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Abstract: The stability of Modular multilevel converter (MMC) itself is the premise of analyzing
the stability of MMC cascading with other cells, so this paper addressed the small-signal stability
of MMC with dc voltage control mode which is the common operation mode of grid-side MMC in
high-voltage direct current (HVDC) systems. First, the small signal model of MMC with open-loop
control mode and dc voltage control mode while considering the dc voltage controller and current
controller are established with the harmonic state-space (HSS) modeling method. Subsequently,
eigenvalues and participation factors are analyzed to estimate the stability of MMC system and the
influence of controller parameters, especially the proportional coefficients of dual-loop controllers,
which can improve the design efficiency of control system. Finally, time-domain simulations in
MATLAB/Simulink are provided to verify the accuracy of HSS small signal model and the effectiveness
of the theoretical stability analysis.

Keywords: modular multilevel converter; small-signal model; harmonic state-space; stability analysis;
participation factor

1. Introduction

Modular multilevel converter (MMC) topology was first introduced in 2003 [1,2] and it has
been widely used in high voltage and high power applications, due to its advantages of modularity,
scalability, and power controllability. The stability of MMC itself is a significant premise to study
the stability of MMC cascading with other cells, e.g., wind farm, PV inverters, weak grid, and so
on. While the key is the modeling of MMC itself. However, MMC is characterized by the obvious
internal dynamics in sub-module capacitor voltages and arm currents [3,4], which makes its modeling
considerably more complicated than the conventional two/three-level voltage source converters (VSCs).
Most of the initial researches [5–8] used the average model, which neglected these internal harmonic
characteristics in the modeling process and only obtained the simplified mathematical equations of
MMC in fundamental frequency.

Many scholars recently have done deep studies about the modeling of MMC to achieve high
accuracy of small signal model of MMC. The state-space model of MMC based on dynamic phasors
contains the internal dynamics, which is often used to model a nonlinear time-varying system as
a linear time-invariant system [9–12]. The small signal state-space model of MMC with dual-loop
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controllers and circulating current suppression controller in dq coordinate frame was established in [13].
However, only the second harmonic components of submodule capacitor voltages were considered
and harmonics of other variables, e.g., arm currents, were neglected. Another state-space model of
MMC that was based on dynamic phasors was built in dq coordinate frame [14,15], but this modeling
method needs to take park transformations at different frequencies which makes the modeling process
complicated. Additionally, this model only contained the internal harmonics but ignored the external
harmonics, which would exist on the ac side and dc side of MMC and produce influence on the internal
harmonics. Reference [16] raised a dynamic phasor model method of MMC that was only applied to
open-loop control. However, it required listing all of the relationships among the considered harmonic
frequencies in advance; therefore, this method is not suitable for extending to higher harmonic
frequencies. Additionally, it also neglected the external harmonics. The idea of multiple harmonic
linearization was used in [17] to obtain the small signal model of MMC with single current loop.
However, this modeling process neglected the harmonics of dc side. Moreover, this small signal model
did not have enough equations to solve the value of state variables, so it is only suitable for deriving
the relative relationships, such as the output impedance of MMC. Therefore, it is necessary to propose
a small signal modeling method of MMC, which takes the dynamic characteristics of both internal
and external harmonics into account and establishes a complete model of MMC while considering the
inner and outer control loops. The harmonic state-space (HSS) modeling method could characterize
the frequency coupling mechanism of harmonics, and it has been successfully used in two/three-level
VSCs [18–21]. The HSS method is also applicable to model the ac side impedance of MMC [22],
showing a satisfactory result. However, this small-signal impedance model only contributes to the
stability analysis of the interconnected systems [23]. Thus, it could not be used as a tool to estimate the
stability of MMC itself.

In the MMC-based HVDC system, grid-side MMC often adopts dc voltage control mode. Therefore,
this paper develops a precise small signal model of MMC under dc voltage control mode based on the
HSS method in frequency domain, while considering both internal and external harmonic dynamics,
as well as the interactions. Additionally, the stability of the system and the influence of controller
parameters are then analyzed with the pacification factor method and eigenvalue analysis method.

