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Abstract: In most cases, the benchmarking models of energy use in houses are developed based
on current and past data, and they continue to be used without any update. This paper proposes
the method of retraining of benchmarking models by applying machine learning techniques when
new measurements are made available. The method uses as a case study the measurements of
heating energy demand from two semi-detached houses of Northern Canada. The results of the
prediction of heating energy demand using static or augmented window techniques are compared
with measurements. The daily energy signature is used as a benchmarking model due to its
simplicity and performance. However, the proposed retraining method can be applied to any form of
benchmarking model. The method should be applied in all possible situations, and be an integral
part of intelligent building automation and control systems (BACS) for the ongoing commissioning
for building energy-related applications.

Keywords: benchmarking models; linear regression; machine learning; building automation and
control system; ongoing commissioning; measurements; Northern houses

1. Introduction

One of the first steps of the ongoing commissioning of heating, ventilation, and air conditioning
(HVAC) of buildings consists in the comparison of the recorded measurements with the predictions
of benchmarking models to detect unusual operation conditions, faults in sensors, or degradation
of equipment performance. This comparison should be applied in all possible situations and be an
integral part of building automation and control systems (BACS).

The benchmarking models can be classified in public benchmarking and internal benchmarking [1].
The public benchmarking models are developed through the statistical analysis of energy performance
of a sample of buildings by using independent variables or regressors such as conditioned floor area,
number of floors, location, or building main activity type. The internal benchmarking models for
assessing the building energy performance can be classified mainly in (i) physics-based or white-box
models (e.g., detailed energy simulation models such as EnergyPlus and TRNSYS) and (ii) data-driven
(inverse models or black-box models), which are developed from the measurements of normal operating
conditions of the building under analysis, or from synthetic data obtained by the simulation with
calibrated programs such as EnergyPlus and eQuest. The experience proved that the data-driven
models are easy to develop, train, and retrain, and give good predictions if sufficient data of good
quality are available. A hybrid class called gray-box models can also be developed by coupling simple
physics-based models with data-driven models.

So far in most cases, the benchmarking models of energy use in houses are developed based
on current and past data, and they continue to be used without any update. This paper proposes
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the method of retraining benchmarking models by applying machine learning techniques when new
measurements are made available. The method uses as a case study the measurements of heating energy
demand from two semi-detached houses of Northern Canada. The results of the prediction of heating
energy demand using static or augmented window techniques are compared with measurements.

The paper presents, in Section 2, the use of benchmarking data-driven models for the assessment
of building energy performance. Section 3 discusses the application of machine learning models that
use statistical techniques to process and learn from data recorded from current and past measurements,
and improve the performance of data-driven models using previous knowledge or data without being
explicitly programmed. Section 4 presents the retraining of proposed benchmarking model using
machine-learning techniques, when new data become available. Section 5 presents the case study of
two semi-detached houses of Inuvik, NWT, Canada. Finally, Section 6 presents the conclusions of
this study.

2. Benchmarking Data-Driven Models

The use of energy signatures of the heating energy use of houses is a well-established procedure.
The energy signature is based on a physical model written as a regression model, which is obtained by
system identification also known as inverse modeling [2]. The most common method used for the
identification of model parameters is the least squares method. Some features of the benchmarking
data-driven models, presented in this section, are listed in Table 1.

Fels [3] developed the Princeton Scorekeeping Method (PRISM) that evaluates the energy savings
after the retrofit, by calculating the difference between the normalized annual energy consumption
before and after retrofit. Each normalized annual consumption (NAC) is obtained by using the energy
signature as the linear relationship between the daily average energy use, calculated from the utility
bills, and heating or cooling degree-days of the corresponding period from the closest airport or local
weather station. The NAC estimate is a reliable and stable index of performance. The three parameters
a, b, and TREF are physical meaningful indicators, whose changes over time might not be statistically
significant. Decicco et al. [4] presented a case study of gas consumption for space and water heating in
a multifamily building, and discussed the physical parameters extracted from the data. They compared
the PRISM results using monthly utility bills versus daily measurements.

Zmeureanu [5] showed by using synthetic data that the linear energy signature that was developed
for one year, using the daily energy consumption and the daily outdoor temperature, does not change
for subsequent years, provided that no modifications of the building envelope or HVAC systems are
performed. Although it is easy to obtain the daily average energy consumption from the monthly utility
bills, the energy signature is less accurate compared with the case of using the daily measured values.

Other types of energy signatures are displayed in ASHRAE Guideline 14-2014 [6]. It is beyond
the scope of this paper to present all different types of energy signature developed over the past three
decades. Only a few extensions of the original energy signatures are presented herein.

Yu and Chan [7] developed the energy signature of chillers, in which the hourly electric demand
is linearly correlated with a climatic index that is defined as the product of outdoor air temperature
and humidity ratio. They analyzed 16 combinations of 4 design options and 4 operating strategies for
chillers, using synthetic data from the simulation of a hypothetical hotel.

Monfet and Zmeureanu [8] developed multivariate linear and nonlinear models and artificial
neural networks (ANNs) to benchmark the energy performance of water-cooled electric chillers.

Catalina et al. [9] proposed a multivariate non-linear regression model for prediction of heating
energy demand by using three regressors: The overall building heat loss coefficient, the south equivalent
window surface area, and the difference between the indoor set point temperature and the sol-air
temperature. They used both synthetic data and measurements from 17 apartment buildings.

Korolija et al. [10] developed non-linear, multivariate, and linear regression models for the
prediction of annual heating, cooling, and auxiliary energy requirements as a function of office building
heating and cooling demands, respectively. They used synthetic data from the simulation of a large
number of office building models each one served by five different HVAC systems.
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Zhang et al. [11] compared four benchmarking models for prediction of hot water energy
consumption of an existing office building, by using the three-parameter change-point regression
model, the Gaussian process regression model, the Gaussian mixture regression model, and the artificial
neural network model. They concluded that the three-parameter model was the most appropriate for
this case study in terms of accuracy and efforts spent for the modeling. The daily models have a higher
R2 than the hourly models.

