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Abstract: A microgrid energy management system (MEMS) optimally schedules the operation of 

dispatchable distributed energy resources to minimize the operation costs of microgrids (MGs) via 

an economic dispatch (ED). Actual ED implementation in the MEMS relies on an optimization 

software package called an optimization solver. This paper presents a comparative study of 

optimization solvers to investigate their suitability for ED implementation in the MEMS. Four 

optimization solvers, including commercial as well as open-source-based ones, were compared in 

terms of their computational capability and optimization results for ED. Two-stage scheduling was 

applied for the ED strategy, whereby a mixed-integer programming problem was solved to yield 

the optimal operation schedule of battery-based energy storage systems. In the first stage, the 

optimal schedule is identified one day before the operating day; in the second stage, the optimal 

schedule is updated every 5 min during actual operation to compensate for operational 

uncertainties. A modularized programming strategy was also introduced to allow for a comparison 

between the optimization solvers and efficient writing of codes. Comparative simulation case 

studies were conducted on three test-bed MGs to evaluate the optimization results and computation 

times of the compared optimization solvers. 

Keywords: microgrids (MGs); microgrid energy management system (MEMS); economic dispatch (ED); 

optimization solver; modeling package; energy storage systems (ESSs) 

 

1. Introduction 

Microgrids (MGs) have gained much attention as an important building block for future power 

systems. MGs provide an effective means to accommodate the high penetration of renewable 

generators and minimize power transmission losses by supplying local loads using distributed 

energy resources (DERs). A microgrid energy management system (MEMS) is a hierarchical 

supervisory control system responsible for the reliable, secure, and economical operation of MGs [1,2]. 

For the economical operation, the MEMS optimally coordinates the operation schedules of 

dispatchable DERs (e.g., micro turbines, batteries, and controllable loads), such that the MG’s daily 

operating cost is minimized while considering the forecasted load demand and renewable generation. 

This optimization process is referred to as economic dispatch (ED), which is performed as the 

secondary control in the three-level hierarchical control actions conducted by the MEMS [3]. Actual 

ED implementation in the MEMS relies on an optimization solver. The optimization solver is a 

software package developed for solving optimization problems according to pre-programmed 

solution algorithms. Various off-the-shelf optimization solvers, including the commercial and open-
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source-based ones, are available for ED applications. Commercial optimization solvers generally 

have superior computational capability compared with their open-source counterparts. The ED 

implementation environment is then programmed either in general-purpose programming 

languages (GPLs), e.g., Python and Julia, or in algebraic modeling languages (AMLs). AML is a high-

level programming language dedicated to optimization applications. Popular AMLs include GAMS 

and AMPL. 

Table 1. Summary of previous studies on the implementation of economic dispatch (ED) strategies. 

Ref 
Optimization 

Algorithms (1) 

Solver Types (2) Language Types (3) Demonstration Methods (4) 

OS CS Solver AML GPL S I Test-Beds 

[4] LP   GLPK     Grid-connected MG 

[5] CONVEX   MOSEK     Grid-connected MG 

[6] MIP   CPLEX     Grid-connected MG 

[7] MIP (T-S)   CPLEX     Grid-connected MG 

[8] MIP (T-S)   CPLEX     Grid-connected MGs 

[9] MIP (T-S)   Gurobi     Islanded MG 

[10] MIP (T-S)   SCIP     
IEEE 33-bus radial 

system 

[11] MIP   CPLEX     

Budapest Tech 

Renewable System, 

Hungary 

[12] MIP   CPLELX     

Institute of Nuclear 

Energy Research 

MG, Taiwan 

[13] MIP (T-S)   CPLEX     

MG Research Lab. 

in Aalborg Univ., 

Denmark 

[14] MIP   AOA     

MG Research Lab. 

in Aalborg Univ., 

Denmark 

[15] MIP (T-S)   CBC     

Grid-connected 

Campus MG, South 

Korea 

(1) LP/MIP: linear/mixed-integer programming, T-S: two-stage scheduling strategy, (2) OS/CS: open-

source/commercial optimization solver, (3) AML/GPL: algebraic modeling/general-purpose programming 

language, (4) S/I: simulation/implementation, MG: microgrid. 

Numerous studies on ED have been conducted from the perspectives of its optimization 

algorithms [4–10] and actual implementation methods [11–15]. Table 1 summarizes the optimization 

algorithms, optimal solvers, programming languages, and demonstration methods used in these 

studies. The optimization algorithms to the ED problem have been well studied. Particularly, in 

references [4–10], various analytic-based optimization methods, such as linear programming (LP), 

mixed-integer programming (MIP), and convex optimization, have been investigated for the 

application to ED. In reference [4], day-ahead ED was formulated as an LP problem to determine the 

hourly planned operation set points (i.e., charging and discharging power references) of battery-

based energy storage systems (ESSs) and electric vehicles (EVs). In reference [5], convex optimization 

method was used to determine the optimal charging and discharging schedules of an ESS. In 

reference [6], an online battery power control method based on an MIP formulation was used over a 

rolling horizon window. The ED strategies proposed in [4–6] planned the operation schedule only 

once and the schedule is followed without any modifications during operation. However, one-time 

scheduling strategies are vulnerable to uncertainty in the operational conditions, such as forecasting 

errors in load demand and renewable generation. To address this problem, a two-stage ED strategy 

proposed in [7–10] was employed. In the first stage, the optimal operation schedule is developed one 

day before the operating day (i.e., day-ahead scheduling). In the second stage, the operation schedule 
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obtained from the first-stage ED is updated repeatedly during actual operation (i.e., real-time 

scheduling). In references [7,8], the two-stage ED strategy was applied for combined cooling, heating 

and power (CCHP) MG, and networked MGs. Two-stage ED strategy determines the daily charging 

and discharging power profiles of batteries in reference [9], and the schedules of ESSs and 

controllable loads in reference [10]. 

