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Abstract: The integration of photovoltaic (PV) and electric vehicle (EV) charging in residential
buildings has increased in recent years. At high latitudes, both pose new challenges to the residential
power systems due to the negative correlation between household load and PV power production
and the increase in household peak load by EV charging. EV smart charging schemes can be an option
to overcome these challenges. This paper presents a distributed and a centralized EV smart charging
scheme for residential buildings based on installed photovoltaic (PV) power output and household
electricity consumption. The proposed smart charging schemes are designed to determine the optimal
EV charging schedules with the objective to minimize the net load variability or to flatten the net
load profile. Minimizing the net load variability implies both increasing the PV self-consumption
and reducing the peak loads. The charging scheduling problems are formulated and solved with
quadratic programming approaches. The departure and arrival time and the distance covered by
vehicles in each trip are specifically modeled based on available statistical data from the Swedish
travel survey. The schemes are applied on simulated typical Swedish detached houses without
electric heating. Results show that both improved PV self-consumption and peak load reduction are
achieved. The aggregation of distributed smart charging in multiple households is conducted, and
the results are compared to the smart charging for a single household. On the community level, both
results from distributed and centralized charging approaches are compared.

Keywords: electric vehicles; photovoltaics; electricity consumption; smart charging; self-consumption;
residential buildings

1. Introduction

The increase of greenhouse gas emissions due to human activity has been a root cause of climate
change [1]. Two of the biggest greenhouse gas emitters are the transport and power sectors, which
account for 14% and 25% of global emission, respectively [2]. The environmental awareness in both
sectors has expedited the adoption of electric vehicles (EVs) and renewable energy sources (RESs),
such as photovoltaic (PV) power generation [3,4]. However, both EVs and PV pose challenges to the
power grids. A high penetration of PV power generation and EV charging load in the power grids
can lead to several disadvantages such as high load variability, voltage fluctuations, high peak loads,
power loss increases, and component overloading [5,6].

Besides into the power grids, both EV and PV can also be integrated into buildings, such
as at workplace offices or residential houses where they will interact with other electrical loads.
The integration of PV systems in buildings has increased in recent years due to the trend of transforming
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buildings into net zero energy buildings (NZEBs) [7]. In an NZEB, the yearly energy consumption
should be matched by local or on-site energy production [8]. With the addition of an EV charging
load in the building, the integration of on-site RES such as PV becomes more crucial in achieving the
NZEB criteria.

However, NZEBs might have unfavorable mismatches between power consumption and power
production since the NZEB concept only considers the yearly energy balance, not the instantaneous
power matching. The mismatch between power consumption and production is one of the main
sources of problems in the distribution grid. Specifically for residential buildings at high latitudes,
such as in Sweden, PV power production and residential electricity consumption are negatively
correlated on both an annual and diurnal basis. Several techniques such as building demand side
management (DSM) and battery energy storage have been proposed to improve the load matching
and prevent potential problems in the distribution grid [9]. Time-shifting EV charging load, which is
often called the EV smart charging scheme, is an example of the DSM strategy that has the potential to
improve the matching between load and production [10,11].

1.1. Related Work and Motivation

Assessing self-consumption of PV power production within buildings has been a major topic
within solar energy system studies in recent years. Considerable amounts of research on the
improvement of PV self-consumption at residential buildings by battery and DSM have been carried
out. The works in [12-14] presented PV self-consumption improvements using residential battery
storage. Applying DSM schemes to improve PV self-consumption was studied in [15-17]. The schemes
were mainly based on shifting flexible household loads to times when solar power production was
high. For example, controlling heat pumps has been one of the most common DSM schemes for
residential buildings [8].

Adding EV charging load to household load to improve PV self-consumption has also been
assessed. The work in [18] quantified the improvement of PV self-consumption in residential buildings
with the inclusion of opportunistic EV charging for a case study in Sweden. From the paper, it was
concluded that uncontrolled charging barely increased PV self-consumption due to the negative
correlation between EV charging behavior and PV power generation. In fact, the work in [19] showed
that the high penetration of uncoordinated EV charging in residential areas increased the peak loads
and could potentially lead to a significant decrease of the expected transformer life. Another study
in [8] showed that both high penetration of PV power generation and uncoordinated EV charging led
to voltage problems, but that overvoltage problems due to unconsumed high PV power production
were more significant.