This paper follows the steps below, which are shown in Figure 1, in order to analyze the stability
of MMC system. First, a model of MMC main circuit and control system are established; Second,
the MMC state-space equation in time-domain is established. Next, the state-space equations are
transformed into linear time-invariant form in frequency-domain. Finally, MMC dynamic response,
root locus, and stability based on small signal state-space equation are analyzed.

When compared with the traditional state-space equation, the signal x(t) is expressed as an
exponentially modulated periodic (EMP) signal to represent harmonic of different orders in the tome
domain in Step 3 of Figure 1. On the other hand, because the MMC control system and electrical
system are coupled with each other and control loops are coupled with each other, the Toeplitz
matrix Γ(A) is applied to express the coupling of state variables with different frequencies in Step 3.
Therefore, as compared with the traditional state-space model, the MMC small signal model that is
based on harmonic state-space in this paper makes the analysis of dynamic characteristics, steady-state
characteristics, and stability of MMC more accurate.

The rest of this paper is organized, as follows. Section 2 introduces the basic topology and
operation theory of MMC and it derives the state-space equations in time domain. Section 3 builds the
steady-state model and the small signal model of MMC based on the HSS method in open-loop control
mode and dc-voltage control mode, respectively. Section 4 uses the eigenvalues and participation
factors of the established HSS small signal model to analyze the stability of a dc-voltage controlled
MMC system and the influence of controller parameters on the stability of the system. Section 5
provides a case study of dc voltage-mode controlled MMC, and the simulation result verifies the
validity of theoretical analyses. Section 6 concludes the work of this paper.
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Figure 1. Basic structure of modular multilevel converter (MMC). 

When compared with the traditional state-space equation, the signal x(t) is expressed as an 
exponentially modulated periodic (EMP) signal to represent harmonic of different orders in the tome 
domain in Step 3 of Figure 1. On the other hand, because the MMC control system and electrical 
system are coupled with each other and control loops are coupled with each other, the Toeplitz matrix 
Γ(A) is applied to express the coupling of state variables with different frequencies in Step 3. 
Therefore, as compared with the traditional state-space model, the MMC small signal model that is 
based on harmonic state-space in this paper makes the analysis of dynamic characteristics, steady-
state characteristics, and stability of MMC more accurate. 

The rest of this paper is organized, as follows. Section 2 introduces the basic topology and 
operation theory of MMC and it derives the state-space equations in time domain. Section 3 builds 
the steady-state model and the small signal model of MMC based on the HSS method in open-loop 
control mode and dc-voltage control mode, respectively. Section 4 uses the eigenvalues and 
participation factors of the established HSS small signal model to analyze the stability of a dc-voltage 
controlled MMC system and the influence of controller parameters on the stability of the system. 
Section 5 provides a case study of dc voltage-mode controlled MMC, and the simulation result 
verifies the validity of theoretical analyses. Section 6 concludes the work of this paper. 

2. Basic Theory of MMC 

Figure 2 shows the basic structure of MMC. The converter consists of three phases, and each 
phase consists of one upper arm and one lower arm connected in series between two dc terminals. 
Each arm has N series-connected half-bridge submodules (SM) and one arm inductor L, the 
equivalent parasitic resistance of which is R. CSM is capacitance of submodule capacitors, whose 
nominal voltages are all Udc/N. 
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Figure 1. Basic structure of modular multilevel converter (MMC).

2. Basic Theory of MMC

Figure 2 shows the basic structure of MMC. The converter consists of three phases, and each phase
consists of one upper arm and one lower arm connected in series between two dc terminals. Each arm
has N series-connected half-bridge submodules (SM) and one arm inductor L, the equivalent parasitic
resistance of which is R. CSM is capacitance of submodule capacitors, whose nominal voltages are all
Udc/N.Energies 2020, 13, 1056 4 of 23 
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outer loop and inner loop, where outer loop is dc voltage control loop and inner loop is current 
control loop. 
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Figure 2. Basic structure of MMC.