Hitchin and Knight [12] discussed the use of energy signature of air conditioning system of an
office building using measurements of energy consumption at 15 min intervals. The model parameters
have limited diagnostic power when considered individually, but combinations of values can suggest
causes of unusual consumption levels. They concluded that daily energy signatures can generate
more robust energy consumption benchmarks and provide additional insight compared to monthly or
weekly signatures.

Abushakra and Paulus [13] concluded that hourly data of two weeks in swinging season (spring or
autumn) are sufficient for developing the benchmarking model of annual building energy use. In order
to predict the long-term energy use based on the short-term measurements, they recommended the
optimum selection of (i) the length of the observation period, (ii) the time or season of the observation,
(iii) the required variables, and (iv) the technique for developing a benchmarking model that is effective
and acceptable by the user.

Table 1. Features of quoted benchmarking data-driven models.

Model Time Interval
of Data

Type of
Data

Time Interval
of Prediction

Training
R2 Ref.

WBEU = a + b.To

WBEU = a + b.To + c.GHR
5-mn Real

Hour
Day

Hour
Day

0.423
0.711
0.579
0.740

[2]

NAC = 365.a + b.Ho(TREF) Month Utility
bills Year 0.985 [3]

NAC = 365.a + b.Ho(TREF)

Month

Month

Hour

Utility
bills

Synthetic

Real

Year

0.82–0.97

0.997

0.76–0.86

[4]

WBEU = a + b.(To − TREF)
Hour

Month
Synthetic

Day

Day

0.80–0.86

0.93–0.99
[5]

BLR = a + b.(To.W)
ECH = a + b.(To.W)

Hour Synthetic Hour 0.80–0.857 [7]

ECH = α. QE
QEdes

+ β.TCNDS + γ.To 15-mn Real 15-mn 0.994–0.999 [8]

WBH = α+ f (G, SES, ∆θ) Hour Synthetic Year 0.974 [9]

HVC = α.WBC
HVC = α.WBCβ Hour Synthetic Year 0.654–0.994

0.951–0.998 [10]

HVHW = a + b.(To − TREF)
+ 5-mn Real

Hour

Day

0.85

0.96
[11]

WBEL = a.To + b
WBG = a.To + b Day Real Day 0.863

0.86 [14]

EAC = a + b.(To − TREF)
+ Hour Measured Month 0.57–0.94 [15]

WBEU = α.To + β.LPD +
γ.PLPD+δ.HSP + ε.CSP +

η.SAT
Hour

Synthetic

Real
Day

0.944

0.796
[16]
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Ko et al. [14] used the linear energy signature to develop the benchmark of whole building daily
electricity use and gas energy use, respectively, versus the outdoor air temperature. They used the
daily clusters to improve the predictions from R2 = 0.1 to 0.863 for electricity use, and from R2 = 0.468
to 0.86 for gas use.

Perez et al. [15] applied the daily house energy signature, defined as the three-parameter
change-point model, to disaggregate air-conditioning smart meter data from 45 single-family houses.
They performed the statistical analysis of the energy signature slope to determine significant energy
related variables of those houses, with the final scope to identify and target those houses for energy
efficiency improvements.

Chen et al. [16] developed a multivariate linear regression model of the whole building daily
energy use by using as regressors some variables such as the outdoor dry-bulb temperature, interior
lighting power density, thermostat set point temperature, and supply air temperature. They used
synthetic data from the simulation an office building. The approach was also tested with data from an
existing office building.

The literature review by Fumo and Biswas [2] supported the feasibility of using the simple and
multiple linear regression models for the prediction of whole building energy use of single-family
houses. Their results showed that the simple daily linear energy signature has a better-quality
parameters, as proved by the coefficient of determination R2 = 0.711 compared with R2 = 0.423 for
multiple hourly energy signature. The use of multiple linear models does not bring a significant
increase of R2: 0.740 versus 0.711 of the single linear model.

In summary, the benchmarking models presented in the literature review are developed using;
(1) hourly or monthly synthetic data obtained from computer simulation, (2) monthly or bimonthly
utility bills, and (3) real measurements at 5-mn, 15-mn, 1-hr, or 1-day time interval. The highest values
of the coefficient of determination R2 for training of the benchmarking model were obtained by using
synthetic data. The use of synthetic data for the development and testing of a reference data-driven
benchmarking model has some advantages: Data is noise free; there are no measuring errors, operation
errors, faults, or degradation of energy performance of equipment in time. However, the simulated
data cannot be used for the ongoing commissioning, but only as reference prediction performance.
The daily average energy signature derived from the utility bills has a high R2 value, but the application
must wait for one or two months for having access to the utility bills. This is not practical for the
ongoing commissioning. The simple linear two-parameter or three-parameter regression models,
known as energy signature, have higher values of training R2 when they are developed by using
real data, compared with multivariable models. The application of such models for the ongoing
commissioning is a practical solution with good results.

3. Machine Learning (ML) for Benchmarking Models

The term of artificial intelligence (AI) is often used in relation with current applications for the
building operation and maintenance of HVAC systems. However, the AI systems that truly imitate or
even exceed human cognitive abilities such as processing, learning, and reasoning are still unavailable
for the optimization of operation and maintenance of buildings and HVAC systems. There are high
expectations that the future generations of building automation and control systems will use such
AI methods.

In our opinion, an intelligent BACS installed in a changing environment must be able to:
(1) continuously have access to all available measurements, (2) analyze and select those measurements
that help in the decision-making, (3) select the most appropriate benchmarking model among a set
of generic available models, (4) continuously/periodically update the parameters of that model by
learning from changes, or even select another model and improve it with new data, (5) control the
HVAC system to achieve the desired performance, and (6) verify the HVAC system performance.
All these tasks must be performed without being explicitly programmed or without any interference
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from the user. Under this concept, such intelligent BACS do not exist yet. The development of such
systems is still a goal for research.

