lighting, and equipment). The results of this
energy end-use estimates serve as bedrock for decision consideration regarding the selection of the
EEMs. Cooling and heat gain sources are further analyzed, i.e., generating the heating and cooling
loads from Revit to determine the true origin of the loads. Section 4.5. discusses in detail, the cooling
and heat gain sources.

4.5. Cooling Loads and Heat Gain Sources

Figure 10 demonstrated the distribution of sources of cooling load. As seen, the largest source of
cooling load are the windows followed by roof/attic. It is vital to understand the load sources regarding
these end-uses in a typical Florida SFR building.

Figure 10. Cooling Load Sources.

5. Selection of Energy Efficiency Measures (EEMs)

This section defines different simulation analysis of the EEMs. The categorization of the EEMs is
according to passive and active measures. The recommendations of the EEMs that form part of the
final retrofit package is based on analyzing the existing energy end-use, as estimated from the energy
model of the case study building. As shown in Figure 9, the largest end-use are cooling and lighting,
which presented the most significant opportunity for savings. Hence, the recommended package
focused on prioritizing the EEMs that could reduce the energy used for cooling and lighting systems.

The first target was to increase the insulation quality, decrease the infiltration, and bring the
equipment/ducts into the conditioned space by insulating the radian barriers on the attic of the
roof. To further improve the envelope, the authors conducted a simulation analysis to select a
high-performance wall and roof insulation as well as windows with proper U-Values and very low
solar heat gain coefficients (SHGCs).

Figures 11 and 12 show the addition of wall and roof insulations modeled in Revit with varying
thickness to simulate different R-values for the exterior walls ranging from 7.5 to 19 with roofing
insulation ranged from R-11 to 40 respectively.

Figure 11. The impact of using additional wall insulation on total annual electricity consumption of
a building.
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Figure 12. The impact of additional roofing insulation on the total annual electricity consumption of
the building.

The inclusion of the exterior wall insulation is a way to slow down the heat transfer process
through the wall. In hot-humid climate like Florida, the temperature difference between inside and
outside of the building is relatively small, which in turn alleviates the impact of using materials
with high thermal resistance for walls and roofs on the energy consumption of the building. Energy
simulation analysis is performed to assess the effect of roof insulation on building energy performance
(Figure 12). The addition of roof insulation R-values ranged from 11 to 40 as marginal changes can be
seen between R-30 (390 kWh/year), R-38 (410 kWh/year), and 40 (420 kWh/year).

A significant amount of heat loss or gain in buildings occurs through the windows. Heat gain
through windows takes place in two different heat transfer modes: radiation and conduction.
The energy consumption of buildings varies significantly as a result of using different types of windows.
The baseline building uses both single and double pane uninsulated clear conventional windows.
The authors assumed that energy-efficient windows replace all windows. The energy-efficient window
technologies considered for the analysis include; single & double pane clear, single & double low-E,
and single & double reflective tint, respectively. Figure 13 draws the comparison between the
potential energy savings as a result of using different energy-efficient window glasses. Although the
double-pane reflective tinted offers significant energy savings of 2403 kWh/year, representing 21% of
the energy savings, the single-pane reflective tint window offered the most promising savings in terms
of cost-effectiveness, thus saving 2353 kWh/year (20%). The reflective tint reflects the non-visible part
of the solar radiation, which in turn reduces the solar heat gain that leads to a reduced cooling load in
the summer months and therefore, would be an excellent choice for hot-humid climates.

Figure 13. Annual energy savings per using different type of energy efficient windows.

An active strategy of improving HVAC efficiency for building energy performance ranks among
the highest in potential energy savings. The cooling efficiency is measured by its SEER (Seasonal Energy
Efficiency Ratio) value. A higher SEER value improvement would lower the energy consumption of
the cooling system. The efficiency of the heating system is identified by COP value or HSPF (Heating
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System Performance Factor). Just as SEER, the effectiveness of the heating system increases with the
increase of the COP. Figure 14 demonstrates the effect of an improved efficiency of the HVAC unit
on the total energy savings. As the diagram shows, when the SEER value increases from SEER 9 to
21, energy savings in the amount of 3465 kWh/year can be realized, representing approximately 25%.
SEER 17 considered appropriate for the selected EEM because it offered a significant energy savings of
2379 kWh/year (23%) compared to SEER 21 in terms of cost-effectiveness.