Recent research has shown that the load matching, or the synergies between EV charging load and
PV power production, could decrease the burden on power grids and increase the benefits for users,
building owners, and grid operators [20]. These include increasing PV self-consumption and reducing
peak loads. While PV power production is naturally uncontrollable and cannot be shifted in time,
it is possible to control and shift EV charging load in time due to the long parking duration of EVs.
Based on mobility surveys in six European countries, vehicles are parked 22 hours on average with 16
hours of uninterrupted parking [21]. The survey also found that most of the uninterrupted parking
took place in residential areas. This flexibility potential has attracted many stakeholders to propose
EV smart charging schemes for residential buildings. Furthermore, the EV battery can also act as an
energy storage device, which can discharge power when needed if bi-directional power flow from and
to an EV is enabled. This scheme is called vehicle-to-anything (V2X), which includes vehicle-to-grid
(V2G), vehicle-to-home (V2H), and vehicle-to-building (V2B) [22].

Until now, avoiding the increase in household peak loads has been one of the most common
objectives for smart charging schemes for residential buildings. The works in [23,24] proposed
rule-based smart charging schemes to reduce the peak loads in residential distribution grids. The works
in [25,26] proposed smart charging schemes with a quadratic programming approach and objectives to
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reduce the peak loads and load variability at residential buildings. The work in [27] proposed a smart
charging and discharging control employing a V2G scheme with a quadratic programming approach,
which extended the utilization of the EV flexibility not only to avoid peak load increases, but also for
peak shaving purposes. However, these papers did not include PV power production in their studies.

Most of the PV related smart charging schemes were designed for non-residential buildings
such as workplaces and universities. This is reasonable as most of the cars are expected to be parked
there during the midday when the solar power peaks. In [28], a mixed-integer linear programming
was employed for a smart charging scheme with the objective to increase PV self-consumption in a
workplace. In [29], smart charging schemes to improve PV self-consumption in commercial buildings
with different optimization methods, i.e., the genetic algorithm, particle swarm optimization, and
the real-time decision making algorithm, were proposed and compared. In [30], a rule-based smart
charging approach with the objective to increase the solar-to-vehicle ratio at a university was proposed.

To the best knowledge of the authors, there are no studies that have assessed the improvement
of PV self-consumption at residential buildings by employing EV smart charging schemes. Smart
charging in residential areas is expected to be different from, e.g., workplace smart charging, mainly
since the parking pattern is expected to be different [31].

Smart charging schemes could be divided into two categories based on the approach: centralized
and distributed. In this paper, both distributed and centralized charging approaches are developed
and evaluated. In the centralized charging approach, a central unit decides the charging rate and time
of the EV fleet, while in the distributed charging approach, the charging of each EV is decided on the
user level [5]. The centralized charging approach utilizes the grid capacity more efficiently. However,
it is more complex and requires an advanced communication infrastructure. The distributed charging
approach is comparatively less complex, has low communication requirements, and has low privacy
violations [32].

1.2. Aim and Structure of the Paper

This paper aims to complement previous research by assessing the self-consumption improvement
by EV smart charging schemes for residential buildings with PV systems. In this study, as a limitation,
no V2X scheme is considered. The objective of the smart charging is to minimize the net load variability.
Minimizing the net load (load minus local RES production) variability also implies increasing the
self-consumption of RES, as well as reducing the peak loads. The decrease in load variability will lead
to fewer voltage fluctuations and lower peak loads and power losses [5]. The following topics will be
investigated in this study:

1.  The potential of improved synergy between PV generation and household load, including
EV home-charging, by smart charging schemes quantified by self-consumption and
self-sufficiency metrics.

2. The impact of the aggregation of multiple households with smart charging schemes on
energy performances.

3. A comparison between centralized smart charging and aggregation of distributed smart charging
on energy performances.

4. The impact on different PV power shares relative to self-consumption and self-sufficiency
improvements by smart charging schemes.

This paper is organized as follows: Section 2 presents the proposed smart charging schemes,
simulation data, assumptions, as well as definitions and measures. Section 3 presents the results for
self-consumption and peak load reduction improvements by smart charging schemes compared to
the uncontrolled charging scheme. In Section 4, the highlight of the results is discussed, and the main
conclusions are presented.
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2. Methodologies

In this section, the details of the models, data, and assumptions used in this study are described.
The simulations in this study were mainly based on the conditions for Sweden.