In the past two to three decades most publications related to HVAC systems have presented
methods such as neural networks, genetic algorithms, patterns recognition, expert systems,
or case-based reasoning. However, such publications have not claimed connection with AI. Other
authors indicated that the proposed methods are based on AI, without claiming that those methods have
full computational intelligence. Other papers attached the terms of AI technologies and computational
intelligence to different new systems. The term of soft computing was also used for building and HVAC
applications that gives approximate and uncertain solutions by using methods such as evolutionary
algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization) and machine
learning (e.g., neural networks, and support vector machines).

Kim and Katipamula [17] expanded the review of 2005 [18,19] with additional 118 new studies
of automated fault detection and diagnostics (AFDD). They classified the AFDD models in three
categories: Processed-based (e.g., data-driven models), qualitative model-based (e.g., rule-based),
and quantitative model-based (e.g., detailed physical models). They also discussed the combination of
some AFDD models. Among the data-driven models, the black box models were the most commonly
used (62% of studies), followed by the rule-based models (26%). The review revealed that most
AFDD methods are applied to small or large commercial buildings associated mostly with variable
air volume-air handling units (42% of papers), chillers and cooling towers (17%), rooftop units (17%),
whole building energy use (12%), and the remaining for commercial refrigerators, lighting, and other
HVAC units. Apparently, the number of studies that applied AFDD to residential buildings was
negligible. Among the conclusions, the authors recommended future work for the improvement of
methods that eliminate the need for manual model identification or algorithm training; this is a topic
related to the scope of this paper. A few papers used in the review [17] are discussed shortly below.

Yu et al. [20] developed a steady-state gray-box based virtual meter of the supply airflow rate in
packaged rooftop units from the measurements in the laboratory settings. The nonlinear correlation
models use as regressors the supply and outdoor air temperatures, and outside air damper status.
The total uncertainty under laboratory settings of the virtual air flow meter is ±13.8% under cooling
mode and ±6.9% under heating mode, while in field applications the uncertainty of the virtual
meter might be higher due to a variety of factors such as uneven air distribution, gradual drifting,
and faulty installation.

Sun et al. [21] developed a gray-box model that uses the statistical process control (SPC) and
Kalman filter-based method for fault detection in chillers and cooling towers. The model coefficients
are obtained by applying the least-squares method to historical measured data. If there is a device fault,
the model parameters may deviate from its normal range and the fault can be detected by a SPC rule.

Bynum et al. [22] presented the Automated Building Commissioning Analysis Tool (ABCAT) that
is a prototype fault detection and diagnostic tool. It is a first principle-based whole building level
top down tool that compares the measurements of whole building electricity, whole building heating,
and whole building cooling, with the predicted energy consumption. The faults are detected if the
differences between the whole building predictions and measurements are statistically significant.
The prediction model uses some assumptions, in the absence of detailed information, such as constant
COP of the heat pump and constant boiler efficiency.

Capozzoli et al. [23] presented a simplified approach for the detection of anomalies in the active
electrical power for lighting and the total active electrical power of each building. The method uses
statistical pattern recognition techniques and artificial neural ensembling networks coupled with
outliers’ detection methods for fault detection.

Seem [24] presented a data analysis method for the automated detection of abnormal energy
consumption in buildings. The method accounts for weekly variation in energy consumption by
grouping days of the week with similar power consumption. A robust outlier detection method is used
to determine if the energy consumption is significantly different than previous energy consumption.
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The generalized extreme studentized deviate (ESD) many-outlier procedure is used to identify the
outliers in the data set.

Amasyali and El-Gohary [25] presented an extensive review of papers about the data-driven
building energy consumption predictions that utilized machine learning algorithms. They compiled
information about studies that use support vector machines (SVM), artificial neural networks,
decision trees, and statistical algorithms such as general linear regression, multiple linear regression,
autoregressive integrated moving average, and case-based reasoning. They compiled information
from 63 papers in terms of scope of predictions, learning algorithm, building type, data temporal
granularity, type of data set and regressors, and performance metrics. They found out that: (i) only
19% of the reviewed studies focused on residential buildings, (ii) only 20% of studies focused on
the building heating energy use, and (iii) the coefficient of variance was the most-commonly used
evaluation metric. They concluded that all the models have their own strengths and weaknesses; there
is no one single model which can be used for all conditions. They recommend the development of
application-specific models.

Most of the surveyed artificial neural networks models, a subset of ML models, related to the
building energy predictions are static in nature. The prediction model is set up in advance using
historical data and does not change when new measurements become available.

The class of adaptive models, e.g., ANN models, can help for eliminating this limitation.
The adaptive models are capable of adapting themselves by retraining the models to unexpected
pattern changes observed when new measurements are made available [26–28]. Most such models
were found in the literature related to the electric load forecasting for power system. This class of
adapting models can be used for the ongoing commissioning of building energy systems. A few
examples of adapting benchmarking models are presented in this section, with the corresponding
coefficient of variance of root mean squared error (CV(RMSE)) as the performance metric listed in
Table 2.

Table 2. Performance metric, coefficient of variance of root mean squared error (CV(RMSE)) in percent
(%), of predictions over the testing data set using adapting benchmarking models.

Benchmarking
Model

Type of
Data

Time
Interval

Static
Training

Augmented
Window Training

Sliding Window
Training Ref.