Figure 14. The effect of variation of SEER value on the total annual energy consumption of the building.

By adding insulation to the exterior walls and properly sealing around windows, infiltration was
anticipated to decrease to 4 air changes per hour (ACH) at 50 Pascal instead of 6 ACH. The simulation
confirmed infiltration at approximately 3.8 ACH 50, yielding 578 kWh/year energy savings (3%).
The introduction of R-6 ducts with leakage of 7.5% central return to bring fresh air into the building
incurred a slight reduction of the energy savings of 3.5% in the simulated retrofit package consumption
from 63.6% to 60.1%. However, this system also provides dehumidification, so the improvement to
indoor air quality was worth the small reduction in energy savings. The dehumidifier may enable
occupants to use a higher cooling set point that will offset the energy consumption with cooling savings.
Table 9 shows additional consideration for the simulation analysis, including annual energy savings.
Reducing heating set points and increasing cooling set points produced 298 kWh (3%), while the
introduction of the Programmable Thermostat yielded 910 kWh/year representing 7.8%.

The current lighting of the existing building is T8 fluorescent tubes rated at 32 W. The LED light
replacements consume approximately 12 W of power. The entire lighting in the case study building
is replaced with LED lighting for the simulation analysis. No outdoor/task lighting was taken into
consideration. The simulation results for lighting replacement yielded a savings of 2348 kWh/year,
approximately 19.2% of the total energy consumption of the building. It should be noted that replacing
the lights with LEDs did not only reduced the energy consumption of the lighting system, but also
brought additional savings on the heating and cooling loads by reducing the total heat gain

The introduction of occupancy sensors/dimmers reduced the actual occupancy from 100% to 85%,
resulted in an energy-savings of 967.6 kWh/year (8.3%).

As shown at the bottom half of Table 9, additional energy-savings measures using solar PV panels
are available to owners who want to transform their building into near-zero or zero energy building.
Appendix A, Table A1 and Figure A1demonstrates the detailed process of solar PV analysis. The
analysis shows the solar system size (KW), average annual production (kWh), an estimated number of
panels with percentage savings. The available options include choosing between 14 solar panels with
4954 kWh/year for a system size of 3.5 kW up to 69 solar panels providing 21,234 kWh/year with 15 kW
system size depending on the owner’s preference. Opting for the PV option should be considered
after the implementation of the main recommended retrofit improvement package. Adding solar PV
panels may incur an additional cost and would be beneficial to owners whose sole aim is achieving
high-performance building. Nonetheless, the benefits of solar PV addition may help to prevent long
power outages due to environmental hazards.
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Table 9. Proposed Retrofit Improvement Package.

Existing Baseline Building Energy End-Use 19,081 kWh Electric Cost: $0.1142/kWh Existing Baseline Building Energy
$2,104.7

Home component Replacement or Improvement Full First Cost
Incremental First cost

for Higher Efficiency at
Replacement

Cost Used for
Cost-Benefit
Calculations

Annual Energy
Savings (kWh)

Annual Energy
Cost Saving ($)

Simple Payback
(years)

Heating and Cooling
Controls

Reduce Heating Set Point &
Increase Cooling Set Point No Cost None None 298.2 $34.1 0.0

Mechanical Controls Programmable thermostat $270.0 None $270 959.5 $103.8 2.6

Lighting controls (18)Maestro C.L Dimmer and
Motion Sensor $640.4 None $640.4 987.6 $128.5 4.9

Air Distribution System New R-6 ducts with leakage of
7.5%, central return $859.00 None $859 635.6 $72.5 11.8