With regard to research on the actual implementation of ED, in references [11–15], field 

demonstrations were conducted to validate ED strategies under real MG operation. Specifically, all 

these studies considered battery-based ESSs as their dispatchable DERs for ED and most of them [11–

14] established their ED environment using commercial optimization solvers, as shown in Table 1. In 

references [11–13], the ED implementation environment was implemented using GAMS and an 

optimal schedule was determined using a commercial optimization solver. In reference [13], an ESS 

scheduling model called a power generation-side strategy, which was defined as a MIP problem, was 

implemented to schedule the 2.2 kVA ESS under forecasting errors in load demand and photovoltaic 

(PV) generation. In reference [14], based on the power generation-side strategy used in [13], an MIP-

based ED strategy was implemented considering Spanish self-consumption regulatory constraints, 

which were introduced to facilitate the high penetration of renewable energy resources into MGs, via 

a commercial AML of AIMMS and its add-in optimization solver AIMMS Outer Approximation 

(AOA). Due to the guaranteed high computational capabilities of commercial optimization solvers, 

they have been commonly adopted for an optimal scheduling application of power systems. They 

are particularly effective for the optimization of complex problems involving a substantial number 

of decision variables. However, such extreme computational capabilities provided by commercial 

solvers may not be necessary for the application to ED of MGs, which generally involves determining 

the operation schedules of a small number and simple combination of energy devices. The licensing 

fees to use the commercial solvers can lead to significant increase in the setup costs for MGs, which 

can aggravate the economic feasibility of the MG operation [16]. 

In this context, open-source-based optimization for power systems has recently received much 

attention [17,18]. For example, in reference [15], the ED was implemented in a completely open-

source-based environment established using Python, with the incorporation of a coin-or branch and 

cut (CBC) open-source optimization solver. In this case, a campus MG scheduling was on time, and 

the daily operational costs were reduced by 58% using open-source optimization. In reference [19], a 

completely open-source-based ED environment was established using the open-source programming 

language Julia and its corresponding open-source optimization solver ECOS; computational 

capability was verified over a 1-year period for a massive operation dataset measured from a German 

transmission network. The results demonstrated that the open-source environment is suitable for 

hourly ED of a large-scale grid. 

However, for an open-source-based optimization solver to be further widely adopted for ED of 

MGs, the suitability of their computational capabilities for ED application should be examined in 

detail. In particular, to lay a firm basis to use open-source-based solvers, the computation time and 

optimal results obtained using open-source-based solvers must be compared with those 

accomplished using the commercial ones. A comparison of the commercial and open-source 

optimization solvers under various operating conditions will help MG operators select an 

appropriate optimization solver that satisfies their technical as well as budgetary requirements. The 

differences in the computational capabilities of open-source-based solvers and commercial ones were 

examined for several test optimization problems in references [16,20], and the open-source-based 

solvers showed comparable computational capability as those of the commercial solvers in some 

cases. 

Being motivated by the previous comparative studies on optimization solvers and the recent 

increase in the needs for open-source-based ED environment, this paper presents a comparative 

study on various optimization solvers to investigate their suitability for ED in MEMS environments. 

The main contributions of this manuscript are as follows: 

 The computational capabilities of the four widely employed optimization solvers, including 

CPLEX and Gurobi as commercial solvers and GNU linear programing kit (GLPK) and CBC as 
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open-source solvers, are compared in terms of optimal cost, scheduling results, and 

computational time. The results will be helpful for MG operators, who seek to find a cost-

effective optimization solver that best fits their technical requirements and budgetary constraints. 

 To examine the applicability to both day-ahead and real-time scheduling, the two-stage 

scheduling algorithm was adopted as an ED strategy, whereby operation set points of ESSs and 

the power injected from the main-grid are coordinated to minimize the operating costs of grid-

connected MGs. 

 To compare the optimization solvers considering actual operating conditions, a 6-bus campus 

MG with actual renewable generation and load data [15] was used as a simulation test-bed. For 

a more comprehensive investigation, additional simulation case studies were conducted on IEEE 

33-bus and 123-bus test systems [21], which were modified slightly to emulate mid- and large-

scale MGs, respectively. 

 A modularized programming strategy is presented for a fair comparison between the 

optimization solvers. The modularized programming strategy provides an effective way to 

avoid redundant usage of functions and variable definitions. It also allows the overall 

architecture of the code to be developed easily with enhanced readability, which is critical for 

managing and debugging the programming code. 

The rest of the manuscript is organized as follows. Section 2 presents an overview of the ED 

implementation environment. Section 3 reviews the two-stage ED algorithm and explains its 

implementation using modular programming architecture. Section 4 discusses simulation case study 

results, and Section 5 concludes the paper. 