ANN Synthetic Hour 7–16 15–17 15–40 [29]

Multi-linear Real 15-mn 5.1–18.6 3.1–12.3 3.8–27.1 [8]

ANN Real 15-mn 8.4–13.8 8.0–9.4 8.7–9.2 [30]

Yang et al. [29] developed adaptive ANN models for the forecasting of electric demand of chillers,
for the cluster of working hours of weekdays, by using synthetic data from the simulation of a large
office building. They compared two adaptive training techniques, i.e., the accumulative retraining
and sliding window retraining techniques, against the static training. The initial data set used for the
static training was composed of the first 20 days of June. For the accumulative retraining the data set
was increased by the measurements of one day, when they become available. This updated data set
was used to retrain the ANN model for carrying out subsequent predictions. For the sliding window
retraining technique, the size of the training data set was kept constant and new measurements of one
day were added, while some of the oldest data were dropped from the training set.

Monfet and Zmeureanu [8] presented a new approach for the development and use of
benchmarking models of the electric demand of chillers of a university campus, in the context
of ongoing commissioning. The model was the energy signature presented in Table 1. Different
techniques were explored with different sizes of training and testing data sets. For instance, the
static approach was trained with a data set of 10 weekdays in June, and tested with two days in July.
The augmented window technique used the initial training data of 10 days in June, followed by the
increase of training data set by 7 days, and tested with data of 4 days. The sliding window technique
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used a fixed window of 14 days, where the first 10 days of data were to establish the model, and the
last 4 days for testing.

Chae et al. [30] proposed a short-term forecasting model of the whole building electricity
usage based on an ANN model with Bayesian regularization algorithm. The model was applied to
measurements from a commercial office building complex. For the static training, the model was
trained using four weeks of data in July, and it forecasts for August and September without retraining
the model. For the accumulative retraining, the initial data set of July was augmented every day with
new available; the ANN model retrained on a daily basis. The sliding windows retraining used a
fixed data set size of four weeks (equal to the data set of July). The window was shifted by a day by
removing the first day of the old training data set and adding the new measurements into the data set.
The ANN model was retrained daily with the new training data set. Table 2 shows the CV(RMSE) of
the forecasting results for the weekdays of August 2012.

Since the results depend on the application conditions such as the variation with time of target
value, the type and quality of forecasting models, and the size of data set used for the adaptive
retraining, the generalization of results is a challenging undertake. A case-base adopted retraining
technique should be the solution.

The authors prefer to focus on the application of machine learning algorithms to the development
of systems for the operation and maintenance of HVAC systems. ML is a subset of AI in the field
of computer science that uses statistical techniques to give computer systems the ability to process
data and learn, and hence continuously improve performance by using previous knowledge or data
without being explicitly programmed.

A different approach is proposed in this paper. The paper contributes to the body of knowledge
regarding the use of machine learning techniques along with measurements recorded by the BACS
from the HVAC systems for the training, testing, and retraining, when new data become available,
of benchmarking models of building heating energy demand. The proposed method can be
implemented for the purpose of ongoing commissioning of energy performance of houses by using
only the available sensors, without requiring a dedicated monitoring system.

The main contribution of this paper is the proposed ML technique for the training and testing of
benchmarking models of heating energy demand of houses by using measurements of the reference
period, and for the periodic update of models by learning from new measurements. The proposed
method is applied to measurements from two semi-detached houses in Northern Canada. The paper
presents the comparison between the predicted and measured daily heating energy demand.

4. Method

4.1. Benchmarking Gray-Box Model

Any type of benchmarking model can be used with the proposed method. The use of large numbers
of regressors might give the impression that the prediction model is more accurate. However, when a
short list of regressors is used, the uncertainty due to the error propagation from the measurements up
to the dependent variable is smaller than when many regressors are used. Moreover, the use of a large
number of regressors requires a large number of sensors, which might not be available in most HVAC
systems because of budget reasons.

A benchmarking gray-box model was used that combines some knowledge about the physical
phenomena with the measurements, as “data alone is not enough” for the generalization of the
model [31]. The physical-based model is the daily signature of space heating energy demand,
a two-parameter model (Equation (1)), which is developed from easily available measurements of two
variables: The outdoor air temperature and the heating energy demand.

E = a.To + b (1)
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where, E is the daily heating energy demand in MJ/(m2 day), a is the slope of the weather-dependent
energy demand in MJ/(m2 ◦C day), b is the intersect or reference energy demand at 0◦C in MJ/(m2 day),
and TO is the daily average outdoor air temperature in ◦C. The coefficient a (Equation (1)) reveals
the sensitivity of daily heating energy demand of the house to changes in the daily average outdoor
air temperature. Once the coefficients a and b are identified, for instance, from the measurements of
one year, they do not change when the measurements from to another year are used, provided that
the building thermal characteristics, the efficiency of HVAC system, or the occupancy pattern do not
change, such as after a major renovation of the building envelope, or change of heating equipment.

This model is one of the sample models presented in [6] that gives good predictions of heating
energy use in buildings [32–34]. The linear regression models belong to the family of ML algorithms
along with SVM and ANN [30]. Multivariate models can also be used, but the main obstacle is the
availability of measurements of all regressors.

Machine-learning techniques are used for the training and retraining of the benchmarking model
by using recorded measurements of a small number of variables. The model was trained to identify
the initial relationship between the heating energy demand and regressors, and then it was retrained
periodically with new measurements.

If the data set contains measurements over a long time period such as two heating seasons, then the
training could be more effective. However, if the available data set is smaller, the analyst is constraint
to use what is available for training, to be able to deploy as soon as possible the benchmarking model
for the ongoing commissioning. This second situation is used as the case study in the paper.

Once the models are trained and tested, they can be used for the prediction of daily heating energy
demand over the following operation periods, and for the comparison with actual measurements.
Significant differences should alert of possible faults or deterioration of system equipment and sensors,
or even changes in peoples’ occupation patterns. When new data becomes available, the benchmarking
models should be retrained to benefit for the most recent information. Two retraining techniques are
compared in the paper: The static window versus augmented window.