Infiltration ACH50 <= 4.0 $491.0 None $491 578.1 $66.0 7.4
Attic Insulation Adding Radiant barriers $289.0 None $289.0 578.1 66.6 4.3

Ceiling Insulation R-30 roof, unvented attic, 5”
close-cell spray foam $1109.0 None $1109 814.0 $116.0 9.6

Windows Reflective tint single pane glazing
(SHGC 0.25) $6720.0 $3029.12 $3029.1 2286.3 $261.1 11.6

Heating and Cooling Central Heat Pump, 17SEER
HSPF 9.6, 3 Ton $5841.0 None $5841.0 3879.2 $443.0 13.2

Wall Insulation R-19 Grade 1 2 × 6 16” o.c $3500 None $3500 635.7 $394 8.9

Appliances ENERGY STAR refrigerator,
dishwasher, induction stove $1092 None $1092 595.4 119.7 9.1

Total for Package of Energy Improvements $16,891.4 $3029.1 $16,891.4 12,141.9 $1332.6 12.7
Annual Savings (%) 63.6%

Additional Energy Savings Measure (PV System) -

Solar PV System None

Install PV panels
as additional

measures to the
improvement
package (28

panels)

$18,410 $18,410 10,004 $1142.46 16.1
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6. Retrofit Package

The procedure for the retrofit package development is illustrated in Figure 15. This process is
similar to how an energy auditor or home performance contractor may develop a recommended
retrofit package. The diagram demonstrates a customized process for selection and simulation of a
combined retrofit package/individual EEMs capable of meeting energy reduction and cost-effectiveness
in SFR buildings. For each EEM, the cost-effectiveness is evaluated by calculating the payback period.
The simple payback period (SPP) of each EEM was calculated using the following equation: SPP =

(Implemented cost) ⁄ (annual energy savings). Each EEM with the lowest payback period (<5 years)
and the highest energy savings are selected. The selected EEMs are found inside the funnel, as showed
in Figure 15.

Figure 15. Demonstration of automated process used to develop customized retrofit package of energy
efficiency of individual EEMs for SFR buildings.

At the same time, other EEMs considered to have more extended payback periods, and the
lowest energy savings with a higher cost are located outside of the tube. Though, some EEMs with a
more extended payback period are still considered due to their higher potential energy savings and
long-term cost savings. The combined EEMs are finally grouped as a retrofit package and further
subjected to simulation analysis to determine energy savings and the total payback period. Also, the
motive for running the package simulation was to estimate the overall economic potential of the SFR
energy efficiency, while accounting for the overall effect of the selected EEMs on the building energy
performance. Figure 15 outlined 7-steps for the determination of a recommended retrofit package.
Next section provides a detailed analysis of energy-savings, the final recommended package, the
payback period, and the cost associated with the retrofit package.
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6.1. Cost Effectiveness of the Retrofit Improvement Package

This section uses a simple payback method to investigate the cost-effectiveness of the individual
proposed EEM making up the retrofit package. The baseline building had an annual energy use of
19,081 kWh at a utility rate of $0.1142 kWh (Florida Power & Light Average) and an estimated yearly
cost of $2104.7. The cost estimate for the improvement package stood at $16,891.5, with annual energy
savings of 12,141.9 kWh (63.6%), referencing Table 9 below, excluding incentives, tax breaks, and loan
solutions. The results also exclude the additional energy-saving measure using a solar PV system,
discussed in this section as a support option to offset the remaining energy consumption of the main
retrofit package.

The economic analysis calculations used first cost when a measure is chosen for efficiency
improvement. The incremental first cost is used for a higher efficiency choice at a time of replacement.
The reason for this alternative could be functionality or meeting market standards. For example,
when an HVAC system is replaced for functionality or market standards, higher than minimum
performance system could be selected. This choice might carry a cost premium. The economic analysis
calculation in Table 10 shows a $3029.1 cost for choosing single-pane, reflective tint windows instead
of double-pane tint windows for higher savings, as shown in Figure 13 due to the cost-effectiveness
of single-pane tint. In Table 9, all individual improvements produced positive annual cash flows,
including two significant capital intensive-measure (Window & Central pump, 17 SEER/9.6 HSPF). The
Table further shows the annual energy and cost savings. Building envelope conditions and equipment
for the existing building vary widely regarding the costs for some of the components. Instead of a
specific set of improvements, the proposed combine retrofit improvement package, which yielded
63.6% of energy savings, is recommended and should be considered as a general guide for SFR building
retrofit project.