2. Overview of the ED Implementation Environment 

2.1. Configuration of the ED Implementation Enviroment 

Figure 1 presents an overview of the implementation environment for the ED in the MEMS. The 

implementation environment can be programmed either in GPLs or in AMLs. Compared with GPLs, 

AMLs have the advantage of having a syntax similar to that of the mathematical notation of 

optimization problems, which allows for intuitive writing and understanding of the code. In the GPL-

based implementation, this difference can be complemented by adopting a modeling package. The 

modeling package provides a convenient programming interface similar to that of AMLs, so it is 

widely employed with optimization solvers when an optimization environment is established using 

GPLs. However, the overall computational speed slows significantly as additional processes are 

added due to the modeling package. This will be discussed in detail, along with the simulation 

results, in Section 4. 

 

Figure 1. Overview of the economic dispatch (ED) implementation environment. 

Optimization solvers consist of functional libraries, a set of functions dedicated to optimization. 

Functional libraries are often classified into two types according to their tasks: modeling libraries and 

optimizer libraries. The modeling library formulates the optimization problem for the ED using input 
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data, such as the predicted load demands and renewable generation, MG parameters and energy 

resources, and electricity price. The optimizer library is responsible for finding the optimal solution 

according to a pre-programmed solution algorithm, which is often based on analytic methods 

involving LP, MIP, and convex optimization. 

When an optimization solver is used within the environment established in AMLs or employed 

with a modeling package, the modeling library is not used. Instead, the optimization problem is first 

formulated by the AML or modeling package and is then passed on to the optimizer library. An 

optimization solver is compatible with certain kinds of modeling packages. Table 2 lists the 

optimization solvers based on their type and compatible modeling packages. Each GPL supports 

different modeling packages. For example, PuLP and Pyomo are the modeling packages supported 

in Python environments, and JuMP is the modeling package available with Julia. 

Table 2. Summary of optimization solvers and compatible modeling packages. 

Solver 
Solver Types (1) Python Modeling Packages Julia Modeling Packages 

OS CS PuLP Pyomo JuMP 

CBC      

GLPK      

CPLEX      

Gurobi      

SCIP      

XPRESS      

MOSEK      

(1) OS/CS: open-source/commercial optimization solver 

2.2. Modularized Programming Architecture 

For a fair comparison of computational capability, the optimization solvers should be executed 

within the ED environment programmed with the same architecture. In this study, this was achieved 

by modularizing the entire code according to the tasks. Figure 2 presents the modularized 

architecture for implementing the two-stage ED strategy. Module 1 (M1) is responsible for loading 

the data, e.g., load demands, renewable generation forecasts, parameters of the energy resources, and 

electricity price, into the ED environment. Such information can be obtained from the forecasting 

system or the supervisory control and data acquisition (SCADA) system established in the MEMS 

[22]. Based on the acquired information, M2 and M3 formulate the A and b matrices, representing 

the equality and inequality constraints of the ED, respectively. The equality constraints include 

equality operating conditions, as well as physical models of the MGs and devices (e.g., power balance 

equations and battery energy conservation). The inequality constraints comprise inequality operating 

conditions for reliable MG operation, such as the state-of-charge (SOC) limits and charging and 

discharging power limits of ESSs; Section 3 presents the details of the constraints considered in this 

investigation. In M4, A and b matrices are provided as inputs to the modeling package or 

optimization solver to formulate and solve the optimization problem. 

Figure 2 presents the first and second scheduling stages of the two-stage ED strategy, executed 

using an identical program architecture. Therefore, redundant usage of functions and variable 

definitions that occur when programming the two scheduling stages separately is effectively avoided. 

Additionally, the overall structure of the code can be developed easily with enhanced readability to 

make the writing and debugging of the programming code more efficient. 
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Figure 2. Framework of the two-stage ED modularization architecture. 

3. Description of the Two-Stage ED Strategy 

3.1. MG Configuration 

Figure 3 presents a schematic diagram of a grid-connected MG, where PV generators and Li-ion 

battery-based ESSs are considered as DERs. Battery-based ESSs have high energy densities and rapid 

dynamic responses, which make them suitable for high-power and high-frequency cyclic operation [23]. 

The operation set points (i.e., charging and discharging power references) of the ESSs were dispatched 

from the MEMS via communication links. The operating cost of an MG is given by the total daily 

electricity fee charged to the imported power from the main grid (i.e., utility power). To minimize 

operating costs, the MEMS implements the two-stage ED strategy, while considering the forecasted 

load demand and renewable generation. Note that the performance of the optimization module in the 

MEMS depends on the accuracy of the forecasting module. Even though the forecasting error is 

inevitable, it is assumed that the forecasting module provides accurate forecasts of load demand and 

renewable generation output power. This is not a radical assumption, and already there have been 

many studies that show high accuracy with many forecasting algorithms such as linear regression, 

clustering, and support vector machine (SVM) [24,25]. When the amounts of accumulated data in the 

database increase over time, the accuracy of forecasts will improve. In another approach to deal with 

the variation and uncertainties, robust ED strategies based on stochastic optimization were proposed 

in [26,27]. This approach can provide robust and efficient solutions, but modeling with scenarios can 

increase the computational difficulty of the optimization problem. To address this problem, a 

problem modeling approach proposed in [28] and a scenario selection algorithm in [29] were 

proposed. However, we did not consider the representative scenarios since we applied not the 

stochastic optimization method but the deterministic optimization approach to the proposed ED 

strategy. For brevity, this stochastic optimization approach is not further discussed in this paper, 

where instead we focus on the deterministic one. Furthermore, it is possible to get more accurate 

forecasts as real-time operation becomes more imminent [30]. Thus, we proposed the two-stage 

scheduling to mitigate forecast errors and improve the accuracy of scheduling. 
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Figure 3. Configuration of a grid-connected microgrid (MG). 