4.2. Training, Testing and Application Data Sets

The data set of measurements of December 2014 was selected as the reference, and used for the
initial development of benchmarking model. The data set was composed of; (1) the training data
set, which is used to identify the model coefficients and (2) the testing data set, which deploys the
balance of data set to verify the model accuracy. For the purpose of presenting the method, the model
was initially trained with a data set of the first three weeks of December 2014 (i.e., December 1–21),
and tested with a data set of the last week of December (i.e., December 22 to 31).

The tested model was then used along with the application (prediction) data set to estimate the
daily space heating energy demand of the following periods. The tested model can be used unchanged
over the application time interval by applying the so-called static window technique, or the model can
be periodically retrained with new measurements (i.e., the update of the model coefficients a and b) by
using the augmented window technique.

In the case of static window technique, the daily heating energy demand was predicted by the
tested benchmarking model over the remaining part of the heating season, for instance from January 1
to March 31, 2015.

In the case of the augmented window technique, the measurements of two weeks were added to
the initial data set. The first week of new data was added to the initial training period. The model was
retrained with a data set of five weeks (December 1, 2014 to January 4, 2015), the model coefficients a
and b were updated, and the model was tested with a data set from the following week, i.e., January 5
to 11, 2015. The new retrained model was then used for prediction of the daily heating energy demand
from January 12 to March 31, 2015.

The trained and tested model predicts the daily heating energy demand under the assumption
that the physical phenomena through the building envelope and of the operation of the heating system
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remain within the range of values experienced during the training period. When this model is applied
to other time intervals, the model should predict the daily heating energy demand that should be
obtained under the reference conditions.

Any large difference between the predictions and measurements would detect abnormal results
due to faults, degradation in operation, or changes in the house operation. This method can be used as
the first step (i.e., detection) in fault detection and diagnosis (FDD) methods. The identification of the
source of abnormal results is the second step of FDD methods. The method presented in this paper can
be used only for the detection phase.

4.3. Quality of Predictions of Benchmarking Model

Three statistical indices are used: The coefficient of determination R2 (Equation (2)) for the model
training, and the root mean squared error (RMSE) (Equation (3)) and the CV(RMSE) (Equation (4)) for
the model testing and application by comparing the predictions and measurements of space heating
energy demand.

R2 =

1− ∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2

.100 (2)

RMSE =

√∑n
i=1(ŷi − yi)

2

n− 1
(3)

CV(RMSE) =

√∑n
i=1(ŷi−yi)

2

n−1

y
.100 (4)

where yi is the measured value, ŷi is the predicted value, yi is the average measured value, and n is the
number of observations.

According to ASHRAE guideline 14 [6] the model predictions of the whole building energy
consumption, when using hourly data, are acceptable if CV(RMSE) is less than 30%; and the model
predictions using monthly data are acceptable if CV (RMSE) is less than 15%. Since this paper uses
daily data of heating energy demand, and this case is not identified in [6], the authors followed the
recommendations by Kaplan et al. [35]. This last reference proposed the use of different levels of
acceptable differences in terms of the end-use type and the interval of time for comparison. For instance,
in the case of HVAC energy use, the maximum acceptable differences should be CV(RMSE) = 25–35%
for daily values, and 15–25% for the monthly values. Therefore, in this paper, the daily predictions
were acceptable if CV(RMSE) is less than 30%. The readers should also be aware that the maximum
CV(RMSE) listed in [6] were obtain by consensus rather by a scientific method.

4.4. Estimation of Total Heating Energy Demand of Application Period

The benchmarking model can be used along with the outdoor air temperature bins to estimate the
total heating energy demand [5] over the application period (Equation (5)).

Ep =
n∑

i=1

(
a·TO, j + b

)
·BIN

(
TO, j

)
[MJ/m2] (5)

where, EP is the predicted total energy demand by the benchmarking model; a is the slope and b is
the intersect of the non-weather dependent energy demand, both identified during the training phase
(Equation (1)); TO is the daily average outdoor temperature (◦C); and BIN(TO) is the number of days of
occurrence of the daily average outdoor air temperature bin having TO as center.
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5. Case Study

5.1. Houses

The authors had access to the measurements from October 1, 2014 to September 30, 2015 in two
semi-detached houses A and B of Inuvik, NWT, Canada, which were offered for the analysis by Arctic
Energy Alliance, and Northwest Territories Housing Corporation, NWT, Canada.

Inuvik is situated at 68.36◦ N and 133.72◦ W, about 200 km north of the Arctic Circle. For the
comparison of climatic conditions, Inuvik has about 9560 heating degree days below 18 ◦C, compared
with about 4500 in Montreal.

The design thermal resistance of the house envelope exceeds the minimum requirements used
at the design stage in compliance with the Model National Energy Code of Canada for Houses [36].
For instance, the thermal resistance of exterior walls is 8.1 m2K/W compared with 4.75 m2K/W in [36],
and 14.1 m2K/W for roofs compared with 10.6 m2K/W in [36]. The houses are supported by space
frame foundations which are proved to work well in permafrost conditions. Therefore, the floors are
exposed to the outdoor air. The thermal resistance of floors was 9.3 m2K/W compared with 8.1 m2K/W
in [36]. The air infiltration rate at 50 Pa pressure difference was about 50% of the maximum value of
4.55 ACH required by [36].

Measurements of the heating water flow rate, and the supply and return hot water temperatures
for each house were recorded at one minute time step, from which the daily values of the space heating
energy demand were calculated. The values of daily heating energy demand were almost normally
distributed. The outliers, which have values outside the range ӯ± 2·σ [37], were removed, where, y is
the average value and σ is the standard deviation. Thus, 95.5% of the available data remained in the
analysis data set. The outliers were removed for each training and testing periods.

The annual measured heating energy demand is 98.1 kWh/(m2
·year) for house A, and

101.7 kWh/(m2
·year) for house B, with the average of 99.9 kWh/(m2

·year). The total energy demand for
space heating and domestic hot water was 122.4 kWh/(m2

·year), which was covered by a gas-fired high
efficiency condensing boiler of 41.3 kW that serves both semi-detached houses A and B. The annual
measured natural gas energy use was 178.2 kWh/(m2

·year). The hot water is used for the space heating
through radiators, the pre-heating of outdoor air before entering the heat recovery ventilators, and for
the domestic hot water.