2.1. EV Charging Schemes

This section describes the uncontrolled and two smart charging schemes simulated in this study.
All the schemes assumed that all EVs would only charge once a day, and the charging would only
take place at residential buildings. Simulations were made based on users’ usual mobility patterns,
which implied that the user did not have to change their mobility behavior for the charging schemes.
Another assumption was that each simulated household had one EV, which was expected to be most
common [33]. The maximum charging power rate was set to 3.7 kW, and the charging efficiency
was set to 90%, which referred to the average of Level 2 charging efficiency [34]. It was assumed
that the charging efficiency was constant regardless of the charging power. The simulations had a
15 min resolution, which was one of the most common temporal resolutions for DSM schemes and
self-consumption studies; see [9,35,36]. Furthermore, even though a perfect forecast was assumed in
this study, the practical side on the forecast horizon was also considered. Higher forecast resolution,
e.g., 1 min, was not so common for two of the main variables in this study, i.e., solar power production
and electricity consumption, especially for electricity consumption [37]. In the end, the smart charging
scheme would rely on the forecast resolution since the scheduling time step resolution would also
have the same time step resolution as the forecast. In other words, the car could arrive at any time,
but if the resolution of the optimization input, i.e., the forecast, was 15 min, the optimal charging
schedule would have a 15 min resolution. It is understandable that there might be a vast amount of
arrival-departure behavior happening instant-by-instant. In this case, if a car arrived at e.g., the 125th
minute of the day, the car would be assigned to the 7th time step of the day, since floor (125/15) +1=7.

In this study, all the simulations were conducted within the MATLAB simulation environment
using a computer with an Intel i7-8650U processor and installed RAM of 16.0 GB. The optimization
problems in both distributed and centralized smart charging schemes were solved using MATLAB
quadprog with the interior-point-convex algorithm [38]. Each simulated charging scheme in this study
is further described in detail in the following subsections.

2.1.1. Uncontrolled Charging

In the uncontrolled charging scheme, the charging was opportunistic and always started upon
arrival with the maximum charging rate. The charging scheme did not consider the household
electricity consumption nor PV power production. The charging finished when the battery state of
charge (S0C) met the targeted SoC.

2.1.2. Distributed /Local Smart Charging

In the distributed or local smart charging scheme, the charging did not always start immediately
upon arrival nor did it always use the maximum charging rate. The charging scheme considered a
perfect forecast of local (i.e., single household) power consumption and PV production. Since the
simulations used a perfect forecast of load and PV generation, results from the smart charging scheme
would be a best-case approximation. The charging scheme also used information about the parking
period duration and the EV energy demand. From these data inputs, the smart charging scheme
would minimize the net load variability of a single household with the constraints of targeted SoC
and maximum charging rate. Minimizing the load variability in each individual household could
contribute to the decrease in the load variability of the distribution grid or even the regional grid [25].
The smart charging scheme would determine the charging rate in each time-slot during the parking
period. Figure 1 shows an overview of the proposed distributed /local smart charging scheme.
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Figure 1. Overview of the smart charging scheme.

The population variance equation was used to represent net load variability. However, in the
optimization formulation, only the numerator part was taken into account since the denominator was
a constant and would not affect the optimization result. Thus, the optimization problem of the smart
charging scheme can be defined as:

tdep

min Z (xt +nr— .utpark)zr (1)

t=tarr

tdep

s.t. 7x Z Xt = Soctarget — 50Cqr,
t=tarr )

0 < xt < Xpmax,

where t,, and t4,,, are the arrival and departure times of the car, respectively, x; is the charging power
rate at time £, 71; is the net load at time ¢, and p4¢ is the mean net load during the parking period
including EV charging. In the constraint, 7y is the charging efficiency, SoCy,/eet is the state of charge
targeted in the battery, SoC,; is the state of charge in the battery on arrival, and X,y is the maximum
charging power rate. The net load n; is obtained from:

ny = lt*St, (3)

where [; is the household load at time ¢ and s; is the solar power production at time ¢. The mean net
load during the parking period p;p¢ is obtained from:

¢
(th_j?m ne) + S0Ctarget — S0Cary
tdep — tarr '

Htpark = )
Note that the charging scheduling for the whole scheduled parking period was conducted only
at the arrival time t4,, and the output of the optimization was a vector containing x;,,, Xt

arr+17 7

xtdep72 4 xtdep—l :

2.1.3. Centralized Smart Charging

In the centralized smart charging scheme, the charging control was done by a central unit instead
of at the individual user level. Figure 2 illustrates the difference between distributed/local and
centralized charging schemes in the control architecture. The centralized smart charging scheme
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used the same variables as the distributed smart charging. However, the power consumption and
production on the community level were considered instead of the information from a single household
level. In other words, the centralized charging scheme would minimize the net load variability of
the whole community. The community power consumption L;, PV generation S;, and net load N; at
time-slot ¢t with K number of households respectively can be written as:

K
Li=Y Ly ©)
k=1
K
St=Y Sk (6)
k=1
Ny =L;—S. ()

Thus, the objective function of the centralized smart charging scheme can be written as:

tdep
min 2 (xt + Nt — Mtpark)zr 8

t=tarr

where the new variable M, is introduced as the mean community net load during the parking
period, taking into account the charging demand of the EV that is being scheduled. The new variable
M park is obtained from:

t e
(Ztiﬁ;m Nt) + Soctarget — S0Cur

©)

M =
tpark tdep b

(a) (b)

A\ § A\ §

A\ ¥ A \ ¥

Home charging box . Centralized energy controller ~===== Communication network

Figure 2. The architecture of (a) distributed /local and (b) centralized smart charging.