Figure 3 shows the control block diagram of MMC. The control system of MMC is divided into
outer loop and inner loop, where outer loop is dc voltage control loop and inner loop is current
control loop.
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Figure 3. Control block diagram of MMC.

In outer control loop, the difference of dc voltage reference value and actual dc voltage value
goes through a PI controller and generates current reference value in d axis. Inner control loop adopts
the basic dq decoupling control strategy, as shown in Figure 3, where idref and iqref are d-axis and
q-axis current reference values, respectively. idref is given by the outer dc voltage control loop and
iqref is 0. The differences between the current reference values and actual current values go through
PI controllers, dq inverse transformation, and nearest level approximation modulation (NLM) and
modulation function in abc reference frame are finally generated.

When the MMC operates in steady state, while assuming that capacitance voltages of all
submodules are perfectly balanced, the average equivalent circuit of one phase could be constructed,
as in Figure 4 [8]. Additionally, Carm is the equivalent capacitance of one arm, where Carm = CSM/N.
The switching functions of upper and lower arms are Su and Sl respectively. vs is the ac side phase
voltage of the converter, and Vdc is the dc terminal voltage. v∑

cu and v∑
cl are the sum of the capacitor
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In Figure 4, the average switching functions of upper arm Su and lower arm Sl are defined as:

Su(t) =
1−m(t)

2
(1)

Sl(t) =
1 + m(t)

2
(2)

where m(t) is the modulation function of this phase: m(t) = 2vs(t)/Udc.
While applying Kirchhoff’s law to this one-phase circuit of MMC, the equations of the upper and

lower arms can be derived as:

Su(t) · v∑
cu(t) + R · iu(t) + L

diu(t)
dt

=
Udc

2
− vs(t) (3)

Sl(t) · v∑
cl(t) + L

dil(t)
dt

+ R · il(t) =
Udc

2
+ vs(t) (4)
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The dynamic performance of the submodule capacitors can be obtained as:

Carm
dv∑

cu(t)
dt

= Su(t) · iu(t) (5)

Carm
dv∑

cl(t)
dt

= Sl(t) · il(t) (6)

The arm currents of upper and lower arms can be represented as:

iu(t) = ic(t) +
is(t)

2
(7)

il(t) = ic(t) −
is(t)

2
(8)

where is is ac side phase current of the converter and ic = (iu + il)/2, which refers to the circulating
current flowing through the upper and lower arms of the converter at the same time.

Note that the dc component of ic is Ic0, and then the dc side current Idc can be expressed as:

Idc = −3Ic0 (9)

Substituting (7) and (8) into (3)–(6), the state-space equations of one-phase of MMC can be
expressed as:

.
x(t) = A(t) · x(t) + B · u(t) (10)

where
x(t) = [ ic(t) v∑

cu(t) v∑
cl(t) is (t)]

T

u(t) = [ Udc vs(t) ]
T (11)

A(t) =


−

R
L −

(1−m(t))
4L −

(1+m(t))
4L 0

(1−m(t))
2Carm

0 0 (1−m(t))
4Carm

(1+m(t))
2Carm

0 0 −
(1+m(t))

4Carm

0 −
(1−m(t))

2L
(1+m(t))

2L −
R
L

 (12)

B =

[ 1
2L 0 0 0
0 0 0 −

2
L

]T

(13)

The above state-space equation of MMC indicates a nonlinear time periodic (NLTP) system.
The detailed derivation process of converting this system into a linear time-invariant (LTI) system with
the HSS method will be shown in the following section.

3. Small Signal Modeling of MMC Based on HSS

3.1. HSS-Based Large Signal Model of MMC Power Stage

Any time-varying periodic signal y(t) can be described as the form of Fourier series expansion:

y(t) =
+∞∑

h=−∞

Yhe jhω1t (14)

where ω1 = 2π/T1 and T1 is the fundamental period of the periodic signal, and h is the harmonic order.
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Specially, the state variable x(t) is written as an exponentially modulated periodic (EMP) signal to
represent the transient evolution of the harmonics:

x(t) =
+∞∑

h=−∞

Xhe jhω1test (15)

where s = σ + jω is used to modulate the Fourier coefficient for extracting the transient response of
harmonic components [18].

