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Abstract: The stability of Modular multilevel converter (MMC) itself is the premise of analyzing the 
stability of MMC cascading with other cells, so this paper addressed the small-signal stability of 
MMC with dc voltage control mode which is the common operation mode of grid-side MMC in 
high-voltage direct current (HVDC) systems. First, the small signal model of MMC with open-loop 
control mode and dc voltage control mode while considering the dc voltage controller and current 
controller are established with the harmonic state-space (HSS) modeling method. Subsequently, 
eigenvalues and participation factors are analyzed to estimate the stability of MMC system and the 
influence of controller parameters, especially the proportional coefficients of dual-loop controllers, 
which can improve the design efficiency of control system. Finally, time-domain simulations in 
MATLAB/Simulink are provided to verify the accuracy of HSS small signal model and the 
effectiveness of the theoretical stability analysis. 

Keywords: modular multilevel converter; small-signal model; harmonic state-space; stability 
analysis; participation factor 

 

1. Introduction 

Modular multilevel converter (MMC) topology was first introduced in 2003 [1,2] and it has been 
widely used in high voltage and high power applications, due to its advantages of modularity, 
scalability, and power controllability. The stability of MMC itself is a significant premise to study the 
stability of MMC cascading with other cells, e.g., wind farm, PV inverters, weak grid, and so on. 
While the key is the modeling of MMC itself. However, MMC is characterized by the obvious internal 
dynamics in sub-module capacitor voltages and arm currents [3,4], which makes its modeling 
considerably more complicated than the conventional two/three-level voltage source converters 
(VSCs). Most of the initial researches [5–8] used the average model, which neglected these internal 
harmonic characteristics in the modeling process and only obtained the simplified mathematical 
equations of MMC in fundamental frequency. 

Many scholars recently have done deep studies about the modeling of MMC to achieve high 
accuracy of small signal model of MMC. The state-space model of MMC based on dynamic phasors 
contains the internal dynamics, which is often used to model a nonlinear time-varying system as a 
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linear time-invariant system [9–12]. The small signal state-space model of MMC with dual-loop 
controllers and circulating current suppression controller in dq coordinate frame was established in 
[13]. However, only the second harmonic components of submodule capacitor voltages were 
considered and harmonics of other variables, e.g., arm currents, were neglected. Another state-space 
model of MMC that was based on dynamic phasors was built in dq coordinate frame [14,15], but this 
modeling method needs to take park transformations at different frequencies which makes the 
modeling process complicated. Additionally, this model only contained the internal harmonics but 
ignored the external harmonics, which would exist on the ac side and dc side of MMC and produce 
influence on the internal harmonics. Reference [16] raised a dynamic phasor model method of MMC 
that was only applied to open-loop control. However, it required listing all of the relationships among 
the considered harmonic frequencies in advance; therefore, this method is not suitable for extending 
to higher harmonic frequencies. Additionally, it also neglected the external harmonics. The idea of 
multiple harmonic linearization was used in [17] to obtain the small signal model of MMC with single 
current loop. However, this modeling process neglected the harmonics of dc side. Moreover, this 
small signal model did not have enough equations to solve the value of state variables, so it is only 
suitable for deriving the relative relationships, such as the output impedance of MMC. Therefore, it 
is necessary to propose a small signal modeling method of MMC, which takes the dynamic 
characteristics of both internal and external harmonics into account and establishes a complete model 
of MMC while considering the inner and outer control loops. The harmonic state-space (HSS) 
modeling method could characterize the frequency coupling mechanism of harmonics, and it has 
been successfully used in two/three-level VSCs [18–21]. The HSS method is also applicable to model 
the ac side impedance of MMC [22], showing a satisfactory result. However, this small-signal 
impedance model only contributes to the stability analysis of the interconnected systems [23]. Thus, 
it could not be used as a tool to estimate the stability of MMC itself. 

In the MMC-based HVDC system, grid-side MMC often adopts dc voltage control mode. 
Therefore, this paper develops a precise small signal model of MMC under dc voltage control mode 
based on the HSS method in frequency domain, while considering both internal and external 
harmonic dynamics, as well as the interactions. Additionally, the stability of the system and the 
influence of controller parameters are then analyzed with the pacification factor method and 
eigenvalue analysis method. 

