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Abstract: An increase in demand for energy natural resources has stimulated the development of
gas pipeline networks in Europe, as well as globally. Also, in Poland in recent years there has been
a significant increase in natural gas consumption. Therefore, it is necessary to build new pipelines
networks using dig and no–dig techniques. Horizontal Directional Drilling is one of the most
popular trenchless technologies. The aim of this article is to present a new approach in the design of
HDD trajectories in two–dimensional space (2D). A review of the trajectories used so far has been
provided, offering calculation algorithms to determine their well path. Then, the original catenary
method is proposed, taking into account natural deflection of casing pipes. Applicable formulas and
computational algorithms have been given, together with a computational example which enables
comparison of the classical design methodology with the new one. According to the authors, due to
natural stress distribution, the catenary method allows the use of smaller pulling forces during
installation and ensures longer pipeline life. Therefore, it should be used in industrial practice as an
alternative to current designing methods.

Keywords: horizontal directional drilling (HDD); trenchless technologies; pipeline installation; well
design; mining and environmental engineering

1. Introduction

Horizontal Directional Drilling (HDD) is one of the most popular trenchless technologies. The HDD
technology has revolutionized geoengineering drilling in cities and under natural obstacles where
the use of classical dig methods is impossible. It enables the ability to perform underground pipeline
installations, while overcoming natural or artificial obstacles such as streets, buildings, railways, rivers
and lakes, as well as minimizing a negative impact on the natural environment.

Taking into account both environmental and economic factors, the HDD technology can currently
be considered one of the few alternatives to the classical dig methods in the construction of underground
installations for the transmission of natural resources; in particular, natural gas. Increasing development
and interest in this technology is in line with current trends in Polish energy policy and changes
taking place in the natural gas market, the consumption of which in Poland increases year by year.
The increase in demand is caused, among other reasons, by newly built power plants such as the
Combined Cycle Gas Turbine in the Żerań CHP in Warsaw, which will burn approximately 0.65 billion
m3 of natural gas annually [1]. In addition to the energy sector, other industries also consume more
and more gas: steel mills, refineries, ceramic factories, glassworks, and nitrogen plants. In 2018,
Poland consumed about 18 billion m3 of natural gas, including 4 billion m3 from the national resources.
The remaining quantity was imported but the import direction changed in comparison to previous
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years. Gas imported from Russia plays a smaller role (a decrease of 0.62 billion m3 compared to 2017).
However, the import of LNG (liquefied natural gas) transported to the terminal in Świnoujście by sea is
growing. In 2018, gas carriers from the USA, Qatar and Norway supplied over 2.71 billion m3 of LNG.
This is an increase of 58.2% compared to 2017. At the end of 2022, also, the Baltic Pipe gas pipeline will
be completed, ensuring transport of the natural gas extracted in Norway [2,3]. The above–described
changes make it necessary to construct new and modernize the existing pipeline networks, taking into
account, at the same time, urban infrastructure (roads, buildings) and the natural environment (rivers,
protected areas).

The Horizontal Directional Drilling method dates back to the 1960s when Martin Cherrington
built his own drill rig and formed Titan Contractors, a company specializing in utility road boring
in Sacramento, California. The first Horizontal Directional Drilling application in history was made
in 1971 under the Pajero river near Wotsonville, California, United States. A 180-meter long pass
with the diameter of 100 mm was carried out by Titan Contractor under the leadership of Martin
Cherrington [4–7].

Nowadays, wellbores with diameters ranging from 50 to 1200 mm and a length of up to 2000 m
are the most popular. Polyethylene (PE), high density polyethylene (HDPE), PVC, and steel pipes are
used [8–10].

Parallel to the conventional HDD method, the Intersect Drilling method is being developed, which
involves drilling pilot holes from the start, and end points simultaneously. It is used for long boreholes
drilled in difficult conditions, where classical drilling from the entry point to the exit point would be
impossible [11–13].

Drilling equipment categories are presented in the Table 1 below:

Table 1. Horizontal Directional Drilling (HDD) equipment categories [14,15].