Table 10. Energy Use Intensity (EUI) for the implement Energy Efficiency. Measures (EEMs)/Retrofit
Improvement Package

Energy Efficiency Measures
(EEMs)

Annual Energy
Savings
kWh/m2

Overall Savings for
Florida (kWh) 100% 25% Savings 50% Savings 75 Savings

411,143,432.0 0.25 0.5 0.75

Reduce Heating Set Point &
Increase Cooling Set Point 27.7 11,388,673,066.4 2,847,168,266.6 5,694,336,533.2 8,541,504,799.8

Programmable thermostat 89.1 36,632,879,791.2 9,158,219,947.8 18,316,439,895.6 27,474,659,843.4
(18)Maestro C.L Dimmer and

Motion Sensor 91.8 37,742,967,057.6 9,435,741,764.4 18,871,483,528.8 28,307,225,293.2

New R-6 ducts with leakage of
7.5%, central return 59.0 24,257,462,488.0 6,064,365,622.0 12,128,731,244.0 18,193,096,866.0

Adding Radiant barriers 43.9 18,049,196,664.8 4,512,299,166.2 9,024,598,332.4 13,536,897,498.6
ACH50 <= 4.0 53.7 22,078,402,298.4 5,519,600,574.6 11,039,201,149.2 16,558,801,723.8

R-30 roof, unvented attic, 5”
close-cell spray foam 75.6 31,082,443,459.2 7,770,610,864.8 15,541,221,729.6 23,311,832,594.4

Reflective tint single pane glazing
(SHGC 0.25) 212.4 87,326,864,956.8 21,831,716,239.2 43,663,432,478.4 65,495,148,717.6

Central Heat Pump, 17SEER
HSPF 9.6, 3 Ton 360.4 148,176,092,892.8 37,044,023,223.2 74,088,046,446.4 111,132,069,669.6

R-19 Grade 1 2 × 6 16” o.c 59.1 24,298,576,831.2 6,074,644,207.8 12,149,288,415.6 18,223,932,623.4
ENERGY STAR refrigerator,
dishwasher, induction stove 55.3 22,736,231,789.6 5,684,057,947.4 11,368,115,894.8 17,052,173,842.2

Total EEMs/Retrofit Package 1128.0 463,769,791,296.0 115,942,447,824.0 231,884,895,648.0 347,827,343,472.0

As presented at the bottom half of Table 9, additional energy-saving measure using solar PV
panels is available to the owners who want to transform their building into zero or near-zero energy.
Different options, according to system size, annual production, the number of panels for the owners to
choose from depending on their needs. The assumptions for the payback calculation include panel
type (single crystalline-13.8% efficient), installed panel cost – ($8.0/watt and $9.5/m2), and applied
electrics cost $0.12/kWh. The potential cost savings and system payback calculations based on the
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annual energy production, the used electric cost, and the future cost escalation. Energy incentives,
tax breaks, and loan solutions excluded from this analysis.

This measure should be considered after the main recommended retrofit improvement package
shown in the first half of Table 9. Adding solar PV panels may incur an additional cost, and it will be
beneficial to owners whose sole interest is high-performance building without much recourse to cost.
Nonetheless, the benefits of solar addition may include, selling back to the grid some of the power
generated as well as using the solar for electric vehicle (EV) charging. The extra generated energy could
save some additional environmental costs and damages. Appendix A shows the detailed analysis of
using solar PV energy generation as another alternative.