This paper follows the steps below, which are shown in Figure 1, in order to analyze the stability 
of MMC system. First, a model of MMC main circuit and control system are established; Second, the 
MMC state-space equation in time-domain is established. Next, the state-space equations are 
transformed into linear time-invariant form in frequency-domain. Finally, MMC dynamic response, 
root locus, and stability based on small signal state-space equation are analyzed. 
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Figure 1. Basic structure of modular multilevel converter (MMC). 

When compared with the traditional state-space equation, the signal x(t) is expressed as an 
exponentially modulated periodic (EMP) signal to represent harmonic of different orders in the tome 
domain in Step 3 of Figure 1. On the other hand, because the MMC control system and electrical 
system are coupled with each other and control loops are coupled with each other, the Toeplitz matrix 
Γ(A) is applied to express the coupling of state variables with different frequencies in Step 3. 
Therefore, as compared with the traditional state-space model, the MMC small signal model that is 
based on harmonic state-space in this paper makes the analysis of dynamic characteristics, steady-
state characteristics, and stability of MMC more accurate. 

The rest of this paper is organized, as follows. Section 2 introduces the basic topology and 
operation theory of MMC and it derives the state-space equations in time domain. Section 3 builds 
the steady-state model and the small signal model of MMC based on the HSS method in open-loop 
control mode and dc-voltage control mode, respectively. Section 4 uses the eigenvalues and 
participation factors of the established HSS small signal model to analyze the stability of a dc-voltage 
controlled MMC system and the influence of controller parameters on the stability of the system. 
Section 5 provides a case study of dc voltage-mode controlled MMC, and the simulation result 
verifies the validity of theoretical analyses. Section 6 concludes the work of this paper. 

2. Basic Theory of MMC 

Figure 2 shows the basic structure of MMC. The converter consists of three phases, and each 
phase consists of one upper arm and one lower arm connected in series between two dc terminals. 
Each arm has N series-connected half-bridge submodules (SM) and one arm inductor L, the 
equivalent parasitic resistance of which is R. CSM is capacitance of submodule capacitors, whose 
nominal voltages are all Udc/N. 
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Figure 2. Basic structure of MMC. 

Figure 3 shows the control block diagram of MMC. The control system of MMC is divided into 
outer loop and inner loop, where outer loop is dc voltage control loop and inner loop is current 
control loop. 

In outer control loop, the difference of dc voltage reference value and actual dc voltage value 
goes through a PI controller and generates current reference value in d axis. Inner control loop adopts 
the basic dq decoupling control strategy, as shown in Figure 3, where idref and iqref are d-axis and q-axis 
current reference values, respectively. idref is given by the outer dc voltage control loop and iqref is 0. 
The differences between the current reference values and actual current values go through PI 
controllers, dq inverse transformation, and nearest level approximation modulation (NLM) and 
modulation function in abc reference frame are finally generated. 

 
Figure 3. Control block diagram of MMC. 

When the MMC operates in steady state, while assuming that capacitance voltages of all 
submodules are perfectly balanced, the average equivalent circuit of one phase could be constructed, 
as in Figure 4 [8]. Additionally, Carm is the equivalent capacitance of one arm, where Carm = CSM/N. The 
switching functions of upper and lower arms are Su and Sl respectively. vs is the ac side phase voltage 
of the converter, and Vdc is the dc terminal voltage. v∑cu and v∑cl are the sum of the capacitor voltages 
of the upper and lower arms, respectively. 
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Figure 4. The average equivalent circuit of one phase of MMC. 

In Figure 4, the average switching functions of upper arm Su and lower arm Sl are defined as: 
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where is is ac side phase current of the converter and ic = (iu + il)/2, which refers to the circulating 
current flowing through the upper and lower arms of the converter at the same time. 

Note that the dc component of ic is Ic0, and then the dc side current Idc can be expressed as: 
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The above state-space equation of MMC indicates a nonlinear time periodic (NLTP) system. The 
detailed derivation process of converting this system into a linear time-invariant (LTI) system with 
the HSS method will be shown in the following section. 