Category Type of
Equipment

Pulling
Force [kN]

Torque
[Nm] Power [kW]

Maximum
Mud Flow

Rate [l/min]

Type of
Horizontal

Drilling

1 very small <100 <2500 <75 100 Small
2 small 100–250 <2500–15000 75–150 500

Medium3 medium 250–500 15000–25000 150–300 1000
4 large 500–1000 25000–50000 300–600 1500 Large
5 extra large >1000 >50000 >600 >1500

Horizontal Directional Drilling consists of three stages [14,16–18]:

1. Pilot hole drilling
2. Reaming
3. Casing installation

Drilling a pilot hole is the most important part. The pilot hole is made according to the assumed
trajectory design. Depending on the rock hardness, drilling works are performed with the use of an
asymmetrical hydromonitor bit, a cutter bit, or a cogged bit. The rock is drilled hydraulically and
mechanically. The trajectory of the well axis is constantly or periodically measured; the location of the
probe in an antimagnetic connection (disposed right after the bit) is verified. Surface or subsurface
radiometric cable or cableless telemetric navigation systems are used. The direction of drilling can
be corrected by rotating the drill pipe by a predefined angle. In order to obtain the predicted final
diameter, the borehole is widened one or more times [15,18,19].

After making a pilot borehole, the drilling bit is substituted in the borehole with a cutter or a
milled reamer on the drill pipes. The reamer is introduced into the pilot borehole to enlarge the
diameter of the existing well. In the process of reaming, drill pipes are successively added to proceed
with reaming operations or to trip the casing [15,18,19].
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The final stage of HDD is casing pullback. To do this, a reamer, rotary sub, and a head (tripped
with the pipe) are disposed on the string. The rotary sub (swivel) prevents the system against rotations
and torque of the drill pipes on the tripped casing [15,18,19].

The key element affecting the effectiveness and success of HDD drilling is the correct well trajectory
design. A decision about the trajectory design is made based on the design data.

The following options are considered [20]:

• design of Horizontal Directional Drilling trajectory in two–dimensional space, with the following
variations:

# trajectory being a combination of straight and curvilinear sections
# chain curve trajectory (catenary)
# an irregular curve trajectory

• design of Horizontal Directional Drilling trajectory in three–dimensional space

This article is dedicated to the Horizontal Directional Drilling trajectory design in two–dimensional
space. A combination of straight and curvilinear sections and the chain curve trajectory (catenary)
design will be examined.

2. Mathematical Foundations of a Horizontal Trajectory Design in a Plane Perpendicular to the
Terrain Surface

2.1. Trajectories Being a Combination of Straight and Curvilinear Sections

One of the most commonly applied concepts of the Horizontal Directional Drilling trajectory design
is a combination of straight and curvilinear sections. The simplest variant is a trajectory consisting
of one curvilinear section with a constant radius of curvature. Next variants are a combination of
different numbers of straight and curvilinear sections [18,20]. Figure 1 shows the most common types
of trajectories.
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Figure 1. Horizontal directional drilling trajectories as a combination of straight and curvilinear
sections: (a) one curvilinear section; (b) straight section and one curvilinear section; (c) two straight
sections and one curvilinear section; (d) straight section and two curvilinear sections; (e) three straight
sections and two curvilinear sections.

Assuming a reference system (see Figure 2) in a plane perpendicular to the surface of the terrain,
it is possible to determine general dependencies for the types of trajectories presented in Figure 1 [18].
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Figure 2. Reference system used when designing HDD trajectories in two–dimensional space.

General dependencies:

• vertical displacement of the end point relative to the start point:

H =
∑n

j=1
Hj (1)

• horizontal displacement of the end point relative to the start point:

A =
∑n

j=1
Aj (2)

• trajectory length:

L =
∑n

j=1
Lj (3)

• azimuth.

Graphic interpretation of general dependencies is shown in Figure 3.
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Figure 3. General geometric dependencies.