Based on the transformations (14) and (15), the NLTP state-space model in (10) of single phase of
MMC in time-domain can be expressed as a LTI HSS model in the frequency-domain [19–21]:

sx = (Γ(A) −N)x + Γ(B)u (16)

where
x = [X−h, · · · , X−1, X0, X1, · · · , Xh]

T

u = [U−h, · · · , U−1, U0, U1, · · · , Uh]
T (17)

where Xn, Un are, respectively, the nth Fourier coefficient of state variable x(t) and input variable u(t),
and n = −h, . . . −1, 0, 1, . . . , h.

Xn = [ Icn V∑
cun V∑

cln Isn ]
T

Un = [ Udcn Vsn ]
T (18)

where Icn is the nth Fourier coefficient of ic(t), and V∑
cun is the nth Fourier coefficient of v∑

cuo(t).
Other parameters have similar meanings, which are not explained repeatedly here.

Γ(A) and N in (16) are expressed as:

Γ(A) =



A0 A−1 · · · A−h

A1
. . . . . . . . . . . . O

...
. . . A0 A−1

. . . . . .

Ah
. . . A1 A0 A−1

. . . A−h
. . . . . . A1 A0

. . .
...

O
. . . . . . . . . . . . A−1

Ah · · · A1 A0


(19)

N = diag[− jhω1I, · · · , 0, · · · , jhω1I] (20)

Γ(A) is a Toeplitz matrix form of A, as shown in (19), which consists of the Fourier series of the
matrix A, where An is the nth Fourier coefficient of A (n = −h, . . . , −1, 0, 1, . . . , h). O in (19) is zero
matrix. I in (20) is the identity matrix, which has the same order as A.

When n = 0,

A0 =


−

R
L −

1
4L −

1
4L 0

1
2Carm

0 0 1
4Carm

1
2Carm

0 0 −
1

4Carm

0 −
1

2L
1

2L −
R
L

 (21)
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When n , 0,

An =


0 −

(1−Mn)
4L −

(1+Mn)
4L 0

(1−Mn)
2Carm

0 0 (1−Mn)
4Carm

(1+Mn)
2Carm

0 0 −
(1+Mn)

4Carm

0 −
(1−Mn)

2L
(1+Mn)

2L 0

 (22)

Γ(B) in (16) is a Toeplitz matrix form of B, being similar to (19), which consists of the Fourier series
of the matrix B, where Bn is the nth Fourier coefficient of B.

When n = 0,

Bn =

[ 1
2L 0 0 0
0 0 0 −

2
L

]T

(23)

When n , 0,

Bn =

[
0 0 0 0
0 0 0 0

]T

(24)

Equation (16) represents the steady-state model of single phase of MMC that is based on the HSS
method, which is linearized from (10) and is a LTI system. Therefore, the stability of MMC can be
analyzed with the classical control theory. This HSS model can not only obtain the information of the
0–hth harmonics, but also reflect the interactions between the harmonics.

Letting the left side of (16) to be zero, the steady-state solution of HSS model of MMC can be
calculated by:

x = (−Γ(A) + N)−1Γ(B)u (25)

where the frequency-domain values of state variables can be obtained. Referring to (14), the time-domain
values of ico(t), v∑

cuo(t), v∑
clo(t), and iso(t) can be solved.

3.2. HSS-Based Small Signal Model of MMC with Open-loop Control

Based on Equations (3)–(6), the small-signal model of MMC around an operation trajectory
(characterized by mo(t), v∑

cuo(t), v∑
clo(t), iso(t)) can be derived as:

d∆is(t)
dt = −

(1−mo(t))
2L · ∆v∑

cu(t) +
(1+mo(t))

2L · ∆v∑
cl(t) − R

L · ∆is(t) −
2∆vs

L +
(v∑

cuo(t)+v∑
clo(t))

2L · ∆m(t) (26)

d∆ic(t)
dt = −R

L · ∆ic(t) −
(1−mo(t))