3. Small Signal Modeling of MMC Based on HSS 

3.1. HSS-Based Large Signal Model of MMC Power Stage 

Any time-varying periodic signal y(t) can be described as the form of Fourier series expansion: 
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=   (14) 

where ω1 = 2π/T1 and T1 is the fundamental period of the periodic signal, and h is the harmonic order. 
Specially, the state variable x(t) is written as an exponentially modulated periodic (EMP) signal 

to represent the transient evolution of the harmonics: 
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where s = σ + jω is used to modulate the Fourier coefficient for extracting the transient response of 
harmonic components [18]. 

Based on the transformations (14) and (15), the NLTP state-space model in (10) of single phase 
of MMC in time-domain can be expressed as a LTI HSS model in the frequency-domain [19–21]: 
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where Xn, Un are, respectively, the nth Fourier coefficient of state variable x(t) and input variable u(t), 
and n = −h, … −1,0,1, … , h. 
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where Icn is the nth Fourier coefficient of ic(t), and V∑cun is the nth Fourier coefficient of v∑cuo(t). Other 
parameters have similar meanings, which are not explained repeatedly here. 

Γ(A) and N in (16) are expressed as: 
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Γ(A) is a Toeplitz matrix form of A, as shown in (19), which consists of the Fourier series of the 
matrix A, where An is the nth Fourier coefficient of A (n = −h,…,-1,0,1,…,h). O in (19) is zero matrix. I 
in (20) is the identity matrix, which has the same order as A. 
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Γ(B) in (16) is a Toeplitz matrix form of B, being similar to (19), which consists of the Fourier 
series of the matrix B, where Bn is the nth Fourier coefficient of B. 

When n = 0, 
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Equation (16) represents the steady-state model of single phase of MMC that is based on the HSS 
method, which is linearized from (10) and is a LTI system. Therefore, the stability of MMC can be 
analyzed with the classical control theory. This HSS model can not only obtain the information of the 
0–hth harmonics, but also reflect the interactions between the harmonics. 

Letting the left side of (16) to be zero, the steady-state solution of HSS model of MMC can be 
calculated by: 

1( ( ) ) ( )A N B−= −Γ + Γx u  (25) 
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where the frequency-domain values of state variables can be obtained. Referring to (14), the time-
domain values of ico(t), v∑cuo(t), v∑clo(t), and iso(t) can be solved. 

3.2. HSS-Based Small Signal Model of MMC with Open-loop Control 

Based on Equations (3)–(6), the small-signal model of MMC around an operation trajectory 
(characterized by mo(t), v∑cuo(t), v∑clo(t), iso(t)) can be derived as: 
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In open-loop control mode, the modulation signal m(t) is directly given, so it could serve as an 
input variable in the state-space model. While combining Equations (26)–(29), the small signal model 
of MMC in open-loop control mode, which is also the model of power stage of MMC, can be 
represented as: 
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where ico(t), v∑cuo(t), v∑clo(t), and iso(t) represent the steady operation point of MMC, which can be solved 
from Equation (25). 

By converting Equation (30) into a HSS equation, the small signal model of MMC with open-
loop control mode can be expressed as: 

( ( ) ) ( )s ss A N B= Γ − + ΓΔx Δx Δu  (34) 

where 
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Γ(As) is the Toeplitz matrix form of As, and Γ(Bs) is the Toeplitz matrix form of Bs. The elements in (35), 
such as Δxn, Δun, Asn, and Bsn are the nth Fourier coefficients of Δx(t), Δu(t), As(t), Bs(t), and n = −h, … , 
−1,0,1, … , h. 

3.3. HSS-Based Small Signal Model of MMC with DC-Voltage Control 

DC-voltage control is commonly used in an MMC-based HVDC system to maintain the dc bus 
voltage. Figure 5 shows the control structure, which contains outer dc-voltage control loop, inner 
current control loop, and phase-locked loop (PLL), where Udc and Udcref are the dc side voltage of MMC 
and its reference value, respectively. Isd, Isq are the values of MMC ac side current in dq coordinate 
system. Vsd, Vsq are the values of MMC ac side voltage in dq coordinate system, and Md, Mq are the 
values of modulation signal in dq coordinate system. ω1 is the fundamental angular frequency of 314.1 
rad/s, and θ is the output phase angle of PLL. H1(s), H2(s), and H3(s) are the PI controllers of dc voltage 
control, current control, and PLL control, respectively. kid is the decoupling coefficient. The effect of 
small signal disturbance on PLL can be neglected when the converter is integrated with a strong 
enough ac grid [24]. Therefore, the small signal model of MMC in this paper does not take the effect 
of PLL into account. 