Detailed information about the Inuvik northern sustainable house (NSH) project is presented
in [38].

5.2. Training and Testing of Benchmarking Models

The benchmarking models of daily space heating energy demand of two semi-detached houses
of Inuvik, NWT, Canada, which are used as a case study, are trained by using the measurements of
December 2014, as the reference or initial training data set.

First, the daily signature of space heating energy demand (Equation (1)) of houses A and B were
developed from the training data set of December 1–21, 2014 (Equations (6) and (7), and Figure 1).
The two parameters, a and b, of linear model (Equation (1)) were identified by the least squares error
method, which is a statistical method used to determine a line of best fit by minimizing the sum of
squares created by a mathematical function.

E = −0.069.To + 0.24
[
MJ/m2 day

]
for house A (6)

E = −0.070.To + 0.25
[
MJ/m2 day

]
for house B (7)
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Figure 1. Daily signature of space total heating energy demand used as the benchmarking model from
the training data set of December 1–21, 2014: (a) house A and (b) house B.

In the case of the static window technique, these two signatures are not retrained when new data
become available, for instance in January 2015. When the augmented window technique was applied,
the coefficients a and b of the benchmarking models were updated every time with a new training data
set, in which the previous training data set is augmented with new data of two weeks. Table 2 presents
the coefficients of the daily signature that were identified from the training data set, and the statistical
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indices of the difference between predictions and measurements over the testing period. For instance,
a second signature was developed for house A by using the augmented training data set of December
1 to January 4.

Some relevant information was extracted directly or interpreted from the daily signature of these
two houses (Table 3):

a. The values of the parameter a of daily signature of both houses, obtained from the first training
period of Dec 1–21, 2014, were almost equal, i.e., −0.069 and −0.070 MJ/(m2 ◦C day). Hence,
the two houses had the same sensitivity to changes in outdoor air temperature. The two houses
were identical in terms of the thermal insulation of envelope, the air leakage, and the efficiency of
heat recovery ventilators.

b. Figure 1 shows that the daily space heating energy demand was always positive, hence one can
conclude that the heating system was on for the whole heating season in both houses.

c. The parameters b of daily signature of both houses, were compared for instance at TO = −14 ◦C;
they were almost equal: 0.23 MJ/(m2 day) for house A, and 0.22 MJ/(m2 day) for house B. Hence,
on average over the initial training period the internal loads are identical in both houses. However,
there was a larger dispersion of daily space heating energy demand for house A that give
CV(RMSE) = 29%, while for house B is only 13%. Since the measurements related to the internal
gains were not available, the authors assumed, based on these results, that the daily variation of
internal load was higher in house A than in house B.

d. When the daily signature of house A was retrained using the augmented window technique,
the parameter b increases for all training periods compared with the initial period. This could be
the result of the reduction of internal heat gains, due to the reduction of occupancy and activities,
from January to March 2015 compared with December 2014.

e. The benchmarking models with CV(RMSE) values less than 30%, calculated over the testing data
set (Table 3) for both houses A and B, had an acceptable accuracy, and thus can be used for the
prediction purposes. There were only three exceptions with CV(RMSE) of 33%, 45%, and 46%.

Table 3. Coefficients of the trained benchmarking models, and statistical indices of the difference
between measurements and predictions over the testing period.

Benchmarking Model
E=a.To+b

Statistical Indices over the
Testing Period

House Training period a (MJ/m2 ◦C
day)

b
(MJ/m2

·day) Testing period RMSE
(MJ/m2 day)

CV(RMSE)
(%)

Static window
technique

A Dec 1–21, 2014 −0.069 0.24 Dec 22–Dec 31 0.51 29
B −0.070 0.25 Dec 22–Dec 31 0.20 13

Augmented window
technique

A

Dec 1–21 −0.069 0.24 Dec 22–Dec 31 0.51 29
Dec 1–Jan 4 −0.054 0.64 Jan 5–Jan 11 0.46 23
Dec 1–Jan 18 −0.044 0.89 Jan 19–Jan 25 0.38 21
Dec 1–Feb 1 −0.042 0.92 Feb 2–Feb 8 0.16 8

Dec 1–Feb 15 −0.042 0.91 Feb 16–Feb 22 0.44 33
Dec 1–March 1 −0.053 0.62 Mar 2–Mar 8 0.56 45

B

Dec 1–21 −0.070 0.25 Dec 22–Dec 31 0.2 13
Dec 1–Jan 4 −0.070 0.25 Jan 5–Jan 11 0.29 16
Dec 1–Jan 18 −0.068 0.32 Jan 19–Jan 25 0.25 14
Dec 1–Feb 1 −0.063 0.42 Feb 2–Feb 8 0.16 8

Dec 1–Feb 15 −0.067 0.36 Feb 16–Feb 22 0.82 46
Dec 1–March 1 −0.050 0.78 Mar 2–Mar 8 0.25 17
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5.3. Comparison of Predicted Daily Heating Energy Demand with Measurements over the Application Period

The benchmarking models were used to detect differences between the predictions and
measurements of daily space heating energy demand. Large differences might indicate changes
in the operation of heating system, changes in the number of occupants and activities, and faults in
sensors. This was the first step in the ongoing commissioning, which is normally followed up by the
identification of causes of such changes.