The constraints of this quadratic programming model are identical to the constraints in the
distributed /local smart charging scheme, which are defined in Equation (2).
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After each time the charging schedule of one EV is defined, the community net load profile
between the arrival time ¢4+ and the departure time t;, is updated by adding the charging load profile
to the old net load profile, which can be defined as:

N; = Nt + x;. (10)

With this update, the next EV charging scheduling considers the changes of the load profile due
to previously scheduled EV charging load.

If more than one car arrives at time step £, the order of the charging scheduling is done based on
the future departure time. The charging scheduling of the car that will depart earlier will be executed
earlier, since the cars that park longer have a higher flexibility.

2.2. Data and Case Study

2.2.1. Residential Household Load

In this study, the residential household load was generated from the Widén model for generating
synthetic electricity consumption profiles [39,40]. It is a Markov chain based model that generates the
electricity use profile in one minute resolution based on occupant activity patterns. The model was
trained on Swedish electricity use profiles and set to simulate a detached house without electric heating
with two adult inhabitants per household. In this study, the synthetic data were averaged to 15 min
resolution in order to match the resolution of the simulation setup. There were two different scenarios
that were simulated in this study: a single household load and the aggregation of 100 households,
which represented a small-sized community.

2.2.2. Mobility Patterns and Daily Charging Demands

This study utilized user mobility data from the Swedish travel survey in 2006 [41]. The time of
arrival and departure of trips made by cars, the distance traveled, as well as the origin and destination
locations of these trips were available in the survey. The arrival and departure time of EVs were
randomly sampled with a Monte Carlo method using the survey data with an assumption that each
EV made one round trip per day. Home-work-home mobility patterns were used for the simulation on
weekdays, while home-other-home patterns were used for the simulation on weekends. The arrival
and departure time data originally had one minute resolution, but in this study were averaged to
15 min resolution in order to match the resolution of the simulation setup. Figure 3a,b shows the
histogram of the time of home-arrival and home-departure and the fraction of vehicles parked at home
in this study, respectively.

Daily energy demand of EVs was also estimated with a Monte Carlo method using the survey data.
The daily charging requirement E (kWh) is estimated by:

E=#54xD, (11)

where 7 is the specific consumption of EVs (kWh/km) and D is the daily driving distance. In this study,
7 was assumed to be 0.15 kWh/km, and the maximum usable energy in the battery was set to 30 kWh.
This was assuming that the battery was able to provide sufficient energy for the trips within a city.
The daily driving distance D was calculated by doubling the trip distance sampled randomly from the
trip distances of the recorded trips arriving at home [41]. This was assuming that each EV was driven
in two equally long trips a day, such as a trip from home to the workplace and back to home again.
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Figure 3. User mobility statistics: (a) time of home-arrival and home-departure and (b) mean daily
fraction of vehicles parked at home. In (b), the light green area represents the weekday fraction, the
light red area the weekend fraction, and the brown area just the intersection area between the two
fractions.

2.2.3. Solar PV Power Production

The PV power production profiles were based on the data of global horizontal irradiation (GHI) in
2018 in Stockholm with latitude 59.3° N and longitude 18.0° E, recorded by the Swedish Meteorological
and Hydrological Institute (SMHI) [42]. The data originally had a one hour resolution, but was
interpolated to 15 min resolution in order to match the resolution of the simulation setup. The PV
system in this study was not specifically sized with kWp metrics; instead, it was scaled relative to the
total yearly electricity demands, as a conversion could be made when that was suitable. The yearly PV
production to the yearly household electricity demands R is defined as:

R= Pamzual/Lanmmlr (12)

where P41 is the yearly solar electricity production and Ly, is the yearly household electricity
demand including EV charging for each household. R =1 means that the households produce the same
amount of electricity as they consume, making them NZEBs. In this study, a number of scenarios with
different R were conducted to see the impact from the amount of PV power production, i.e., R = 0.10,
0.25,0.50, 0.75, 1.00, 1.25, and 1.50, in order to reflect both undersized and oversized PV systems.