 
Figure 5. DC-voltage control structure of MMC. 
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=  (39) 

From Equation (38), the relationships between Isd, Isq, the amplitude I, and the phase angle φ of 
phase A current are: 

sin
cos

sd

sq

I I
I I

ϕ
ϕ

= −
 =

 (40) 

Combining Equations (14), (36) and (40), Equation (36) in time-domain can be represented in the 
frequency-domain: 

1 1 1

2 1 1

i s s

i s s

sx jI jI
sx I I

+ −

+ −

= −
 = +

 (41) 

According to inverse Park transformation matrix, Δmi(t) could be calculated as: 

1
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1

1 1 1 1 1
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（

（

 (42) 

where the inverse Park transformation matrix Tdq−1 is: 

1

1 1
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1 1

sin( ) cos( ) 1
2 2sin( ) cos( ) 1
3 3

2 2sin( ) cos( ) 1
3 3

dq
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π πω ω

-
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 (43) 

According to the complex form of Fourier expansion, the ±1st coefficients of Δmi(t) are: 

1 1 1

1 1 1

1
2 2

1
2 2

i d q

i d q

jm M M

jm M M

+

−

Δ = − ⋅ Δ + ⋅ Δ
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 (44) 

Substituting (37) and (41) into (44) the ±1st coefficients of Δmi(t) are: 

1 2 1 2 1 2 2
1 2 3

1 2 1 2 1 2 2
1 2 3

1( )
2 2

1( )
2 2

i p id s i i i i

i p id s i i i i

jm k jk I k x k x

jm k jk I k x k x

+ +

- -

ìïïD =- + D + D - DïïïïïïíïïD =- - D - D - Dïïïïïïî

  

  

 (45) 
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3.3.2. Small Signal Model of Outer DC-Voltage Control Loop 

As shown in Figure 5, the difference between the actual value of the dc voltage and the reference 
value would pass through the outer loop PI controller and then the inner loop PI controller, 
producing small signal insertion index ΔMd2 in d axis. Two additional state variables xv1, xv2 are 
introduced to achieve the integral operation of dc components for two integral components: 

1
1

2
2 1 1 1 1 1 1

( )

[ ( ) ] ( )

v
v dcref dc dcref dc

v
v p dcref dc i v p dcref dc i v

dxx U U dt U U
dt

dxx k U U k x dt k U U k x
dt

 = −  = −

 = − + ⋅  = − +





 (46) 

where kp1 and ki1 are the proportional and integral coefficients of the PI controllers in outer DC voltage 
control loop, respectively. Afterwards, the output control signal ΔMd2 is: 

2 2 1 1 1 2 2[ ( ) ]d p p dcref dc i v i vM k k U U k x k xΔ = − ⋅ Δ − Δ + Δ − Δ  (47) 

According to inverse Park transformation matrix, the control signal Δmv(t) of phase A in abc 
coordinate system can be obtained from 

1

2 1
2

2 1

2 1

sin( )

0 cos( )
6

0
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6

dq

d
d

d

d

M tM
T M t

M t

ω
πω

πω

−

 
 ΔΔ   

   ⋅ = −Δ −   
    

 Δ +
  

 (48) 

According to the complex form of Fourier expansion, the ±1st coefficients of Δmv(t) are: 

1 2

1 2

2

2

v d

v d

jm M

jm M

+

−

Δ = − ⋅ Δ

 Δ = ⋅ Δ


 (49) 

Assume the equivalent impedance on the dc side is ZL. According to Equation (9), ΔUdc is 

03dc dc L c LU I Z I ZΔ = Δ = − Δ  (50) 