6.2. Energy Use Intensity (EUI) and Energy Savings

This section involves a review of historical total building energy use and cost, using the utility
bill from the previous two years. The section defines the building’s Energy Use Intensity (EUI).
The buildings EUI can be benchmarked against other similar buildings or the industry average. In the
absence of a standard or benchmark, it isn’t straightforward to compare the energy uses between
buildings [32]. Directly measuring the amount of energy used per a chosen period does not consider
building size, configuration, or type of use. The use of Energy Use Intensity (EUI), i.e., referencing
weather data, provides the means to equalize the way energy use is compared among various types of
buildings and evaluating the manner of reducing overall energy consumption.

When using EUI, energy use is expressed as a function of a building’s total area or “footprint.”
In the United States, typically, EUI expressed as the energy used per square foot (or its equivalent in
meter square) of building square-footage per year. It is calculated by dividing the total gross energy
consumed in one year (measured in kBtu or GJ) by the total gross square footage of the building.
The current EUI of the simulated model from Revit stands at 13.1 kBtu/ft2 (13.8 MJ/m2) compared to
the baseline model EUI of 36.1 kBtu/ft2/year or 38.1 MJ/m2/year before the simulation analysis of the
retrofit package.

Table 10 shows individual EEMs, which includes estimated energy use reduction (Projected
Energy Savings per year). The saving is then multiplied to the total area (m2) of the entire SFR
building surveyed across the entire sixty-seven counties in Florida. Furthermore, assuming various
percentages of the savings can be realized by applying EEMs to the similar buildings in all of the
counties, the savings is multiplied in 25%, 50%, and 75% and the corresponding values are listed in
Table 10. accordingly.

7. Discussion

The main objective of this research includes identifying ways to improve the energy efficiency of
single-family residential buildings through investigations of building envelope technologies, HVAC
systems, and renewable energy technology measures. The study further proposes to develop EEMs
capable of reducing energy consumption and minimize retrofit cost for the State of Florida as well as
other hot-humid climate.

In an attempt to fulfill the stated objective, the authors conducted a comprehensive literature
search to unravel what the other researchers have in the field done. The search was divided into three
segments: retrofit techniques involving materials & methods, energy modeling, including techniques &
tools, and economic analysis approaches. The idea of the survey was to determine the differing energy
retrofit applications backed by authentic decision support tools. The findings portrayed a diverse
nature of retrofit projects as well as influences of numerous uncertainty factors. Also, an advanced
search on the actual energy-efficiency retrofit project in Florida suggests that it is crucial to secure all
the key stakeholders’ support to formulate essential planning and decisions before the commencement
of a project.

A series of activities, including a designed methodology took place to guide the implementation
of this study. The research method adopted a broad approach targeted at improving the energy
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performance of the studied area. The study developed a Six-Step modeled framework consisting of
the definition of the baseline model, verification of the model with actual building, identification of
the EEMs, estimation of the EEMs, evaluation of how effective the EEMs are and the development of
the retrofit package.

The identification of real data involving Florida’s SFR buildings constructed between 1950 and
1970 was the one most significant portion of the study. This search played a vital role, as the findings
considered an integral part of the entire research.

Windows contributed as the largest source of cooling load, i.e., 30% of the home’s design cooling
load was as a result of solar heat gain. Although some of the fenestration was double glazed,
energy modeling indicated it is worth the effort and cost to replace the windows with single-pane
reflective tint. Different types of windows, including; single-pane & double-pane clear, single-pane &
double low-E, reflective single, and double tint glazing was subjected to multiple simulation analyses to
unravel their energy-saving potentials. The single-pane reflective tint windows produced better energy
savings of 2353 kWh (Figure 13), representing 20.2% with 11.6 years payback period. Upgrading the
older and less efficient heat pump HVAC system with a newer 17 SEER/9.6 HSPF heat pump yielded
immediate energy reduction benefit. The energy savings were 3879.3 kWh/year, about 33.2% (Figure 14)
compared to the 14 SEER value. The payback was 13 years. The existing building had traditional
T8 fluorescent lighting. The entire lighting system of the building was replaced with LED lighting.
Changing the lighting system alone, yielded a savings of 2348 kWh/year, approximately 19.2% of the
total energy consumption of the building. The introduction of occupancy sensors/dimmers boasted
the energy savings further with an additional 298 kWh/year, representing 2.6% savings. The “Nest
Smart Programmable Thermostat” also produced 7.8% savings per year. An extra no-cost measure, i.e.,
reducing heating setpoint and increasing cooling set points provided 2.6% savings as well.