2.3. Definitions and Measures

2.3.1. PV Self-Consumption and Self-Sufficiency

This section describes the self-consumption and self-sufficiency metrics, which are two of the
most common load matching indicators for buildings with PV systems [9]. Figure 4 shows a schematic
outline of residential daily electricity net demand represented by Area A and PV net generation
represented by Area B. The overlapping part in Area C is the PV electricity directly utilized within the
building. Self-consumption SC is defined as the fraction of the self-consumed PV electricity to the total
PV electricity production. Based on the illustration in Figure 4, it can be defined as:

SC=——. (13)
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Self-sufficiency SS is defined as the fraction of the load supplied by local PV energy to the total
load. Based on the illustration in Figure 4, it can be defined as:

C
= 14
55 A+C (14)

Power

A C A

06.00 12.00 18.00 24.00
time of the day
Figure 4. Schematic outline of daily load (A + C), PV generation (B + C), and self-consumed
electricity (C).

A high self-consumption means that a large share of the PV production is self-consumed to supply
the load. A high self-sufficiency means that the load is mostly supplied from the locally produced
PV electricity.

2.3.2. Peak Load Reduction

In this paper, the peak load reduction was calculated by comparing daily peak load with the
uncontrolled charging scheme to peak load with smart charging schemes. Figure 5 shows a schematic
outline of daily load profiles and their peak loads with the uncontrolled charging scheme (UCS) and
the smart charging schemes (SCS). Based on the illustration in Figure 5, the daily peak load reduction
can be defined as:

UCS peak load - SCS peak load
UCS peak load '

daily peak load reduction = (15)

In Section 3, the daily load production in a year is averaged in order to observe the annual
energy performance.
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Figure 5. Schematic outline of daily load profiles with and without shifting EV charging load in time.
The arrows point out peak loads. The difference between the pointed out peak loads is the amount of
peak power reduced.

2.3.3. Net Load Variability

Since the objective function is to minimize the net load variability, it is important to assess how
well the smart charging performance is with a variability measure. In this paper, the variability was
measured by calculating the standard deviation or the square-root of the variance between the values
of the net load profiles. The net load variability is a useful indicator, as it relates to voltage fluctuations
in distribution grids, and on a larger scale, it relates to grid frequency fluctuations [5,26].

3. Results

Figure 6 shows the net load profiles with uncontrolled charging, smart distributed charging,
and smart centralized charging schemes for different seasons for a community with 100 households
and one EV in each household. With respect to the smart distributed charging, the optimization was
conducted for each of the households. Then, the net load of each household was summed up to obtain
the community net load profile, which is shown with red-dotted lines. The mean daily load profile
and solar power production are shown in Figure 7. In both figures, the ratio of the yearly PV electricity
production to the yearly electricity consumption is R = 0.50.

By visual inspection, it can be seen from Figure 6 that the net load with uncontrolled charging was
easily distinguishable from net loads with smart charging schemes. Furthermore, it can be observed
that the net load with the distributed smart charging scheme was similar to the net load with the
centralized smart charging scheme. The major difference between the two was that the net load with
the centralized smart charging scheme was smoother, while the net load with the distributed smart
charging scheme had more ripples, which was a result from the charging control not being coordinated
by one central unit.

As can be seen from Figure 6¢, the peak load reduction by the smart charging schemes was clearly
visible for winter. During this season, the solar power production was low; thus, the smart charging
schemes were significantly more important in decreasing the peak loads. In summer, the impact of
the smart charging schemes was not as significant as it was in winter, as can be seen in Figure 6b.
However, a flatter net load profile was still achieved with the smart charging schemes. The net load
was often negative during the midday in summer due to the peaks of solar power production. The
smart charging schemes barely compensated for the high negative net load problems in the summer
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since the fraction of EVs at home was low during midday when the solar production peaked, as shown
in Figure 3b. In spring, shown in Figure 6a, the peak load reduction by the smart charging schemes
could be noticed more easily than in the summer. However, it still had similar problems with negative
net loads.

uncontrolled charging - - distributed smart charging = = = = centralized smart charging ‘

(b)
100 N
[ 1 1TE MG 7\t o e, . TN W, 72
o~ - £ n J £ EA 7 - # AN, M b
il S 4 5 i 3 7 2 * %} "
oy F Y[\ ‘ AN N AR
\
2 ¥ - .
-100 i
[
-200 I I I I I I I I Y I v |
171 172 173 174 175 176 177 178 179 180 181
(c)
200
150
2 100

50 f

0
351 352 353 354 355 356 357 358 359 360 361
day of the year

Figure 6. Net-load profile of the aggregation of 100 households with R = 0.5 in (a) spring, (b) summer,
and (c) winter.