Substituting (47) and (50) into (49), the ±1st coefficients of Δmv(t) can be represented, as follows: 

1 2 1 2 1 0 2 1 1 2 2

1 2 3 4

1 2 1 2 1 0

1 2

3
2 2 2 2

3
2 2

v p p dcref p p L c p i v i v

v p p dcref p p L c

j j j jm k k U k k Z I k k x k x

j jm k k U k k Z I

+

-

D = D + D + D + D

D =- D - D

   

 
2 1 1 2 2

3 4
2 2p i v i v
j jk k x k x

ìïïïïïïïïíïï - D - Dïïïïïïî
 

 (51) 

3.3.3. Small Signal Model of DC-Voltage Controlled MMC 

The models of control system and open-loop system need to be integrated into one state-space 
equation in order to establish the small signal model of the entire closed-loop system of MMC. 

The state variables of the closed-loop system of MMC include four state variables of power stage 
(Δic, Δv∑cu, Δv∑cl, Δis) and four state variables of control system (Δxi1, Δxi2, Δxv1, Δxv2): 

1 2 1 2( ) ( ) ( ) ( ) ( ) T
c cu cl s i i v vx t i t v t v t i t x x x x Δ = Δ Δ Δ Δ Δ Δ Δ Δ    (52) 

The input variables of the closed-loop system of MMC are the same as the input variables of the 
power stage of MMC: 

( ) [ ( )]Tc dcref su t U v tΔ = Δ Δ  (53) 

By combining the equations of control system (36), (45), (46) and (51) with the HSS model of 
power stage in (34), the HSS model of the entire closed-loop system can be expressed as: 
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( )c c cs N= − +Δx A Δx B Δu  (54) 

where: 
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(57) 

Additionally, N is the same as (20). 
The variables Δxi1, Δxi2, Δxv1, Δxv2, and ΔUdcref in (55) are all dc components. When these variables 

are transformed into Fourier series, they only have values at the frequency of 0 Hz, and the 
components of other frequencies are zero. 

The control signals Δmi+1, Δmi−1, Δmv+1, and Δmv−1 in (56) are added to the system matrix Ac, and 
they are only related to the matrix components A0O, A0P, A0N, A−1O, A−1N, A1O, and A1P. The other matrix 
components A0, A+1, A−1, A+2, A−2 … are only dependent on the main circuit of MMC. Subsequently, 
the specific expressions of these matrix are presented in the Appendix. 

Similarly, for the input matrix Bc, as shown in (57), the controlling signals Δmv+1 and Δmv−1 need 
to be added into the matrix, and they are only related to the matrix components B0O, B+1O, and B−1O. 
The specific expressions are also presented in the Appendix A. 

In general case, circulating current mainly contains dc and second harmonic components and 
the capacitor voltages mainly contains dc, fundamental, second and third harmonic components. 
Therefore, the harmonic order considered in the HSS model is h = 3. 

4. Stability Analysis Based on the HSS-Based Small Signal Model 

Table 1 shows the main parameters of the studied MMC. It is worth mentioning that the number 
of modules in one arm is 20 to reduce the simulation time. Figure 5 shows the MMC operates in dc 
voltage control mode. Firstly, the outer loop controller parameters are set as kp1 = 0.87 and ki1 = 10, the 
inner loop controller parameters are set as kp2 = 0.019 and ki2 = 0.057. It needs to be noted that, since 
the four state variables of control system Δxi1, Δxi2, Δxv1, and Δxv2 only have values at the frequency 
of 0 Hz, they do not have significance at other frequencies (−3ω1, −2ω1, −1ω1, 1ω1, 2ω1, 3ω1). Thus, there 
are always 24 eigenvalues at the origin (0, j0), having no effect on the stability analysis of the system. 
After calculation, it is confirmed that in addition to these 24 eigenvalues, there is another eigenvalue 
that is located at the origin. Therefore, these 25 eigenvalues will not be discussed in this paper. 
Additionally, other eigenvalues are plotted as shown in Figure 6. It can be seen that all eigenvalues 
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are on the left half plane of the complex plane, which indicated that the MMC system is stable with 
these controller parameters. 