3.2. Two-Stage ED Strategy 

In the two-stage ED strategy, the operation schedule of the first stage is such that it minimizes the 

total daily operating cost of the MG. First-stage scheduling is conducted only once, one day prior to the 

actual day of operation (i.e., day-ahead scheduling). The single scheduling time interval of the first stage 

is 1 h. The scheduled profiles do not change during an hour. The second stage is implemented to 

mitigate the difference between the scheduled utility power and the second-stage scheduled utility 

power, which arises due to variabilities in load demand and renewable generation. Figure 4 presents 

the timeframe of the ED strategy. In second-stage scheduling, the operating set points of ESSs and the 

utility power scheduled in the first stage are updated every 5 min during actual operation, with a unit 

scheduling time step of 5 min. The second stage is carried out in an hour-ahead scheduling mode, with 

a unit scheduling time step of 5 min. The time horizon of the second stage diminishes by 5 min at each 

execution, as shown in Figure 4, and recovers over the subsequent hour. For the first 5-min interval of 

every hour, the operating set points of the ESSs are given as scheduled in the first stage. After the first 

5-min interval, the operation schedule is updated every 5 min by the second-stage scheduling during 

the remaining 55 min, with a diminishing time horizon. Thus, the initial scheduling of every hour has 

more time steps to schedule (i.e., 11 time steps) compared with subsequent scheduling within the hour. 

In this way, second-stage scheduling effectively compensates for the uncertainties inherent in day-

ahead scheduling. 

 

Figure 4. Timeframe of the two-stage ED strategy. 

The objective, time window, and time interval of each stage are specified as follow: 

1. First-stage scheduling: In this first-stage (i.e., day-ahead scheduling), hourly schedules for a day 

are performed one day in advance. The objective function is to minimize the operating cost. The 

total time window is 24 h, and the single scheduling time interval is 1 h. The scheduled profiles 

do not change during an hour. 
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2. Second-stage scheduling: In the second stage (i.e., hour-ahead scheduling), the optimal schedule 

obtained from the first stage is updated every 5 min during the day of operation to compensate 

for the uncertainties in load demands and PV output power. It should be noted that hour-ahead 

scheduling is not performed at the beginning of every 5-min interval, but rather follows the day-

ahead scheduled profile. In other words, the second stage runs 11 times per an hour. Only the 

first interval of each run set serves as a final decision and the rest of the intervals are for reference 

only. 

The following subsections present the detailed objective functions, constraints, and model for 

implementing the two-stage ED strategy; most of these have been employed in the author’s previous 

work [15]. 

3.2.1. Objective Function 

The objective function of the first stage is given as 

, 1 1,min{ ( ) }d
t u t t d

t

c P + U t T ,    
(1)

1, max(0 )d
t u,t cont dU = ,P P t T ,    (2)

where ct is the hourly electricity price of the main grid and Pu,td is the imported power from the utility 

at time t; α1 is the weighting coefficient for the penalty function and U1,t is the continuous decision 

variable determining the penalty function at time t; Pcont is the contracted power and Td is set of hourly 

periods. Equation (1) represents the objective to minimize daily operation costs, which consist of the 

charged electricity fee on the imported power from the utility side and the penalty function to 

maintain the utility power within the contracted power. For the hourly varying electricity fee, time-

of-use (TOU) rates were considered in this study. Equation (2) describes the penalty term. 

The objective of second-stage scheduling is to mitigate the difference between scheduled utility 

power and second-stage scheduled power due to uncertainties in load demands and renewable 

generation. The objective function of the second stage is given as 

2 3, 3 4,min {(| |) } ,d h
u,t u,t t t hP P U U t T       (3)

3, ,= min(0 ) ,   ,  h min
t n t n hU ,SOC SOC n N t T      (4)

4, ,= max(0 ) ,   ,h max
t n t n hU ,SOC SOC n N t T      (5)

where Pu,th is the hour-ahead scheduled utility power at time t; α2 and α3 are the weighting coefficients 

for penalty functions; U3,t and U4,t are the continuous decision variables determining the penalty 

function at time t, which consider the exceeded SOC value; SOCn,th is the state-of-charge of nth ESS in 

the second stage at time t; SOCnmin and SOCnmax are the minimum and maximum SOC limit of the nth 

ESS; Th is the set of second stage scheduling time periods. In Equation (3), the second and third terms 

are penalty functions to prevent the overcharge and discharge of ESSs due to parameter uncertainties 

and nonlinear operation characteristics, such as natural battery discharge. 

3.2.2. Equality Constraints 

The equality constraints consist of the physical model of the MG and ESSs, as well as equality 

operating conditions to assure the uniform and continuous participation of ESSs in the ED. The 

physical model of MG and ESSs are represented by the power balance equation and energy 

convergence in the battery, respectively. The power balance between net power production and 

consumption in an MG is represented by the linearized DistFlow formulation [31]. The power balance 

equation used in day-ahead and hour-ahead scheduling is given as 
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, , ,
: ( , ) : ( , )

( ) ( )

, , , { , },   ,

i

f f
u,t j,i,t i,k,t ch,n t dch,n t L ,t PV t

j i j L k k i L

d h

P P P + P P + P P

i j k B t T T n N

 

   

     

 
 (6)

where Pj,i,t and Pi,k,t are the power flow from bus j to bus i and from bus i to bus k at time t, respectively; 

PLi,tf and PPV,tf are the forecasted load demand and PV generation at bus i at time t, respectively; Pch,n,t 

and Pdch,n,t are the scheduled charging and discharging power of nth ESS at time t, respectively; B is 

the set of buses; and L is the set of power lines in an MG. 

