Aldehydes-aided lignin-first deconstruction strategy for facilitating lignin monomers and fermentable glucose production from poplar wood

Tian Ying Chen¹, Cheng Ye Ma^{1,2}, Dou Yong Min³, Chuan Fu Liu⁴, Shao Ni Sun¹, Xue Fei

Cao¹, Jia Long Wen^{1,2} * Tong Qi Yuan^{1,2}, Run Cang Sun¹

¹ Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

² Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China

³ Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.

⁴ State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China

*Corresponding authors: Jialong Wen

Address: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing 100083, China. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing.

Tel: +86-10-62336903; fax: +86-10-62336903 (J.L. Wen).

E-mail address: wenjialonghello@126.com (J.L. Wen); wenjialong@bjfu.edu.cn

Appendix A. Supplementary material

Chemicals

All the reagents were purchased from Sigma Chemical Co. (Beijing, China), except for cellulase (Cellic@ CTec2, 100 FPU/ml), which was kindly provided from Novozymes (Beijing, China). 5% Ru on carbon catalyst (Evonik Noblyst® P3060 5% Ru), (2-methoxy-4-methylphenol, >98%). methylguaiacol ethylguaiacol (4-ethyl-2-methoxyphenol, >98%), propylguaiacol (2-methoxy-4-propylphenol, >99%), (4-ethoxy-3-methoxybenzaldehyde, >98%), guaiac-aldehyde methylvanillate (4-Hydroxy-3- methoxy-benzoic acid methyl >97%), propylsyringol ester, (2,6-dimethoxy-4-propylphenol, 95%), propionaldehydsyringol [3-(4-Hydroxy-3,5-dimethoxyphenyl)-propionaldehyde, 95%], allylsyringol (4-allyl-2,6-dimethoxyphenol, 95%), ethanonesyringol [1-(4-Hydroxy-3,5dimethoxy-phenyl)-ethanone, 95%], 1,4-dioxane (99%), formaldehyde solution (36.5 wt % in H₂O), acetaldehyde solution (40 wt% in H₂O), sodium acetate, acetic acid, sulfuric acid and fuming hydrochloric acid (37%), all were analytical reagents. Methanol (>99%) and tetrahydrofuran (THF, >99%) were chromatographic grade reagent. Dimethylsulfoxide was deuterium reagent. All the reagents were used without further purification.

Solvents

Sodium acetate buffer: 2.1 g sodium acetate was added into 500 mL deionized water, and stirred until dissolved. The buffer was prepared by adjusting the pH to 4.8 with acetic acid.

The analysis of sugar

The filtrate of enzymatic hydrolysis was diluted with ultrapure water, and filtered through a 0.45 µm water phase needle filter (Jinteng, Tianjin; Diameter:13 mm,

Aperture pore, 0.45 μ m; Texture, PES). The final filtrate was directly added into injected bottle for HPAEC detection.

HPAEC system (Dionex ICS5000) with pulsed amperometric detector and an ion exchange Carbopac PA-1 column (4×250 mm). The neutral sugars were separated in 18 mM NaOH (carbonate free and purged with nitrogen) with post column addition of 0.3 M NaOH at a rate of 0.5 mL/min. Run time was 45 min, followed by a 10 min elution with 0.2 M NaOH to wash the column and then a 15 min elution with 18 mM NaOH to re-equilibrate the column. Calibration was performed with a standard solution of L-arabinose, L-glucose, L-galactose, D-mannose, D-xylose, glucuronic acid, and galacturonic acids. Measurements were conducted with two parallels, and reproducibility of the values was found within the range of 5%. The content of sugar was calculated as follow,

$Sugar\% = \frac{C \times Dilute \text{ fold} \times Volume \times Conversion \text{ fraction}}{m \times Sugar\% \text{ in substrate}}$

Where, C, the concentration of sugar calculated by HPAEC system, mg/L;

Dilute fold, dilute with ultrapure water to ensure the result of HPAEC system within 25 mg/L;

Volume, the total volume of filtrate, mL;

Conversion fraction, 0.9 for hexose, 0.88 for pentose;

m, the mass of substrate, mg;

Sugar% in substrate, obtained from component analysis of substrate;

Component analysis of substrate

3 mL 72%H₂SO₄ was added into a hydrolysis of bottle with 300 mg substrate and hydrolyzed in a water bath at 30 °C for 1 h, stirred every 10 minutes to make it hydrolyzed as completely as possible. After the strong acid hydrolysis, 84 mL of deionized water was added to reduce the concentration of H₂SO₄ to 4%, and the bottle was placed in a autoclave at 121 °C for 1 h. After the reaction, the supernatant was filtered and used for the determination of sugar content with HPAEC.