Figure 2 shows an example of such a comparison, when the models trained and tested with data
of December 2014 were used for the predictions from January 1 to March 31, 2015, without retraining
(i.e., static window technique). The larger dispersion of measurements might have been triggered by
the larger variation of internal gains in house A, compared with house B.
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Figure 2. Measurements of daily total heating energy demand from January 1 to March 31, 2015
compared with the predictions of benchmarking models using static window technique: (a) house A
and (b) house B.
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The CV(RMSE) values of the difference between the measurements of the application period and
predictions from various benchmarking models are summarized in Table 4 (static window technique)
and Table 5 (augmented window technique). In most cases, the CV(RMSE) values were almost equal
or greater than the corresponding values over the testing period.

Table 4. CV(RMSE) values over the testing and application periods with the static window technique.

House Application Period CV(RMSE) (%)

Testing Application

A

Jan 1–March 31 27
Jan 12–March 31 27
Jan 26–March 31 29 28
Feb 9–March 31 34

Feb 23–March 31 36
March 9–March 31 37

B

Jan 1–March 31 21
Jan 12–March 31 21
Jan 26–March 31 13 22
Feb 9–March 31 24

Feb 23–March 31 21
March 9–March 31 17

Table 5. CV(RMSE) values over the testing and application periods with the augmented
window technique.

House Testing Period Application Period CV(RMSE) (%)

Testing Application

A

Dec 22–Dec 28 Jan 1–March 31 29 27
Jan 5–Jan 11 Jan 12–March 31 23 28
Jan 19–Jan 25 Jan 26–March 31 21 32
Feb 2–Feb 8 Feb 9–March 31 8 38

Feb 16–Feb 22 Feb 23–March 31 33 41
Mar 2–Mar 8 March 9–March 31 45 37

B

Jan 1–March 31 13 21
Jan 5–Jan 11 Jan 12–March 31 16 21
Jan 19–Jan 25 Jan 26–March 31 14 21
Feb 2–Feb 8 Feb 9–March 31 8 23

Feb 16–Feb 22 Feb 23–March 31 46 20
Mar 2–Mar 8 March 9–March 31 17 21

In the case of house B, the CV(RMSE) values over the application period were lower than 30% (i.e.,
between 17% and 24%), hence, the measurements over the application period were considered to be
normal compared with the training period. In the case of house A, the CV(RMSE) values were greater
than 30% starting with February 9, for both static and augmented window techniques. In the absence
of measurements of other physical variables, it is difficult to write an evidence-based conclusion about
the reason of difference between the CV(RMSE) values obtained from the analysis of these two houses.
One can speculate that the difference might be attributed to changes in the daily internal loads due to
people and cooking, which were greater in house A compared with house B.

5.4. Comparison of Predicted Total Heating Energy Demand with Measurements over the Application Period

The outdoor air temperature bins, each of 1 ◦C width, over three months of heating season that
were used with Equation (5) are presented in Table 6. For each application period, a similar table
is used.
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Table 6. Outdoor air temperature bins in Inuvik, NWT, Canada, from January 1 to March 31, 2015.

Temperature BIN (C) To (◦C) Number of Days

−33.5, −32.5 −33 2
−32.5, −31.5 −32 -
−31.5, −30.5 −31 3
−30.5, −29.5 −30 1
−29.5, −28.5 −29 1
−28.5, −27.5 −28 4
−27.5, −26.5 −27 4
−26.5, −25.5 −26 4
−25.5, −24.5 −25 3
−24.5, −23.5 −24 4
−23.5, −22.5 −23 1
−22.5, −21.5 −22 5
−21.5, −20.5 −21 7
−20.5, −19.5 −20 5
−19.5, −18.5 −19 3
−18.5, −17.5 −18 4
−17.5, −16.5 −17 4
−16.5, −15.5 −16 5
−15.5, −14.5 −15 3
−14.5, −13.5 −14 1
−13.5, −12.5 −13 2
−12.5, −11.5 −12 6
−11.5, −10.5 −11 -
−10.5, −9.5 −10 5
−9.5, −8.5 −9 2
−8.5, −7.5 −8 1
−7.5, −6.5 −7 -
−6.5, −5.5 −6 -
−5.5, −4.5 −5 1
−4.5, −3.5 4 1
−3.5, −2.5 −3 -

Total - 82

Tables 7 and 8 summarize the comparison of the measurements with the predicted total heating
energy demand for houses A and B over different application intervals. When the models were trained
with data of December 2014 and used for the prediction of rest of heating season from January to
March (for static and augmented window techniques), the difference was 7.8% (house A) and 3.6%
(house B). This result indicates that over a longer prediction time interval, the measurements were
within an acceptable difference from the predictions of total heating energy demand.

Table 7. Measured versus predicted total heating energy demand for houses A and B with the static
window technique.

Data Sets
Measured Space
Heating Demand

(MJ/m2)

Predicted Space
Heating Demand

(MJ/m2)

(Measured–Predicted)/
Measured

(%)

Training Prediction House A House B House A House B House A House B

Dec 1–
Dec 21,

2014

Jan 1–March 31, 2015 136.26 156.08 147.84 150.56 −7.8 3.6
Jan 12–March 31, 2015 113.56 133.78 126.88 129.22 −10.5 3.5
Jan 26–March 31, 2015 96.17 116.66 101.02 102.9 −4.8 13.4
Feb 9–March 31, 2015 67.06 84.21 73.38 74.76 −8.6 12.6
Feb 23–March 31, 2015 43.87 55.09 49.45 50.4 −11.2 9.3

March 2–March 31, 2015 27.7 33.87 31.15 34.8 −11 −2.7
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Table 8. Measured versus predicted total heating energy demand for houses A and B with the
augmented window technique.