Table 1. The main parameters of MMC in calculation and simulation. 

Parameter Value 
DC side voltage Udc/V 700 
AC side voltage vs/V 310 

Number of SMs on one arm  20 
Arm inductance L/mH 15 
Arm resistance R/mΩ 0.1 
SM capacitor CSM /μF 7200 

 
Figure 6. Calculated eigenvalues of the system matrix when kp1 = 0.87, ki1 = 10, kp2 = 0.019, and ki2 = 0.057. 

The concept of oscillation mode is introduced, that is, a real root or a pair of conjugate complex 
roots represent one oscillation mode of the system in order to further analyze the eigenvalues. 
Additionally, the participation factor analysis is introduced to analyze the interaction between state 
variables and oscillation modes. The participation factor of the kth state variable in the ith oscillation 
mode of the system can be calculated by [25]: 

Φ Ψ=ki ki ikP  (58) 

where Φki is the element in the kth row and ith column of the right eigenvector matrix, and Ψik is the 
element in the ith row and kth column of the left eigenvector matrix. 

Table 2 lists the oscillation modes of the MMC systems and their main participating state 
variables, according to the value of the participation factors. 

Table 2. The oscillation modes of the MMC systems and their main participating state variables. 

Oscillation 
Mode 

Eigenvalue Oscillation 
Frequency (Hz) 

Participating 
State Variable 

1 λ1,2 = −141.617724 ± 427.494287i 68.037 Δic0 
2 λ3,4 = −0.003333 ± 529.349354i 84.248 Δic1 
3 λ5,6 = −0.003333 ± 99.017871i 15.759 Δic1 
4 λ7,8 = −13.492959 ± 413.017170i 65.733 Δic2 
5 λ9,10 = −15.070545 ± 827.734452i 131.738 Δic2 
6 λ11,12 = −0.003333 ± 757.351868i 120.536 Δic3 
7 λ13,14 = −0.003333 ± 1187.683351i 189.025 Δic3 
8 λ15,16 = −0.003333 ± 215.165741i 34.244 Δis0 
9 λ17,18 = −777.873222 ± 564.833532i 89.896 Δis1 

10 λ19,20 = −0.003333 ± 414.542740i 65.976 Δis2 
11 λ21,22 = −0.003333 ± 844.874223i 134.465 Δis2 
12 λ23.24 = −0.157052 ± 756.783394i 120.445 Δis3 
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13 λ25,26 = −0.628342 ± 1187.336919i 188.970 Δis3 
14 λ27,28 = −13.608391 ± 176.910594i 27.691 Δucu0, Δucu1, Δucl0, Δucl1 

15 λ29,30 = −3.728758 ± 2.717311i 0.432 Δxv11 
16 λ31 = −2.47713152442756  0 Δxv21 

Δicn, Δisn, Δucun, Δucln, Δxv1n, Δxv2n is nth harmonic component of Δic(t), Δis(t), Δucu(t), Δucl(t), Δxv1(t), 
Δxv2(t), respectively, and n = 0, 1, 2, 3. 

Eigenvalue loci when kp1 and kp2 changes are shown in Figure 7a,b, respectively, to analyze the 
effect of the controller parameters on the stability of MMC. When increasing the parameter kp1 of 
outer voltage loop with other parameters unchanged, as shown in Figure 7a, oscillation modes 2, 3, 
6, 7, 8, 10, 11 remain unchanged, which means that these eigenvalues are not affected by the change 
of kp1 and most of other oscillation modes move to the right. As kp1 gradually increases, oscillation 
modes 4, 12, 14, 15 move horizontally to the right whose imaginary parts are nearly unchanged. 
Additionally, when kp1 is 1.57, oscillation mode 14 firstly moves to the right half plane, which causes 
the instability of the system. For example, when kp1 = 2.87, the eigenvalues of oscillation mode 14 are 
(4.196 ± j176.9). The corresponding oscillation period is 2π/176.9 = 0.0355 s. 

Based on the analysis of participation factor, the oscillation mode 14 is strongly related to the dc 
component of the submodule capacitor voltage. It indicates that the instability is due to the change 
of proportional coefficient kp1 of the outer dc voltage controller, which affects the dc component of 
submodule capacitor voltage, in turn causing oscillation mode 14 to move to the right half plane and 
causes instability. 