Curvilinear sections are defined by the following parameters:

• radius of curvature:

Rj =
180
πDLSj

, (4)

• angle of curvature:
δj = εj − εj−1 for εj > εj−1, (5)

δj = εj−1 − εj for εj < εj−1 (6)
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• projection of a trajectory section on a vertical plane:

Hj = Rj(cos εj−1 − cos εj), for εj > εj−1, (7)

Hj = Rj(cos εj − cos εj−1), for εj < εj−1 , (8)

• projection of a trajectory section on a horizontal plane:

Aj = Rj(sin εj − sin εj−1), for εj > εj−1, (9)

Aj = Rj(sin εj−1 − sin εj), for εj < εj−1, (10)

• section length:

Lj =
π

180
·δj·Rj , (11)

Straight sections are determined by the following parameters:

• projection of a trajectory section on a vertical plane:

Hj = Lj·sin εj , (12)

• projection of a trajectory section on a horizontal plane:

Aj = Lj·cos εj , (13)

• section length:

Lj =
√

A2
j + H2

j , (14)

At the AGH University of Science and Technology in Krakow at the Drilling and Geoengineering
Department, of Faculty Drilling, Oil and Gas, algorithms that enable calculation of characteristic points
Pj (Aj, Hj) of any type of trajectory with different input data variants were created. The Department of
Drilling and Geoengineering also presented an algorithm enabling the determination of intermediate
Pi characteristic points Pi (Ai, Hi, εi, βi) with a given calculation step ∆L [18,20].

The most commonly used trajectory is a combination of straight and curvilinear sections consisting
of 5 sections (see Figure 1e). Table 2 presents steps to determine characteristic values of a trajectory
with the first variant of input data.

Table 2. The order of calculating the characteristic values for a trajectory consisting of 5 sections with
the given input parameters: A, H, L1, ε1, ε3, R2, R4 [20].

Variant I: A, H, L1, ε1, ε3, ε5, R2, R4

Step Value to be calculated Step Value to be calculated
1 H1 11 DLS4
2 A1 12 L4
3 H2 13 L3
4 A2 14 H3
5 δ2 15 A3
6 DLS2 16 H5
7 L2 17 A5
8 H4 18 L5
9 A4 19 L

10 δ4 – –
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Based on the calculated characteristic values of trajectory sections, it is possible to determine
spatial coordinates of intermediate points. To do this, the algorithm (see Figure 4) with the following
assumptions should be used:

• global left–handed Cartesian coordinate system with the origin at the entry point of the wellbore.
Axis orientation: OX—east geographical, OY—north geographical, OZ—vertical

• specified azimuth of the plane (β) constant for the whole trajectory (βL = β)
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The value of the angle of deviation from the horizontal plane εL tangent to the trajectory at point
PL lying between the characteristic points Pj–1 and Pj at the distance LL, measured from the beginning
of the wellbore:

• rectilinear section εj = εj–1

εL = εj , (15)

• curvilinear section εj > εj–1

εL = εj−1 + (LL −
∑j−1

i=1
Li)·DLSj , (16)

Spatial coordinates of point PL lying between characteristic points Pj–1 and Pj:

• rectilinear section εj = εj–1

XL =
(∑j−1

i=1
Ai +

(
LL −

∑j−1

i=1
Li

)
·cos εj

)
·sinβ , (17)
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YL =
(∑j−1

i=1
Ai +

(
LL −

∑j−1

i=1
Li

)
·cos εj

)
·cosβ , (18)

ZL =
∑j−1

i=1
Hi +

(
LL −

∑j−1

i=1
Li

)
·sin εj , (19)

• curvilinear section εj > εj–1

XL =
{∑j−1

i=1
Ai + Rj·

[
sin

(
εj−1 +

(
LL −

∑j−1

i=1
Li

)
·DLSj

)
− sin εj−1

]}
, (20)

YL =
{∑j−1

i=1
Ai + Rj·

[
sin

(
εj−1 +

(
LL −

∑j−1

i=1
Li

)
·DLSj

)
− sin εj−1

]}
, (21)

ZL =
{∑j−1

i=1
Hi + Rj·

[
cos εj−1 − cos

(
εj−1 +

(
LL −

∑j−1

i=1
Li

)
·DLSj

)]}
, (22)

The most important steps of the algorithm determining the trajectory being a combination of
straight and curvilinear sections:

1. Determination of input data (A, H, L1, R2, R4, ε1, ε3, ε5) and a calculation step.
2. Calculation of the characteristic points according to the steps in Table 2.
3. Transfer of calculation results from point 2 and definition of additional variables.
4. Beginning of the iteration block associated with the hole section number.
5. Calculation of the current abscissa value rounded down to an integer.
6. Beginning of the nested iteration block. Check if variable X has not exceeded the range, if so,

go to point 9.
7. Calculation of spatial coordinates X, Y and the alpha angle depending on the type of section.
8. Incrementation of loop variables and return to point 6.
9. Add to Hsum and Asum values corresponding to a given section. Increment the section.
10. Check if the section scope has not been exceeded, if not, return to step 4.
11. End of algorithm.