The battery-based ESSs are modeled by the energy convergence stored in a battery, which is 

represented by the variation in SOC level with respect to the input power, given by 

, , 1 , , , ,= (( ) ) / ,   { , },max
n t n t- ch n ch,n t dch,n t dch n n d hSOC SOC P P / t CAP n N t T T         (7)

where SOCn,t is the SOC level of the nth ESS at time t; ƞch,n and ƞdch,n are the charging and discharging 

efficiency of the nth ESS; CAPnmax is the maximum capacity of the nth ESS. 

Generally, charging and discharging of batteries is strictly determined by cost-effective 

operation constraints. However, without using constraint (8), the final SOC level might be extremely 

low, especially when the PV output power is deeply low and load demand is high. To ensure the 

continuous participation of ESSs with uniform performance in next-day ED, the SOC levels at the 

initial and final time steps of first-stage scheduling should be equal [32]. The energy stored at the last 

time of scheduling should be set to its initial value, as 

, ,     ,n final n initSOC SOC n N    (8)

where SOCn,init and SOCn,final are the SOC levels at the initial and final time steps of a day, respectively. 

The equality constraint (8) may be relaxed to inequality constraints that represent the acceptable 

variation in the SOC with respect to the initial SOC level, to allow for more flexible operation of ESSs 

[33]. 

Meanwhile, the objective functions given in Equations (1) and (3) should be linearized to be 

applied to the two-stage MIP strategy. Here, the piecewise linearization method is employed. The 

linearization introduces additional equality constraints and variables, as 

, 1, 2, 0
d

u t t t dP =U +U +r t T ,   (9)

, 3, 4, 5, 3 ,h
n t t t t hSOC =U +U +U +r t T   (10)

where r0 and r3 are the parameters for objective function linearization and U2,t and U5,t are the 

continuous variables for objective function linearization at time t. 

3.2.3. Inequality Constraints 

Inequality constraints include charging/discharging power capacity and SOC limits of ESSs, as 

well as contracted power penalty functions. The SOC limit constraint is given by 

min max
, ,   { , },n n t n d hSOC SOC SOC n N t T T       (11)

Charging/discharging power limits of an ESS is given as 

, , ,0 { , },max
ch,n t n t ch n d hP u P t       (12)

, , ,0 (1 ) { , },max
dch,n t n t dch n d hP u P t T T      (13)

where un,t is a binary decision variable to determine the operation status of the nth ESS at time t (i.e., 

un,t = 1: charging and un,t = 0: discharging). 

To prevent the utility power from exceeding the contracted power in real-time scheduling, a 

surcharging system is considered in the second scheduling stage. The electric meter installed by 

Korea Electric Power Corporation (KEPCO), South Korea, estimates the peak power over a 15-min 

period [34]. When the peak power that updated from the electric meter exceeds the contracted power, 
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KEPCO imposes extra charges for overuse. The surcharging system requires that the utility power 

averaged over a 15-min period be maintained within the contracted power to stabilize the supply. 

This requirement is imposed by 

1 1( ) 3 ,u, t- u, t u, t+ cont hP +P +P / P t T    (14)

Additionally, linearizing the first-stage objective function (1) using the piecewise linearization 

method yields the inequality constraints 

1 0 1, 2, 1 0( ) ( )    ,t t dr r S U r r t T       (15)

1, 2 1 1,0 ( )      ,t t dU r r S t T      (16)

where r1, r2 are parameters for objective function linearization and S1,t is a binary variable for 

linearization of objective function at time t. 

Similarly, linearizing the second-stage objective function (9) gives additional inequality 

constraints expressed by 

4 3 2 3 4 3( ) ( ) ,,t ,t hr r S U r r t T       (17)

4 3 3 5 5 4 2( ) ( ) ,,t , t ,t hr r S U r r S t T       (18)

4, 6 5 3,0 ( ) ,t t hU r r S t T      (19)

where r4 and r5 are parameters for objective function linearization and S2,t and S3,t are binary variables 

for objective function linearization at time t. Finally, nonlinear objective functions (1) and (3) are 

linearized to a set of equality constraints (9), (10), and inequality constraints (15)–(19), which are in 

the form of an MIP problem tractable for analytic method-based optimization solvers. 

3.3. Implementation of the Two-Stage Strategy with the Modular Architecture 

Figure 5 presents the coupling of the two-stage ED strategy using a modular program 

architecture, as discussed in Section 2. Four modules were deployed in both the first and second 

scheduling stages. The detailed tasks of each module are described below. 

 

Figure 5. Coupling of the two-stage ED problem block and the module block. 



Energies 2020, 13, 1096 11 of 22 

 

Module (1) Loading the input data for each scheduling stage as follows: 

—First-stage scheduling: 

MG topology; PV generation and load demand 

forecasts; electricity price; initial SOC level of ESSs; 

ESS parameters. 

—Second-stage scheduling: 

First-stage scheduled utility power; MG topology; 

5-min sampled measurements of PV generation, load 

demand, SOC levels, and utility power; electricity 

price; initial SOC level of ESSs;  

ESS parameters. 

Module (2) Creating the A and b matrices that represent the equality constraints of an optimization 

problem using the following Equations: 

—First-stage scheduling: Equations (6)–(9). 