(@ (b) ©

160 | | Household load 160 - == Household load 160 - | Household load
eV charging load eV charging load eV charging load
PV Production PV Production PV Production
140 140 140
120 120 120
100 100 100
S £ E
80 80 80
60 60 60
40 40 40
20 20 20
0 0 0
06.00 12.00 18.00 24.00 06.00 12.00 18.00 24.00 06.00 12.00 18.00 24.00
time of the day time of the day time of the day

Figure 7. Mean daily load profile for 100 households with R = 0.5 with the (a) uncontrolled charging
scheme, (b) distributed smart charging scheme, and (c) centralized charging scheme.

Based on daily average shown in Figure 7, it can be seen that in the smart charging schemes,
the peak load was significantly lower. In this figure, the intersection area between the load and the PV
generation is increased with the smart charging schemes, even though it is not as clear as the peak
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load reduction. This indicated that the PV self-consumption increased. It can also be seen that there
was more daytime charging with centralized charging than with distributed charging.

The following sections present quantified numerical results on self-consumption, self-sufficiency,
peak load reduction, as well as net load variability.

3.1. PV Self-Consumption and Self-Sufficiency

The PV self-consumption and the self-sufficiency in the simulated scenarios are shown in Figure 8.
In these figures, black lines represent the uncontrolled charging scheme, red lines the distributed
smart charging scheme, blue lines the centralized charging scheme, thinner lines schemes with a single
household, and thicker lines represent with 100 households aggregated.

@) (b)

100 50
—@— centralized smart charging
B aggregated - distributed charging 45 F
90 [ ¥ —@— aggregated - uncontrolled charging
: single household - distributed charging
80 O single household - uncontrolled charging 40
< ~
S S35t
g ™ g
= ©
< S.30F
S 3
8 60l 5]
£ S o5
0 b=
c >
8 50r 2
= 20
o)
3 %]
40 151 —@— centralized charging
aggregated - distributed charging
—@— aggregated - uncontrolled charging
301 106 single household - distributed charging
O single household - uncontrolled charging
20 | | | | | | | 5 | | | | | | |
0.2 0.4 0.6 0.8 1 12 1.4 0.2 0.4 0.6 0.8 1 12 1.4
R R

Figure 8. (a) Self-consumption (SC) and (b) self-sufficiency (SS) compared with production-to-
consumption ratio R for a single household and an aggregation of 100 households with the uncontrolled
charging scheme and the distributed and centralized smart charging schemes.

From these figures, it can be seen that if the share of PV production was higher, then the
self-consumption was lower and the self-sufficiency higher. It could also be concluded that regardless
of the charging scheme, both the self-consumption and the self-sufficiency were improved when
multiple residential net load profiles were aggregated.

In terms of the impact from the distributed or local smart charging scheme, smart charging
schemes in a single household achieved more prominent improvements in both the self-consumption
and the self-sufficiency compared to the one on the community level. This was because the aggregation
of net load profiles already improved the performance of both indicators, thus leaving only smaller
room for improvements for the proposed local smart charging scheme. However, with the centralized
smart charging approach, self-consumption and self-sufficiency improvements on the community level
were higher than the ones with local smart charging and close to the improvement made by the local
smart charging for a single household. Tables 1 and 2 present the changes in self-consumption and
self-sufficiency from the proposed smart charging schemes. In Tables 1 and 2, the averaged increases
in self-consumption and self-sufficiency per household by the centralized smart charging scheme are
also shown. It could be concluded that the self-consumption in each household was not penalized by
the implementation of the centralized smart charging scheme. Instead, the self-consumption on the
single household level increased with the centralized smart charging scheme, even though improving
self-consumption in each household was not the main objective. However, the increases were not as
significant as the ones with the local smart charging scheme.
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Table 1. Self-consumption improvements by smart charging schemes for a single household and on
the community level with both distributed and centralized charging approaches.

Self-Consumption Increase

R

Distributed Charging Centralized Charging
Single Household Community Averaged Per Household Community
0.10 1.3% 0.1% 0.4% 0.2%
0.25 7.3% 2.9% 2.8% 8.1%
0.50 8.7% 3.7% 3.8% 8.5%
0.75 7.4% 3.0% 3.5% 6.4%
1.00 6.0% 2.5% 3.4% 4.9%
1.25 5.0% 2.1% 3.0% 3.9%
1.50 4.3% 1.9% 2.7% 3.2%

Table 2. Self-sufficiency improvements by smart charging schemes for a single household and on the
community level with both distributed and centralized charging approaches.