Correction

The yield of lignin fractions was corrected to exclude the impact of the attached aldehydes according to the results of 2D-HSQC NMR.

	No incorporation	FA	AA
S	226	240	254
G	196	210	224

Mass of the monolignols with solvent incorporation.

Correction factors of the monolignols with different aldehydes

Correction factor	FA	AA
S	0.0619	0.1239
G	0.0714	0.1429

The correction yield of lignin during the lignin-first strategy (%)

	LFA	L_{AA}	L _{BM-FA}	L _{BM-AA}
Correction yield	68.0	85.1	82.5	86.5

Based on the total lignin in the biomass

	conditions			
Labels	$\delta_C/\delta_H \left(L_{Control} \right)$	$\delta_C/\delta_H (L_{FA})$	$\delta_C\!/\delta_H\left(L_{AA}\right)$	Assignments
\mathbf{B}_{β}	53.5/3.02	53.5/3.02	53.5/3.02	C_{β} -H _{β} in resinol substructures (B)
-OCH ₃	55.5/3.69	55.5/3.69	55.5/3.69	C-H in methoxyls
A_{γ}	59.5/3.70 and 3.56	59.5/3.70 and 3.56	59.5/3.70 and 3.56	C_{γ} - H_{γ} in β - O -4 substructures (A)
A'_{γ}	64.1/4.47	64.1/4.47		C_{γ} -H _{γ} in γ -acylated β -O-4 substructures (A)
A''_{γ}		68.2/3.99 and 3.67	68.2/3.99 and 3.67	C_{γ} -H _{γ} in shifted β -O-4 substructures (A)
\mathbf{B}_{γ}	71.4/4.17 and 3.86	71.4/4.17 and 3.86	71.4/4.17 and 3.86	C_{γ} -H _{γ} in resinol substructures (B)
A_{α}	71.7/4.85	71.7/4.85	71.7/4.85	C_{α} -H _{α} in β -O-4 substructures (A)
A''_{α}		73.4/4.24	73.4/4.24	C_{α} -H _{α} in shifted β -O-4 substructures (A)
$A_{\beta}(G)$	83.5/4.41		83.5/4.41	C_{β} -H _{β} in β -O-4 linked to a G/H unit (A)
$A_{\beta}''(G)$		81.7/4.48	81.7/4.48	$C_\beta\text{-}H_\beta$ in shifted $\beta\text{-}O\text{-}4$ linked to a G unit (A)
\mathbf{B}_{α}	84.9/4.62	84.9/4.62	84.9/4.62	C_{α} -H _{α} in resinol substructures (B)
$A_{\beta}(S)$	86.0/4.12			C_{β} -H _{β} in β -O-4 linked to a S unit (A)
S _{2,6}	103.5/6.62	103.5/6.62	103.5/6.62	C _{2,6} -H _{2,6} in syringyl units (S)
S' _{2,6}	106.2/7.27			C _{2,6} -H _{2,6} in oxidized(C=O) phenolic syringyl units (S)
G ₂	110.6/6.91	110.6/6.91		C ₂ -H ₂ in guaiacyl units (G)
G ₅	114.9/6.76	114.9/6.76	114.9/6.76	C ₅ -H ₅ in guaiacyl units (G)
G ₆	118.8/6.77	118.8/6.77	118.8/6.77	C ₆ -H ₆ in guaiacyl units (G)
PB _{2,6}	131.2/7.66	131.2/7.66	131.2/7.66	C _{2,6} -H _{2,6} in <i>p</i> -hydroxybenzoate units (S)

Table S1 Assignments of ${}^{13}C$ - ${}^{1}H$ cross-signals in the HSQC spectra of lignin obtained from different