—Second-stage scheduling: Equations (6), (7), and (10). 

Module (3) Creating the A and b matrices that represent the inequality constraints of an 

optimization problem using the following Equations: 

—First-stage scheduling: Equations (11)–(13), (15), and (16). 

—Second-stage scheduling: Equations (11)–(14), (17), and (19). 

Module (4) Formulating the optimization problem from the A and b matrices obtained from M2 

and M3 using the modeling package or modeling library of the optimization solver in a 

GPL-based platform or using the inherent interface provided in the AML-based 

environment; solving the optimization problem by executing the optimizer library of the 

optimization solver. 

4. Simulation Case Studies for Comparison 

4.1. Simulation Conditions 

Four widely adopted optimization solvers, CPLEX, Gurobi, GLPK, and CBC, were applied for 

the two-stage ED strategy in simulation case studies, to compare computational capabilities. Figure 

6 presents three grid-connected MGs considered for the test-beds containing loads, PV generators, 

and ESSs. The 6-bus MG shown in Figure 6a represents a small-scale campus MG in operation [15]. 

The IEEE 33-bus and 123-bus radial test systems [21] shown in Figure 6b and Figure 6c, respectively, 

were also examined, with slight modifications to emulate mid- and large-scale MG operations. 
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(a) 
 

(b) 

(c) 

Figure 6. Grid-connected MGs for simulation case study. (a) 6-bus campus MG; (b) IEEE 33-bus radial 

test system; (c) IEEE 123-bus radial test system. 

All ESSs in the test-bed MGs were assumed to have the same parameters listed in Table 3, which 

is an actual parameter set provided by an ESS manufacturer. Table 4 lists the three-level (i.e., off-

peak, mid-, and peak-loads) TOU rates used in the simulation case studies; these are the rates used 

by KEPCO, South Korea [35]. Figure 7 presents the hourly sampled actual load demand and PV 

generation forecasting data provided in [36]. For simplicity, the PV generation and load demand 

information of each bus are assumed to have the same forecasting profiles. The real-time variations 

in load demands and PV generations were emulated by applying the 5-min sampled stochastic 

variations to the forecasting data shown in Figure 7, which are uniformly distributed within the range 

of ±5% of them. The contracted utility power was set to 2 MW. Table 5 lists the specifications of the 

implementation environment. The compared optimization solvers were applied with the open-

source modeling package PuLP in Python, using an Intel Xenon Silver 4114 CPU with 192.0 GB RAM. 

The computational capability of the optimization solvers was evaluated by investigating the optimal 

costs, scheduling results, and computation time. Simulations were performed 100 times for each 

optimization solver, and the average computation times were compared. 
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Table 3. Actual energy storage system (ESS) parameters. 

Parameters Values Units 

Pchmax  50 [kW] 

Pdchmax  50 [kW] 

ECmax 250 [kWh] 

SOCmax  90 [%] 

SOCmin 20 [%] 

ƞch 80 [%] 

ƞdch 80 [%] 

Table 4. Three-level time-of-use (TOU) rates on utility power. 

Classifications 
Time 

Periods 

Prices 

($/kWh) 

Off-peak load 23:00–09:00 0.038 

Mid-load 

09:00–10:00 

0.076 12:00–13:00 

17:00–23:00 

Peak-load 
10:00–12:00 

0.130 
13:00–17:00 

 

Figure 7. Forecasting load demand and photovoltaic (PV) generation power profile. 

Table 5. Detailed specifications of the implementation environment. 

Functionality Software Types Versions 

GPL Python Open-source 3.6.9 [37] 

Modeling Package PuLP Open-source 1.6.8 [38] 

Optimization Solver 

CBC 
Open-source 

2.10 [39] 

GLPK 4.65 [40] 

Gurobi 
Commercial 

8.1.1 [41] 

CPLEX 12.9 [42] 

4.2. Comparison of Optimal Costs and Scheduled Profiles 

All the compared optimization solvers identically determined the minimal operating costs of the 

three MGs as USD 86.20, USD 1698, and USD 8610; thus, the same optimal results were achieved. 

Figure 8 presents the scheduled power profiles of the ESS and utility power for the three MGs. The 

ESS power profiles shown in Figure 8b and Figure 8c are those of arbitrarily selected ESSs in the 33-

bus and 123-bus systems (Figure 6b and Figure 6c, respectively). Note that positive power represents 

discharging of the ESS. In contrast, the ESS power profiles differed from each other, as shown in 

Figure 8a–c. However, they have a common tendency; the ESSs are charged when the TOU is low 
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(e.g., from 18:00 to 24:00) and discharged when the TOU is high (e.g., from 10:00 to 18:00). Note that 

all optimization solvers scheduled the ESS power to be maintained well within its limit (i.e., 50 kW). 

(a) (d) 

(b) (e) 

(c) (f) 

Figure 8. Energy storage system (ESS) and utility power profiles scheduled by the optimization 

solvers. (a,d) case 1: 6-bus system; (b,e) case 2: 33-bus system; (c,f) case 3: 123-bus system. 

Similarly, the scheduled utility power profiles shown in Figure 8d–f have a common tendency 

to import the high power from the main grid when the TOU is inexpensive (e.g., from 18:00 to 24:00) 

to enhance MG operation efficiency by lowering operating costs. This tendency was due to not only 

the low TOU price but also the increased load demand at that time, as shown in Figure 7. 