4L · ∆v∑
cu(t) −

(1+mo(t))
4L · ∆v∑

cl(t) +
∆Udc

2L +
(v∑

cuo(t)−v∑
clo(t))

4L · ∆m(t) (27)

d∆v∑
cu(t)

dt
=

(1−mo(t))
2Carm

· ∆ic(t) +
(1−mo(t))

4Carm
· ∆is(t) −

(2ico(t) + iso(t))
4Carm

· ∆m(t) (28)

d∆v∑
cl(t)

dt
=

(1 + mo(t))
2Carm

· ∆ic(t) −
(1 + mo(t))

4Carm
· ∆is(t) +

(2ico(t) − iso(t))
4Carm

· ∆m(t) (29)

In open-loop control mode, the modulation signal m(t) is directly given, so it could serve as an
input variable in the state-space model. While combining Equations (26)–(29), the small signal model of
MMC in open-loop control mode, which is also the model of power stage of MMC, can be represented
as:

∆
.
x(t) = As(t) · ∆x(t) + Bs(t) · ∆u(t) (30)

where
∆x = [∆ ic(t) ∆v∑

cu(t) ∆v∑
cl(t) ∆is (t)]

T

∆u(t) = [ ∆Udc ∆vs(t) ∆m(t) ]
T (31)
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As(t) =


−

R
L −

(1−mo(t))
4L −

(1+mo(t))
4L 0

(1−mo(t))
2Carm

0 0 (1−mo(t))
4Carm

(1+mo(t))
2Carm

0 0 −
(1+mo(t))

4Carm

0 −
(1−mo(t))

2L
(1+mo(t))

2L −
R
L

 (32)

Bs(t) =


1

2L 0
v∑

cuo(t)−v∑
clo(t)

4L

0 0 −
2ico(t)+iso(t)

4Carm

0 0 2ico(t)−iso(t)
4Carm

0 −
2
L

v∑
cuo(t)+v∑

clo(t)
2L

 (33)

where ico(t), v∑
cuo(t), v∑

clo(t), and iso(t) represent the steady operation point of MMC, which can be
solved from Equation (25).

By converting Equation (30) into a HSS equation, the small signal model of MMC with open-loop
control mode can be expressed as:

s∆x = (Γ(As) −N)∆x + Γ(Bs)∆u (34)

where
∆x = [∆x−h, · · · , ∆x−1, ∆x0, ∆x1, · · · , ∆xh]

T

∆u = [∆u−h, · · · , ∆u−1, ∆u0, ∆u1, · · · , ∆uh]
T (35)

Γ(As) is the Toeplitz matrix form of As, and Γ(Bs) is the Toeplitz matrix form of Bs. The elements
in (35), such as ∆xn, ∆un, Asn, and Bsn are the nth Fourier coefficients of ∆x(t), ∆u(t), As(t), Bs(t), and n
= −h, . . . , −1, 0, 1, . . . , h.

3.3. HSS-Based Small Signal Model of MMC with DC-Voltage Control

DC-voltage control is commonly used in an MMC-based HVDC system to maintain the dc bus
voltage. Figure 5 shows the control structure, which contains outer dc-voltage control loop, inner
current control loop, and phase-locked loop (PLL), where Udc and Udcref are the dc side voltage of MMC
and its reference value, respectively. Isd, Isq are the values of MMC ac side current in dq coordinate
system. Vsd, Vsq are the values of MMC ac side voltage in dq coordinate system, and Md, Mq are the
values of modulation signal in dq coordinate system. ω1 is the fundamental angular frequency of
314.1 rad/s, and θ is the output phase angle of PLL. H1(s), H2(s), and H3(s) are the PI controllers of
dc voltage control, current control, and PLL control, respectively. kid is the decoupling coefficient.
The effect of small signal disturbance on PLL can be neglected when the converter is integrated with a
strong enough ac grid [24]. Therefore, the small signal model of MMC in this paper does not take the
effect of PLL into account.
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3.3.1. Small Signal Model of Inner Current Control Loop

The inner current control loop contains two PI controller. Two additional state variables xi1, xi2
are introduced to simplify the integral operation: xi1 =

∫
Isddt⇒ dxi1

dt = Isd

xi2 =
∫

Isqdt⇒ dxi2
dt = Isq

(36)

where kp2 and ki2 are proportional coefficients and integral coefficients of the PI controllers in current
control loop respectively.