Entry ^a	Α	В	С	D	Ε
Lignin	L _{Control}	L _{FA}	LAA	L _{FA}	LFA
Solvent	THF	THF ^b	THF	MeOH	Dioxane
Con/w% ^c	16.55	42.57	33.00	33.07	26.58
1	1.16 ^c (7.01 ^d)	ND	1.30 (3.94)	ND ^e	ND
2	1.23 (7.43)	1.15 (2.70)	1.33 (4.03)	1.15 (3.48)	1.22 (4.59)
3	1.41 (8.52)	3.51 (8.25)	2.56 (7.76)	2.68 (8.10)	2.33 (8.77)
4	2.47 (14.93)	2.77 (6.51)	2.73 (8.27)	3.03 (9.16)	2.73 (10.27)
5	1.50 (9.06)	1.15 (2.70)	2.63 (7.97)	1.03 (3.12)	1.08 (4.06)
6	4.20 (25.38)	17.00 (39.93)	15.38 (46.61)	10.81 (32.69)	7.30 (27.47)
7	3.07 (18.55)	13.44 (31.57)	3.42 (10.36)	13.08 (39.56)	8.83 (33.22)
8	ND	1.92 (4.51)	1.96 (5.94)	1.29 (3.90)	1.55 (5.83)
9	1.51 (9.12)	1.63 (3.83)	1.69 (5.12)	ND	1.54 (5.79)

Table S2 Detailed yields of the main aromatic products from the lignin depolymerization reaction over different conditions (based on the weight of starting lignin)

^a (A) $L_{Control}$ degraded in THF as solvent system. (B) L_{FA} degraded in THF as solvent system. (C) L_{AA} degraded in THF as solvent system. (D) L_{FA} degraded in MeOH as solvent system. (E) L_{FA} degraded in dioxane as solvent system.

^b THF, tetrahydrofuran

° The conversion ratio of lignin is based on the weight of starting lignin

^d The selectivity of monomer is based on the total monomer yield

^c Not detected

F (Retention time		Character and	
Entry	(min)	Component	Structure	
1	18.455	2-Methoxy-4-methyl-phenol	0 H	
2	22.295	4-Ethyl-2-methoxy-phenol	OH O	
3	26.216	2-Methoxy-4-propyl-phenol	OH O	
4	29.493	4-Ethoxy-3-methoxy-benzaldehyde		
5	32.809	4-Hydroxy-3-methoxy-benzoic acid methyl ester	OH OH	
6	34.385 (36.026)	2,6-Dimethoxy-4-propyl-phenol		
7	37.406	3-(4-Hydroxy-3,5-dimethoxy- phenyl)-propionaldehyde		
8	39.701	4-Allyl-2,6-dimethoxy-phenol		
9	42.16	1-(4-Hydroxy-3,5-dimethoxy-phen yl)-ethanone		

Table S3 The main components of the degraded products

Sample	Cellulose	Hemicelluloses	Klason lignin	Acid-soluble lignin
Raw	45.82	21.06	21.80	0.98
R _{Control}	78.62	6.40	3.19	3.34
\mathbf{R}_{FA}	74.53	3.00	7.59	3.76
R _{AA}	89.19	0.68	3.09	2.63
$R_{H\text{-}FA}$	80.25	0.36	13.79	0.54
R _{H-AA}	84.08	0.15	3.71	0.61

 Table S4
 The composition analysis of the control and delignified substrates under different conditions

	24 h	18 h
	24 H	48 11
R _{Control}	40.10	61.40
\mathbf{R}_{FA}	13.28	15.40
R _{AA}	50.38	75.12
R _{H-FA}	28.17	30.38
R _{H-AA}	58.19	85.14

Table S5 The glucose yield of the substrates after lignin extraction.

Figure Caption

Fig. S1. The chemical reaction occurs between aldehydes (formaldehyde and acetaldehyde) and α -and γ -OH in the side-chain of lignin.

Fig. S2. GC-MS Chromatographic of the products obtaining from the degradation of different lignin samples and solvent system. (A) $L_{Control}$ degraded in THF as solvent system. (B) L_{FA} degraded in THF as solvent system. (C) L_{AA} degraded in THF as solvent system. (D) L_{FA} degraded in MeOH as solvent system. (E) L_{FA} degraded in dioxane as solvent system.

Fig. S3. XRD spectra of the raw material and treated substrates

Fig. S1

Fig. S2

Fig. S3