Figure 9 presents the variations in the scheduled SOC levels corresponding to the ESS power 

profiles of Figure 8a–c. All of the scheduled SOC levels were well maintained within the limits for 

secure operation (i.e., 20% to 90%). Additionally, all of the compared optimization solvers succeeded 



Energies 2020, 13, 1096 15 of 22 

 

in making the SOC levels at the final time step equal to the initial SOC levels, assuring continuous 

participation in the next-day ED with uniform contribution. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Variation of the the state-of-charge (SOC) levels corresponding to the scheduled ESS power. 

(a) case 1:6 bus system; (b) case 2:33 bus system; (c) case 3:123 bus system. 

4.3. Comparison of Computation Time 

Table 6 lists the computation times of the optimization solvers for the three simulation cases. To 

investigate the computation time without a modeling package, additional tests were conducted with 

CPLEX and Gurobi, which provide application programming interfaces (APIs) for the Python 

environment. Using APIs, the optimization solver can be interfaced directly with the ED environment 

without a modeling package. In first-stage scheduling, all of the compared optimization solvers 

yielded a suitable computation time for the day-ahead scheduling application in all cases. 
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Specifically, for all three cases, the open-source optimization solver CBC yielded the maximum 

computation time (i.e., 1.32, 12.42, and 113.64 s, respectively). 

Table 6. Computation times of the optimization solvers. 

Cases 
Modeling 

Packages 
Solvers (1) 

First 

Stage (s) 

Second Stage (s) 

Avg. Initial 

Scheduling 

Max. Initial 

Scheduling 

Case 1  

6 Bus system 

PuLP 

CBC 1.32 0.44 0.47 

GLPK 1.25 0.42 0.47 

Gurobi 1.02 0.38 0.43 

CPLEX 1.03 0.41 0.49 

Gurobi (API) 0.26 0.03 0.03 

CPLEX (API) 0.13 0.02 0.02 

Case 2 

33 Bus system 

PuLP 

CBC 12.42 3.80 3.93 

GLPK 11.55 3.81 3.96 

Gurobi 10.94 3.59 3.68 

CPELX 10.98 3.76 3.98 

Gurobi (API) 2.67 0.25 0.28 

CPLEX (API) 0.61 0.07 0.08 

Case 3 

123 Bus system 

PuLP 

CBC 113.64 37.61 42.42 

GLPK 110.87 38.74 42.70 

Gurobi 105.13 36.52 39.11 

CPELX 105.36 35.57 39.10 

Gurobi (API) 27.82 2.42 2.52 

CPLEX (API) 3.55 0.76 0.80 

(1) API: application programming interface 

For the second-stage scheduling, the maximum and average computation times of the initial 

scheduling of each hour were investigated. This is because the initial scheduling has the most time 

steps to schedule (i.e., 11 time steps) as shown in Figure 4. Thus, the longest computation time will 

occur during the initial scheduling, and subsequent scheduling will have shorter computation times. 

For all optimization solvers, the computation time for the second-stage scheduling also yielded sound 

results for the hour-ahead or real-time scheduling application, with the maximum and the average 

computation time for initial scheduling of all the optimization solvers completed within 300 s (i.e., 5 

min). 

Figure 10 presents the computation times obtained with the modeling package. In both first-

stage and second-stage scheduling, the open-source optimization solvers (i.e., CBC and GLPK) and 

the commercial optimization solvers (i.e., Gurobi and CPLEX) yielded similar computation times. 

The main reason for the similar computation times from the different optimization solvers is due to 

the additional processes by the modeling package: converting the input data syntax given in high-

level mathematical notation into low-level syntax that can be processed by optimization solvers took 

up most of the total computation time. Therefore, when the optimization solvers were executed using 

their APIs (i.e., Gurobi (API) and CPLEX(API)), they yield much shorter computation times; however, 

as noted above, the prolonged computation time due to the modeling package is a trade-off to 

convenient interfaces. Another factor that determines the computation times is a programming 

language, and the study that compared programming languages with respect to the computational 

time, readability, accessibility, and strengths/weaknesses was examined for general-purpose 

computational problems in reference [43]. However, this is not further discussed in this paper, where 

we instead focus on the optimization solvers and modeling package. 
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Figure 10. Comparison of the total computation times with modeling package PuLP. 

Table 7 lists the detailed computation times spent by the modeling package with respect to its 

performing of tasks (i.e., formulating equality and inequality constraints). The time ratio represents 

the portion they occupy in the total computation times listed in Table 6. In all cases, the modeling 

package accounts for more than half of the total computation time. For further investigation, the 

computation time data are visualized in Figure 11. In both scheduling stages, the computation time 

for formulating constraints becomes more dominant than the other processes for optimization in the 

total computation time as the scale of an MG increases. This result means that the computation speed 

of an ED environment is largely affected by a modeling package as well as an optimization solver. 

Furthermore, adopting an efficient modeling package becomes the more important issue, as opposed 

to which type of optimization solver to use, when the MG involves a large number of buses and DERs. 

Table 7. Detailed computation time for the modeling package. 