2.2. Chain Curve Trajectory (Catenary)

The second concept for designing Horizontal Directional Drilling trajectories is related to the
natural deflection of the casing described by a chain curve (see Figure 5) [18,20]. A catenary curve is a
natural curve that a cable, chain, or any other line of uniform weight assumes when suspended between
two points. A similar suspension of a drill string would also form a catenary curve. A common example
is a curve formed by a telephone line hanging between two utility poles. The catenary method was first
introduced by R.T. McClendon and E.O. Anders [21]. In the oil and gas industry, the catenary method
is often used to perform extended–reach wells. The application of this method has been described in
detail in the literature [22–24]. The authors point out the benefits of casing natural deflection.
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As casings used in HDD have diameters from several centimeters to a meter, and their length is
up to over a thousand meters, it can be stated that the length of a pipe column is disproportionately
larger than its diameter, which is why such a construction can be treated as a rope hanging between
two poles.

In the model adopted in this way, there may be slight deviations associated with the assumption
that the transverse bending and torsional stiffness is negligible in relation to longitudinal stiffness.
Figure 6 shows a fragment of a free–hanging column of casing. In order to determine the relationship
between the unit weight of the casing and its forces, section AB of the ds length, which is in equilibrium,
is considered.Energies 2020, 13, x FOR PEER REVIEW 9 of 15 
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General dependencies:
Assuming that the casing is not susceptible to longitudinal deformations and its unit weight q is

constant over the entire length, the chain curve equation in the system from Figure 6 is as follows:

ψ =
Npoz

q
cosh

(
q

Npoz
(η+ C1)

)
−

Npoz

q
cosh

(
q

Npoz
(C1)

)
, (23)

The relationship between the value of force Npoz and the constant C1 can be determined from the
formula (23), using the condition: f(AK) = Hk (see Figure 6), which gives:

q
Npoz

Hk = cosh
(

q
Npoz

(Ak + C1)

)
− cosh

(
q

Npoz
(C1)

)
, (24)

Assuming the value of force Npoz equal to the pulling force of the drilling device, it is possible to
determine the value of constant C1. Equation (24) is an implicit equation of variable Npoz. This type
equation can be solved using numerical methods, e.g. bisection methods. The equation transforms
into the form:

g(x) = cosh
(

q
Npoz

(Ak + x)
)
− cosh

(
q

Npoz
(x)

)
−

q
Npoz

Hk , (25)

and then the zero of the function is determined.
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Using the physical sense of the derivative of function Y at point 0 and the relationship between
angles γ0 and ε0, the formula for constant C1 can be obtained:

C1 =
Npoz

q
arcsinh(tg(ε0)) , (26)

To determine spatial coordinates and the angle of deviation from the horizontal plane of the
trajectory described by a chain curve, the algorithm (see Figure 7) and the following assumptions
should be used:

• global right–handed Cartesian coordinate system with the origin at the entry point of the wellbore.
Axis orientation: OX—east geographical, OY—north geographical, OZ—vertical.

• specified azimuth of the plane (β) constant for the whole trajectory (βL = β)
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εL = arctg
(

q
Npoz

LL + sinh
(

q
Npoz

C1

))
, (27)

Total length of the trajectory (n = Ak):

LK =
Npoz

q
sinh

(
q

Npoz
(Ak + C1)

)
−

Npoz

q
sinh

(
q

Npoz
(C1)

)
, (28)

The spatial coordinates of point PL with a given length step (∆L) can be determined using the
transformed equations (27) and (28):

η =
Npoz

q
arcsin

(
q

Npoz
LL + sinh

(
q

Npoz
C1

))
−C1 , (29)
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ψ =
Npoz

q
cosh

(
arcsinh

(
q

Npoz
LL + sinh

(
q

Npoz
C1

)))
−

Npoz

q
cosh

(
q

Npoz
C1

)
, (30)

and:
XL = ηL·sinβ , (31)

YL = ηL·cosβ , (32)

ZL = ψL, (33)

3. Calculation Example

Based on the presented equations and algorithms, an example of trajectory calculations was made.