Self-Sufficiency Increase

R Distributed Charging Centralized Charging
Single Household Community Averaged Per Household Community

0.10 0.2% 0.1% 0.2% 0.2%
0.25 2.0% 0.9% 1.0% 2.3%
0.50 4.6% 2.1% 2.3% 4.7%
0.75 5.9% 2.6% 3.3% 5.3%
1.00 6.4% 2.9% 3.8% 5.4%
1.25 6.7% 3.1% 4.7% 5.4%
1.50 6.9% 3.2% 4.7% 5.5%

Among the simulated scenarios, the scenario where the production-to-consumption ratio R was
0.50 had the highest self-consumption improvements with an 8.7% increase on the single household
level with distributed charging, a 3.7% increase on the community level with distributed charging,
a 3.8% increase on average on the single household level with centralized charging, and an 8.5%
increase on the community level with centralized charging. For the self-sufficiency, the scenario with
the highest R = 1.5 had the highest self-sufficiency improvements with a 6.9% increase on the single
household level with distributed charging, a 2.8% increase on the community level with distributed
charging, a 4.7% increase on average on the single household level with centralized charging, and a
5.5% increase on the community level with centralized charging.

Ideally, the charging time was shifted to the time when the solar power peaked, which would
likely lead to the self-consumption and the self-sufficiency increasing more. However, that is not always
possible with unchanged driving patterns, which was an assumption in this study. The improvements
in both self-consumption and self-sufficiency by the smart charging schemes were limited by the low
fraction of vehicles at residential buildings during the peaks of solar power production.

3.2. Peak Load Reduction

Since the charging loads in the uncontrolled charging scheme often coincided with the household
peak loads, smart charging schemes have a significant potential to reduce the peak loads. Peak load
reduction was achieved by shifting and distributing the EV charging load to the time when the
household electricity consumption was lower, as long as it is still within the parking period. Table 3
provides the information on the average of daily peak load reduction in a year by the smart charging
schemes compared to the uncontrolled charging scheme in several scenarios

In general, with the distributed /local smart charging scheme, the peak load reduction was higher
on the single household level than on the community level. The reason was because the peak loads
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of each household did not always coincide with each other. Thus, when multiple load profiles were
aggregated, the increase in the peak loads might not be linear with the number of the aggregated load
profiles. Consequently, the peak loads relative to the mean load were most probably lower on the
community level than on the single household level, which was likely beneficial for the power grid.
However, it left less room for improvement in terms of peak load reduction on the community level
for the proposed smart charging scheme.

On the community level, the peak load reduction was higher with the centralized charging
scheme than with the distributed /local charging scheme. The peak load reductions on the community
level with centralized charging were close to the one achieved in the single household with a local
charging scheme.

Table 3. Peak load reduction with different production-to-consumption ratios R in a single household
and on the community level with both distributed and centralized charging approaches.

R Peak Load Reduction
Single Household = Community: Distributed Community: Centralized

0.10 52.8% 36.1% 48.6%
0.25 53.6% 34.9% 47.3%
0.50 53.7% 32.7% 44.1%
0.75 52.4% 32.4% 42.6%
1.00 49.2% 32.3% 41.8%
1.25 46.6% 32.5% 41.3%
1.50 44.9% 32.7% 41.0%

3.3. Net Load Variability

Figure 9 shows the net load standard deviation per household in the simulated scenarios compared
with yearly production-to-consumption ratio R. Based on the figure, it can be seen that the aggregation
of multiple households would decrease the net load variability.

From the figure, it can also be concluded that the higher the share of PV power production,
the higher the net load variability. In these cases, the high value in variability was due to unconsumed
PV power during the day. Overall, the proposed smart charging schemes decreased the net load
variability, and with centralized smart charging, the performance was slightly better than with the
distributed /local smart charging. However, the difference in net load variability between uncontrolled
and smart charging schemes was lower with a higher share of PV power.

Since the smart charging schemes were programmed to minimize the net load variability,
the net load variability improvements reflected the effectiveness of the smart charging. From the
results, it could be concluded that the effectiveness of the smart charging schemes, approach-wise,
was decreased when the PV power share was higher.
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Figure 9. Net load standard deviation per household against production-to-consumption ratio R.