Only the eigenvalues whose imaginary parts remain unchanged could cross into the right half 
plane, even if kp1 continues to increase. This indicates that with the dc-voltage control mode, the 
change of controller parameter kp1 will not change the unstable oscillation frequency of the MMC 
system. 

 
(a) 

 
(b) 

Figure 7. Eigenvalue loci (a) when kp1 is increasing. (b) When kp2 is increasing. 

When increasing the proportional coefficient kp2 of inner current control loop with other 
parameters unchanged, as shown in Figure 7b, oscillation modes 2, 3, 6, 7, 8, 10, 11 remain unchanged, 
which means that these eigenvalues will not be affected by the change of kp2, and most of other 
oscillation modes move to the right. As kp2 gradually increases, oscillation modes 5, 12, 13, and 15 
move horizontally to the right, whose imaginary parts are nearly unchanged. Additionally, when kp2 
is 0.042, oscillation mode 12 firstly moves to the right half plane, which causes the instability of the 
system. For example, when kp2 = 0.16, eigenvalues of oscillation mode 12 are (0.107 ± j756.8). The 
corresponding oscillation period is 2π/756.8 = 0.0083 s. 

The oscillating modes 12 is related to the third frequency component of the ac side current based 
on the analysis of participation factors. It indicates that the instability is due to the change of 
proportional coefficient kp2 of inner current controller, which affects the third frequency component 
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of the ac side current, in turn causing the oscillation mode 12 to move to the right half plane and 
cause instability. 

Even if kp2 continues to increase, only the eigenvalues whose imaginary parts remain unchanged 
could cross into the right half plane, which indicated that with the dc-voltage control mode, the 
change of controller parameter kp2 will also not change the unstable oscillation frequency of the MMC 
system. 

5. Simulation Verifications 

The small signal model of MMC that is based on HSS method is built in m. file in MATLAB and 
the considered order is set to be 3 in the model. Time-domain simulations are carried out in the 
MTLAB/Simulink and parameters adopted are as shown in Table 1 to validate the theoretical 
analysis. 

5.1. Open-Loop Control Mode 

When MMC operates in open-loop control mode and the reference of m(t) has a step change 
from 0.885sin(ω1t + φ) to 0.87sin(ω1t + φ) at 3 s, the transient response of ic(t) is presented in Figure 8a 
and the zoom-in view is shown in Figure 8b, showing good agreement between the small-signal 
model and the simulation results. 

 
(a) 

 
(b) 

Figure 8. Step response comparison of ic(t) with open-loop control mode. (a) Zoom-out view of ic(t). 
(b) Zoom-in view of ic(t). 

Figure 9 shows the harmonic components of Δic(t) with open-loop control mode, which indicated 
that fundamental component’s change of m(t) would result in both dc and second harmonic 
components’ changes of ic(t), which proves that the small-signal model that is presented in this paper 
could reflect the internal harmonic interactions of MMC. 

 
Figure 9. Harmonic components of Δic(t) with open loop control mode. 
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5.2. DC-Voltage Control Mode 

When MMC operates in dc-voltage control mode and the dc voltage reference value Udcref has a 
step change from 700 V to 735 V at 3 s, the transient response of ic(t) is presented in Figure 10a, and 
the transient response of v∑cu(t) is presented in Figure 10b, all showing good agreement between the 
small-signal model and simulation results, thus verifying the accuracy of the modeling presented in 
this paper. 

(a) (b) 

Figure 10. Step response comparison of (a) ic(t) with dc voltage control mode. (b) v∑cu(t) with dc 
voltage control mode. 

The outer loop controller parameter kp1 is first changed to 2.87 o verify the predicted oscillation 
period with different parameters, while other parameters remain unchanged in the simulation model. 
Figure 11 shows the simulation waveform of ic(t) with kp1 = 2.87. It can be seen that the MMC system 
is unstable and the measured oscillation period of ic(t) is approximately 0.032 s, which is almost 
consistent with the predicted oscillation period 2π/176.9 = 0.0355 s in Section 4. 