3.1. Assumptions:

The distance between the entry point and the exit point in a horizontal projection: A = 1000 m.
Vertical displacement between the entry point and the exit point in a vertical projection: H = −15 m.
Azimuth: β = 0º

3.1.1. Chain Curve Trajectory (Catenary):

Casing weight: 500 N/m
Drilling rig pulling force: Npoz = 250000 kgf = 2451662.5 N

3.1.2. Trajectory Being a Combination of Straight and Curvilinear Sections:

Radius of the 1st curve section: R2 = 2500 m
Radius of the 2nd curve section: R4 = 2500 m
Entry angle: ε1= –8.33◦

Exit angle: ε5= 7◦

First section length: L1 = 100 m

3.2. Results

The calculations were made using the designed computational library which implements the
proposed algorithms. The simplified results were presented in tabular (see Tables 3 and 4) and graphical
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Table 3. Catenary trajectory results.

[i] X Y ε

0 0 0 −9
1 50 −7.55 −8.2
2 100 −14.39 −7.39
3 150 −20.5 −6.59
4 200 −25.9 −5.78
5 250 −30.58 −4.97
6 300 −34.54 −4.16
7 350 −37.79 −3.34
8 400 −40.32 −2.53
9 450 −42.14 −1.71
10 500 −43.24 −0.89
11 550 −43.63 −0.08
12 600 −43.31 0.74
13 650 −42.27 1.56
14 700 −40.52 2.38
15 750 −38.06 3.19
16 800 −34.88 4.01
17 850 −30.98 4.82
18 900 −26.37 5.63
19 950 −21.05 6.44
20 1000 −15 7.24
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Table 4. Results for the trajectory being a combination of straight and curvilinear sections.

[i] X Y ε

0 0 0 −8.33
1 50 −7.32 −8.33
2 100 −14.64 −8.3
3 150 −21.42 −7.15
4 200 −27.17 −5.99
5 250 −31.91 −4.84
6 300 −35.64 −3.69
7 350 −38.37 −2.54
8 400 −40.09 −1.4
9 450 −40.81 −0.25
10 500 −40.83 0
11 550 −40.83 0
12 600 −40.83 0
13 650 −40.8 0.3
14 700 −40.03 1.45
15 750 −38.26 2.6
16 800 −35.49 3.75
17 850 −31.72 4.89
18 900 −26.93 6.05
19 950 −21.14 7
20 1000 −15 7

4. Conclusions

1. HDD is a dynamically developing technology for constructing underground pipelines This is
due to the fact that this type of drilling can be performed in urban and hard–to–reach areas.
Horizontal directional drilling is an alternative to microtunneling, direct pipe and jacking. At the
same time, the HDD technology enables minimization of a negative impact on the environment
compared to conventional methods.

2. A very attractive alternative to standard design solutions is the concept of a chain curve trajectory
(catenary), which enables easier insertion of the pipeline into a wellbore and ensures its longer
life due to the natural stress distribution along the length.

3. The algorithms developed by the authors of the article at the AGH University of Science and
Technology at the Faculty of Drilling Oil and Gas should be used in practice, as they reduce costs,
failures, and complications during well drilling using the HDD technology.

4. Based on given equations and project methodologies, the authors see the potential for expanding
the topic in the area of trajectories optimization that will result in a trajectory that combines
advantages of both design conceptions.
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Nomenclature

Aj projection of the jth section on a horizontal plane [m]
β azimuth [º]
DLSj dogleg severity [º/m]
δj angle of curvature at the jth point of the hole [º]
εj angle of deviation from horizontal plane at the jth characteristic point [º]
Hj projection of the jth section/segment on a vertical plane [m]
Lj length of jth section/segment [m]
Npoz drilling rig pulling force [N]
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