4. Concluding Discussion

In this paper, a distributed and a centralized EV smart charging scheme with the objective of
minimizing the net load variability of residential buildings were presented. The proposed smart
charging schemes considered EV energy demands, arrival and departure times, and forecasts of
both PV power production and electricity consumption, which in the study were perfect forecasts.
By minimizing the net load variability, the PV self-consumption was increased, and the peak loads
were reduced.

Results showed that with a distributed /local smart charging scheme in a single household,
the self-consumption and the self-sufficiency could be increased up to 8.7% and 6.9%, respectively,
depending on the share of PV power production. Even though the distributed smart charging scheme
for a single household provided improvements in terms of self-consumption and self-sufficiency,
it should be noted that the simulations in this study were based on perfect forecasts of PV production
and load and thereby represented an identified upper limit case. In practice, the forecast of PV
production and load for a single building level is less reliable than for an aggregated level [43].
Less reliable forecasts are expected to negatively impact the smart charging scheme’s effectiveness, but
be more realistic, and this is left for future studies.

Regardless of the EV charging schemes, the aggregation of multiple household net loads improved
self-consumption since the PV power that was not self-consumed at one household could be consumed
by neighbors. If the distributed /local smart charging scheme was employed on a community level,
the self-consumption increase in the community level by the scheme was not as high as for a single
household. This was due to less room for improvement for the distributed smart charging scheme since
the aggregation already increased the self-consumption. On the community level, the centralized smart
charging scheme performed better than the distributed smart charging scheme in terms of increasing
self-consumption. However, it should be noted that in practice, centralized charging schemes need a
more complex communication infrastructure. Overall, the increase in self-consumption was limited by
the low fraction of vehicles parked during the peaks of solar power production.

In terms of the smart charging performance with respect to its main objective (i.e., minimizing
net load variability), the smart charging schemes reduced net load variability to a large extent when
the PV power share was low, and that the performance was lower when the share of PV power was
higher. Since the number of EVs was the same for different scenarios of PV power share, as the PV
power share was higher, the number of EVs became less significant compared to the PV power share.



Energies 2020, 13, 1153 16 of 19

Considering higher PV power share led to higher net load variability, the smart charging schemes with
unchanged number of EVs would not have a significant impact on lowering the net load variability.
We could also see from the results that the smart charging schemes could decrease household
peak loads to a large extent. However, the PV power production excess that was not self-consumed
would still be difficult to match with EV smart charging if the share of PV power was high.
Several conclusions can be drawn from this study:

1. Self-consumption and self-sufficiency in residential buildings could be improved with EV
charging schemes; however, the improvements were limited by low vehicle occupancy adjacent
to the buildings during the period of high solar power production.

2. Self-consumption and self-sufficiency improvements by the distributed smart charging scheme
on the aggregate level were lower than for a single household. This was due to the fact that
the aggregation of multiple households already improved self-consumption and self-sufficiency,
leaving less room for the smart charging scheme to improve the performance.

3.  On the community level, the centralized charging scheme was superior at improving
self-consumption and self-sufficiency compared with the distributed charging scheme.

4. The higher the PV power share, the higher the load variability due to unconsumed PV power.
The improvement in load variability by the smart charging schemes became less significant with
higher PV power share.

The computational burden of the proposed smart charging schemes is an important aspect for
practical implementations. In the proposed distributed smart charging scheme, the optimization was
conducted on an individual level; thus, the computation burden was distributed among users. In the
proposed centralized smart charging scheme, a central unit would need to execute the optimization of
each car. Even though the optimization problem in the smart charging schemes was convex, which
made it relatively fast to solve, the computation could be demanding when many of the cars arrive at
the same time. In the simulation environment used in this study, the optimization time on average
by MATLAB quadprog was 0.004 s per car. In the centralized charging, the computation time at
time step t was linear with the number of cars arriving at time step t. In further research, practical
implementations of the proposed smart charging schemes and analysis of their computational burden
are encouraged. The computation time of the optimization process was expected to be higher when
the smart charging scheme resolution was higher. Even though the studies in [9,35] showed that 15
min resolution was sufficient for a self-consumption study, future studies using a higher resolution are
recommended in order to find out the trade-offs between the computation speed and the accuracy.

In further research, it would also be interesting to include realistic load and PV generation
forecasts to the schemes and investigate how forecast reliability will impact the performance of the
schemes. In addition, future studies should also combine EV smart charging schemes with other
energy management strategies, such as PV curtailment, home energy storage, or smart control of other
flexible household loads, in order to reduce PV power production excess. Furthermore, it is interesting
to investigate the impacts of smart charging schemes on city-scale energy performances, which should
include mobility patterns and power production and consumption, not only in residential buildings,
but also in workplaces and other locations.
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