Case 
MIP 

Solver 

First Stage Second Stage 

Inequality 

Const. (s) 

Equality 

Const. (s) 

Time 

Ratio 

(%) 

Inequality 

Const. (s) 

Equality 

Const. (s) 

Time 

Ratio 

(%) 

Case 1 

6 Bus 

system 

CBC 

0.39 0.50 

67.42 

0.14 0.13 

61.93 

GLPK 71.20 64.88 

Gurobi 87.25 71.71 

CPLEX 86.40 66.46 

Case 2 

33 Bus 

system 

CBC 

2.61 7.67 

82.77 

1.06 1.78 

74.90 

GLPK 89.00 74.71 

Gurobi 93.96 79.29 

CPLEX 93.62 75.70 

Case 3 

123 Bus 

system 

CBC 

17.19 86.43 

91.18 

8.87 20.82 

78.97 

GLPK 93.46 76.66 

Gurobi 98.56 81.33 

CPLEX 98.35 83.50 
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(a) (b) 

Figure 11. Total computation times. (a) first scheduling stage; (b) second scheduling stage. 

5. Conclusions 

This paper presents a comparative study on optimization solvers to investigate their suitability 

for ED applications. Four widely employed optimization solvers, both commercial and open-source-

based ones, were compared in terms of optimal cost, scheduling results, and computation time. A 

two-stage scheduling strategy was applied for the ED algorithm. Equations representing the 

operating conditions and models of MGs and DERs were formulated and combined into a set of 

constraints to constitute the MIP problem, which is tractable for off-the-shelf optimization solvers 

adopting analytic solution algorithms. A modularized programming strategy was also introduced to 

allow a fair comparison between the optimization solvers and the efficient establishment of the two-

stage ED environment. Simulation case studies were conducted on three MGs of varying size. The 

simulation results revealed that all of the compared optimization solvers were achieved the same 

optimal costs and operated within the time required for each step of the two-stage scheduling 

strategy. With regard to computational capability, a much shorter computation time was achieved 

when the optimization solvers were used with their APIs compared to the cases where the modeling 

package was employed together with the optimization solvers. However, the delay in computation 

time due to the modeling package can be compensated for by the convenient interfaces that the 

modeling package provides. Additionally, for large-scale MG applications, the modeling package is 

a critical factor that determines the computation speed of the ED environment. 

Further work is required to investigate how the computational efficiency of an ED environment 

varies under different combinations of modeling packages, optimization solvers, and programming 

languages. Specifically, PuLP was adopted as a modeling package in this study, though other 

modeling packages, such as Pyomo or JuMP, need to be employed and analyzed in subsequent 

studies. The relative computational efficiency of AML-based ED environments (e.g., GAMS and 

AMPL) compared with those that are GPL-based needs to be examined, because the simulation 

results obtained in this study revealed that formulating the constraints accounts for a large portion 

of the computation time. 
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Nomenclature 

Acronyms 

AML: Algebraic modeling language 

AOA: AIMMS outer approximation algorithm 

API: Application programming interface 

CBC: Coin-or branch and cut 

CCHP: Combined cooling, heating and power 

DER: Distributed energy resource 

ED: Economic dispatch 

ESS: Energy storage system 

EV: Electric vehicle 

GAMS: General algebraic modeling system 

GLPK: GNU linear programing kit 

GPL: General-purpose programming language 

KEPCO: Korea electric power corporation 

LP: Linear programming 

MEMS: Microgrid energy management system 

MG: Microgrid 

MIP: Mixed-integer programming 

OPF: Optimal power flow 

PV: Photovoltaic 

SCADA: Supervisory control and data acquisition 

SOC: State-of-charge 

SVM: Support vector machine  

TOU: Time-of-use 

Sets and Indices 

d: Day-ahead stage values 

h: Hour-ahead stage values 

Td: Set of hourly periods in the first stage (i.e., t ∈ Td and Td = [0, 1, ···, 23]) 

Th: Set of 5 minute periods in the second stage (i.e., Th = [5, 10, ···, 55]) 

t: Index for a scheduling time step (i.e., t ∈ Td and t ∈ Th) 

i, j, k: Indices for buses in an MG  

L: Set of lines of the topology in the MG (i.e., (i, j), (k, i) ∈ L) 

B: Set of buses in the MG (i.e., i, j, k ∈ B) 

n, N: Index and total number of ESSs, (i.e., n ∈ N) 

f: Forecasted values 

max, min: Maximum/minimum values 

Parameters and Constants 

Pcont: Contracted power (kW) 

α: Weighting coefficients for penalty functions 

r: Parameter for objective function linearization 

SOCnmin, SOCnmax: Minimum/maximum SOC limit of the nth ESS (%) 
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ƞch,n, ƞdch,n: Charging/discharging efficiency of the nth ESS (%) 

CAPnmax: Maximum capacity of the nth ESS (kWh) 

Pch,nmax, Pdch,nmax: Maximum charging/discharging power of nth ESS (kW) 

SOCn,init, SOCn,final: SOC levels of nth battery at the initial/final times steps of a day (%) 

Variables 

ct: Hourly electricity price at time t ($/kWh) 

Pu,td: Imported power from the utility at time t (kW) 

Pu,th: Hour-ahead scheduled utility power at time t (kW) 

Ut: Continuous decision variable determining the penalty function at time t  

St: Binary variable for objective function linearization at time t 

Pj,i,t, Pi,k,t: Power flow from bus j to bus i and from bus i to bus k at time t 

PLi,tf, PPV,tf: Forecasted load demand/PV generation at bus i at time t (kW) 

Pch,n,t, Pdch,n,t: Scheduled charging/discharging power of nth ESS at time t (kW) 

SOCn,t: SOC level of the nth ESS at time t (%) 

un,t: Binary decision variable to determine the operation status of the nth ESS at time t  
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