 
Figure 11. Simulation waveform of ic(t) with kp1 = 2.87 while other parameters remain unchanged. 

Subsequently, the inner loop controller parameter kp2 is changed to 0.162, while other parameters 
in the simulation model remain unchanged. Figure 12 shows the simulation waveform of ic(t) with 
kp2 = 0.162. It can be seen that the MMC system is unstable, and the measured oscillation period of ic(t) 
is about 0.009 s, which is almost consistent with the predicted oscillation period 2π/756.8 = 0.0083 s 
in Section 4. 
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Figure 12. Simulation waveform of ic(t) with kp2 = 0.162 while other parameters remain unchanged. 

6. Conclusions 

An accurate and complete small signal model of MMC with dc voltage control mode that is 
based on the HSS modeling method is derived, which considers the internal and external harmonic 
interactions, thus achieving higher accuracy. Subsequently, through the analysis of the eigenvalues, 
participation factors, and the calculation of oscillation frequencies under different controller 
parameters, the effect of controller parameters on the stability of MMC is studied and the following 
conclusions can be drawn. Besides, the time-domain simulation built in MATLAB/Simulink verifies 
the accuracy of the HSS-based MMC model and validity of stability analysis. 

(1) When MMC operates with dc-voltage control mode, either too large outer loop proportional 
coefficient kp1 or inner loop proportional coefficient kp2 might cause the system unstable. 

(2) The too large proportional coefficient kp1 of outer dc voltage control loop will cause an oscillation 
mode with certain frequency, while the too large proportional coefficient kp2 of inner current 
control loop will cause another oscillation mode with another certain frequency. 
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Appendix A 

A0 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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A0O represents the relationship between sΔx0 and Δx0. According to (46) and (50), ΔUdc, sΔxv1 are 
related to ΔIc0, and sΔxv2 is related to both ΔIc0 and Δxv1. Thus A0O could be noted as: 
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1 1
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2 4 4
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A0N, A0P represent the relationship between sΔx−1 and Δx−1, sΔx+1 and Δx+1 respectively. According 
to (45), the first part of Δmi+1 is related toΔIs+1 and the first part of Δmi−1 is related to ΔIs−1. Therefore, 
A0N and A0P are noted as: 
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 (A4) 

A+1 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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A+1N represents the relationship between sΔx0 and Δx−1. According to (41), sΔxi1 and sΔxi2 are both 
related to ΔIs−1. Thus A+1N could be noted as: 
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 (A6) 

A+1O represents the relationship between sΔx+1 and Δx0. According to (45) and (51), the second 
part of Δmi+1 is related to Δxi1 and the third part of Δmi+1 is related to Δxi2; the second, third and fourth 
part of Δmv+1 are related to ΔIc0, Δxv1, Δxv2 respectively. The specific expression of A+1O is presented as: 
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(A7) 

A−1 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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 (A8) 

A−1P represents the relationship between sΔx0 and Δx+1. According to (41), sΔxi1 and sΔxi2 are both 
related to ΔIs+1. Thus A−1P could be noted as: 
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A−1O represents the relationship between sΔx−1 and Δx0. According to (45) and (51), the second 
part of Δmi−1 is related to Δxi1 and the third part of Δmi−1 is related to Δxi2; the second, third and fourth 
part of Δmv−1 are related to ΔIc0, Δxv1, Δxv2 respectively. The specific expression of A−1O is: 
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(A10) 

A+2 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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A−2 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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 (A12) 

B0 and B±h are determined by the main circuit of MMC and does not involve the closed-loop 
control part, which are: 
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 (A14) 

B0O represents the relationship between sΔx0 and Δu0. According to (46), sΔxv1 and sΔxv2 are 
related to ΔUdcref. Thus B0O could be noted as: 
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 (A15) 

B+1O represents the relationship between sΔx+1 and ΔUdcref. According to (51), the first part of Δmv+1 
is related to ΔUdcref. Thus B+1O could be noted as: 
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 (A16) 

B−1O represents the relationship between sΔx−1 and ΔUdcref. According to (51), the first part of Δmv−1 
is related to ΔUdcref. Thus B−1O could be noted as: 
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