Using solar PV to generate enough energy to offset the remaining energy end-use after the primary
retrofit improvement measure was made available by the study. Different system sizes, application of
solar PV systems and some improvement strategies have been investigated in the literature [99,100],
annual production levels, and the number of PV panels are up for selection based on the owners’
discretion. Appendix A provides a detailed demonstration of solar PV alternatives.

Section 6.1 deals with the cost-effectiveness of the proposed retrofit improvement package, detailed
in Table 9. The Table contained a retrofit package selected through the automated process discussed
earlier in Section 6. The recommended package provided 63.6% of energy savings. By these results,
the State of Florida would approximately save annual energy of 12,142 kWh for each single-family
residential building built between 1950 to 1970. Also, the Energy Use Intensity (EUI) analysis conducted
in Section 6.2. (detailed in Table 10) serves as a useful guide in applying the energy-savings to the
overall State of Florida SFR buildings. It indicates how much energy the State can save going by this
retrofit measure. For example, windows upgrade and lighting retrofit alone will save the state/counties
as much as 5,766,776 MWh/year and 2,857,175 MWh/year, respectively.

The average monthly net energy consumption for the case study before the simulation exercise
was 19,081 kWh/year compared to the simulated energy use of 12,142 kWh/year after the model
calibration. This result is a perfect indication that the process can effectively be applied in other
hot-humid climate zones.

Overall, the work done by other researchers reveals a diverse nature of energy efficiency retrofits
and highly influenced by numerous uncertainty factors. The study addressed some varied issues of
the energy retrofits by advocating for close collaboration between all the stakeholders from the early
planning/design stage before the commencement of the project. This collaboration will help streamline
the assumptions/requirements for the design, construction, and operational phases of each proposed
energy retrofit projects. Also, some of the uncertainty factors have been resolved with the standardized
process of selecting both EEMs/Retrofit package.

The future direction of the research would include comparing the energy efficiency practices,
savings/cost reduction with different climates zones to determine market trend/value energy-efficiency



Energies 2020, 13, 1178 20 of 26

retrofit projects from both the owner and tenant perspective. The future study will also focus on
exploring different incentive packages to address the extended payback period for the benefits of
applying the retrofit packages to low-income community dwellers.

8. Conclusions

This paper has identified potential energy efficiency improvement opportunities associated with
older SFR buildings in hot-humid regions, particularly in the state of Florida. The methodology and
results for the study document the technical and economic potentials of the electric end-use energy
efficiency across the hot-humid climates for SFR housing stock. The paper presented energy savings
and cost-effectiveness analysis of SFR buildings constructed between 1950 and 1970. The buildings are
evaluated based on a survey via clustering data mining on Florida single-family residential buildings.
The study of the EEMs effectiveness is performed utilizing Autodesk Revit, and a simplified six-step
methodology. More than a thousand simulations analysis were conducted using various icons of Revit
(energy analyze, heating & cooling, lighting, solar, etc.) to evaluate more than 40 EEMs to determine a
recommended retrofit package.