Data Sets
Measured Space
Heating Demand

(MJ/m2)

Predicted Space
Heating Demand

(MJ/m2)

(Measured)–Predicted/
Measured

(%)

Training Prediction House A House B House A House B House A House B
Dec 1, 2014–Dec 21, 2014 Jan 1–March 31, 2015 136.26 156.08 147.84 150.56 −7.8 3.6
Dec 1, 2014–Jan 4, 2015 Jan 12–March 31, 2015 113.56 133.78 134.11 129.22 −15.3 3.5

Dec 1, 2014–Jan 18, 2015 Jan 26–March 31, 2015 96.17 116.66 110.85 104.82 −13.2 11.3
Dec 1, 2014–Feb 1, 2015 Feb 9–March 31, 2015 67.06 84.21 82.58 76.84 −18.8 9.6
Dec 1, 2014–Feb 15, 2015 Feb 23–March 31, 2015 43.87 55.09 56.84 52.46 −22.8 5
Dec 1, 2014–March 1, 2015 March 2–March 31, 2015 27.7 33.87 36.25 38.69 −23.6 −12.5

For both model training techniques and all application time intervals, the measurements of total
heating energy demand of house A were lower than the predictions by 13.2% to 23.6%; while in the
case of house B the measurements were higher than the predictions by 3.5% to 11.3%, except the last
application period when it underestimated by 12.5%.

5.5. Discussion of Results

The paper presented a method for retraining a benchmarking model, the two-parameter energy
signature of heating energy demand, by using machine learning techniques. The proposed method
was tested by using measurements from two houses in Northern Canada, which experienced heating
energy demand for the entire season from December to March. As a consequence, the two-parameter
energy signature model was developed, which used the parameters a and b. The three-parameter
model should be used when the base load and heating slope intersects at the outdoor air temperature,
called the reference temperature TREF. These are not the conditions of the case study.

The results from the initial training phase of the energy signature revealed that:

(i) the two houses were identical in terms of the thermal insulation of envelope, the air leakage,
and the efficiency of heat recovery ventilators;

(ii) on average over the first training period the internal loads were identical in both houses; however,
there was a larger dispersion of daily space heating energy demand for house A; and

(iii) the benchmarking models with CV(RMSE) values less than 30%, can be used for the prediction
purposes.

The use of trained energy signature models over the application period showed that:

(i) In most cases of retraining with static and augmented window techniques the CV(RMSE) values
were almost equal or greater than the corresponding values over the testing period;

(ii) the analysis of CV(RMSE) values between the predictions and measurements from house B, over
the application period, indicated that the measurements are considered to be normal compared
with the training period; and

(iii) there was a larger variation of daily heating energy demand of house A compared with house B.

The energy signature was used along with the outdoor air temperature bins to predict the total
heating energy demand for houses A and B over different application intervals, and to compare with
measurements. The analysis of results revealed that:

(i) when the models were trained with data of December 2014 and used for the prediction of rest
of heating season from January to March (for static and augmented window techniques), the
measurements over a longer prediction time interval were within the predictions of total heating
energy demand; and

(ii) the predictions by the benchmarking models, which were retrained with the augmented window
technique, were useful for the comparison with measurements over shorter time intervals.
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6. Conclusions

The paper presented the use of machine learning for the training, retraining, and use of
benchmarking models of the space heating energy demand of houses. A benchmarking gray-box model
was used that combines some knowledge about the physical phenomena with the measurements.
The physical-based model was the daily signature of space heating energy demand, a two-parameter
model, which was developed from easily available measurements of two variables: The outdoor air
temperature, and the heating energy demand. The daily energy signature was used as a benchmarking
model due to its simplicity and performance.

However, any type of benchmarking model can be used with the proposed method. The use of
multivariable regression models might be problematic in an ongoing commissioning system due to;
(i) the unavailability of all sensors and (ii) the uncertainty due to the higher error propagation from the
measurements of several sensors up to the dependent variable, compared with the case of only two
physical variables as proposed in this paper.

The paper uses the static and augmented window retraining techniques, by using the measurements
of space heating energy demand of two Inuvik houses from December 1, 2014 to March 31, 2015, and
the corresponding outdoor air temperature.

The statistical indices over the testing period indicated that the trained benchmarking models
have an acceptable accuracy, and thus can be used for the prediction purposes. The results indicated a
larger variation of daily heating energy demand of house A throughout the heating season. In the case
of house B, the measurements over the application period are considered to be normal compared with
the training period.

The method should be applied in all possible situations, and be an integral part of intelligent
building automation and control systems for the ongoing commissioning for building energy-related
applications. The trained models should be used for the prediction of daily heating energy demand,
and for the comparison with actual measurements. Significant differences should alert of possible
faults or deterioration of system equipment and sensors, or even changes in peoples’ occupation
patterns. An immediate application for the proposed benchmarking method is the assessment of energy
performance and potential improvements by using the measurements from the smart meters, installed
in numerous houses in North America. In this case, the installation cost of dedicated monitoring
system is avoided.

The storage in a database of different models, which were trained throughout the time, and
corroboration with other information about the occupancy, habits, and other factors not considered
in this study, might lead to better understanding of the pattern of energy usage in houses.
The generalization of such energy usage patterns can be generated only through the compilation of
many cases of monitoring and analysis.
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Nomenclature

a Base level energy consumption
b Heating/cooling slope of energy use
BLR Whole building cooling load ratio
CSP Cooling set point
CV(RMSE) Coefficient of variation of root mean squares error
EAC Whole house electricity use for air-conditioning
ECH Electric demand of chiller
G Overall building heat loss coefficient
GHR Global horizontal radiation
HO(TREF) Heating degree-days (base TREF)
HVC HVAC system cooling energy use
HSP Heating set point
HVHW HVAC hot water energy use
LPD Interior/exterior lighting power density
PLPD Plug load power density
NAC Normalized annual consumption
QE Chiller cooling load
QEdes Chiller cooling load at design conditions
R2 Coefficient of determination
SAT Supply air temperature
SES South equivalent window surface area
TCNDS Condenser-water leaving temperature
TO Dry-bulb outdoor air temperature
TREF Reference temperature
W Humidity ratio
WBC Whole building cooling demand
WBEL Whole building electricity use
WBEU Whole building energy use
WBG Whole building gas use
∆θ Temperature difference between the heating set point and sol-air temperature
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