The simple payback calculation revealed a fraction of the EEMs which met less than five -year
threshold. This finding is due to the client’s demand for a shorter payback period, which may
presumably be a barrier to the adoption of most of the EEMs. Four EEMs stood out as an excellent
economic potential after applying the 5 years payback threshold, maintaining at least 90% of their
energy-saving potential:

• Reducing heating set points & increasing cooling set points
• Installing programmable thermostats (when occupants not at home daytime)
• Lighting control- installing dimmers/occupancy sensors
• Adding radiant barriers

It was ideal for a further look into other individual EEMs upgrades, which had a more extended
payback period but with excellent energy-saving potential and long-term cost benefits. Federal,
states, or utility incentives are traditional ways to address the long payback periods market barrier
and involves designing incentives that bring payback down to an acceptable range for owners.
Emerging models for energy efficiency implementation may be able to address the long payback period
and other market barriers. These emerging models include residential energy service companies,
property-assessed clean energy financing, and on-bill financing. Though incentives and funding are
out of focus for this paper, stakeholders, including SFR homeowners, can explore these incentive
packages to address the extended payback problems.

The study presents a unique opportunity for the owners/stakeholders to choose from diverse
retrofit options, including; the individual combination of EEMs, the entire retrofit package, or selecting
a solar PV option as an addition to support either of the choice. The recommended package provided
63.60% of energy savings. By these results, the state of Florida, by extension, would save annual energy
of 1128.0 kWh/m2 for each single-family residential building built between 1950 to 1970 annually.
By multiplying this result to the total square footage of the number of buildings surveyed across the
state, the savings will amount to 3,476,535,167.1 kWh/m2.

This study successfully developed a multifaceted framework that consolidates energy efficiency
and cost-effectiveness into SFRs in hot-humid climates. The study also allows owners and the industry
practitioners the needed techniques to undertake energy and cost-efficient retrofit project.
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Appendix A Solar PV Analysis

Additional energy reduction option, using solar PV is available to owners depending on the needs
as stated in Section 6.1., bottom half of Table 10. To perform the analysis, we used the Revit Solar
energy “analyze” tab. The roofing surfaces of the baseline model were analyzed to determine the
surfaces exposed directly to the sunlight and those obstructed by shades. The sun settings include:
"Multi-Day Solar Study, Date: 1/1/2019 – 12/31/2019, Time: 6:27 AM – 8: 13 AM, with one-hour interval.
The tilt angle was set to 18◦ based on the site true north and pitch of the existing roof. Table A1
indicates the specific areas of the roof surfaces with direct exposure to sunlight. The main components
of Table A1 include surface variables, shading variable, and the summary. Tilt (degrees) defines the
angles of the solar panel installation; the solar exposure ranges from 100%, signifies fully exposed to
direct sunlight at all year round and 0%, means in shadow. Obstruction shading ranges from 0.0%,
indicating complete exposed to the environment while 100% means utterly obscured. Annual energy
(kWh/m2) constitute the amount of DC power the solar panel produces while direction implies the
orientation of the surfaces.

Table A1. Photovoltaic surface analysis and power generation results.

Surface Variables Shading Variables Summary

Type Direction Tilt (degrees) Panel Area (m2) Solar Exposure Payback/
Surface(yrs.)

Annual Energy
(kWh/m2)

Roof S 18 7.90 76.0% 8.32 2046
Roof S 18 2.32 75.9% 8.32 607
Roof S 18 3.62 75.9 % 8.35 944
Roof S 18 12.26 76.0% 8.35 2012
Roof S 18 3.32 75.5% 8.31 922
Roof S 18 6.04 75.8% 8.34 1560
Roof S 18 7.43 75.7% 8.32 1913

32.51 8 yrs. 10,004

The second phase of the analysis focused on producing enough energy to offset the annual
energy consumption of the baseline building after the improved retrofit package. The authors used
Single-Crystalline PV panels for the study over Poly-Crystalline and Thin -Fin PV panel because of
its ease of installation, maintenance and less labor/material cost. Figure A1 depicts the number of
factors that include the size of the solar system to generate adequate power to meet the demands of
the households, kilowatts hours of power needed for the house and the system size/number of solar
panels to power the building under review. The system size reviewed ranges from 3.5 kW to 15 kW
with average annual production ranges from 4954 kWh/m2 to 21,234 kWh/2, respectively as showed in
Figure A1.



Energies 2020, 13, 1178 22 of 26

Figure A1. Evaluated Photovoltaics (PV) alternatives.
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