Then the output small signal insertion indexes ∆Md1, ∆Mq1 in dq coordinate system of the inner
loop are: {

∆Md1 = −(kp2 · ∆Isd + ki2 · ∆xi1) + kid · ∆Isq

∆Mq1 = −(kp2 · ∆Isq + ki2 · ∆xi2) − kid · ∆Isd
(37)

The ∆Md1, ∆Mq1 in dq coordinate system need to be transformed into ∆mi(t) in abc coordinate
system, where ∆mi(t) is the control signal of phase A that is produced by the inner loop. Firstly,
according to the dq transformation matrix, Isd and Isq can be expressed as:

Isq

Isd
Is0

 = Tdq ·


I cos(ω1t + ϕ)

I cos(ω1t− 2π
3 + ϕ

)
I cos(ω1t + 2π

3 + ϕ
)

 =

−I sinϕ
I cosϕ

0

 (38)

where the Park transformation matrix Tdq is:

Tdq =
2
3


sin(ω1t) sin(ω1t− 2π

3 ) sin(ω1t + 2π
3 )

cos(ω1t) cos(ω1t− 2π
3 ) cos(ω1t + 2π

3 )
1
2

1
2

1
2

 (39)

From Equation (38), the relationships between Isd, Isq, the amplitude I, and the phase angle ϕ of
phase A current are: {

Isd = −I sinϕ
Isq = I cosϕ

(40)

Combining Equations (14), (36) and (40), Equation (36) in time-domain can be represented in the
frequency-domain: {

sxi1 = jIs+1 − jIs−1

sxi2 = Is+1 + Is−1
(41)

According to inverse Park transformation matrix, ∆mi(t) could be calculated as:

Tdq−1 ·


∆Md1
∆Mq1

0

 =


∆Md1 sin(ω1t) + ∆Mq1 cos(ω1t)
−∆Md1 cos(ω1t− π

6 ) + ∆Mq1 sin
(
ω1t− π

6 )

∆Md1 cos(ω1t + π
6 ) − ∆Mq1 sin

(
ω1t + π

6 )

 (42)

where the inverse Park transformation matrix Tdq
−1 is:

Tdq−1 =


sin(ω1t) cos(ω1t) 1

sin(ω1t− 2π
3 ) cos(ω1t− 2π

3 ) 1
sin(ω1t + 2π

3 ) cos(ω1t + 2π
3 ) 1

 (43)
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According to the complex form of Fourier expansion, the ±1st coefficients of ∆mi(t) are: ∆mi+1 = −
j
2 · ∆Md1 +

1
2 · ∆Mq1

∆mi−1 =
j
2 · ∆Md1 +

1
2 · ∆Mq1

(44)

Substituting (37) and (41) into (44) the ±1st coefficients of ∆mi(t) are:

∆mi+1 = −(kp2 + jkid)∆Is+1︸                 ︷︷                 ︸
1

+
j
2

ki2∆xi1︸    ︷︷    ︸
2

−
1
2

ki2∆xi2︸      ︷︷      ︸
3

∆mi−1 = −(kp2 − jkid)∆Is−1︸                ︷︷                ︸
1

−
j
2

ki2∆xi1︸      ︷︷      ︸
2

−
1
2

ki2∆xi2︸      ︷︷      ︸
3

(45)

3.3.2. Small Signal Model of Outer DC-Voltage Control Loop

As shown in Figure 5, the difference between the actual value of the dc voltage and the reference
value would pass through the outer loop PI controller and then the inner loop PI controller, producing
small signal insertion index ∆Md2 in d axis. Two additional state variables xv1, xv2 are introduced to
achieve the integral operation of dc components for two integral components: xv1 =

∫
(Udcre f −Udc)dt⇒ dxv1

dt = Udcre f −Udc

xv2 =
∫
[kp1(Udcre f −Udc) + ki1 · xv1]dt⇒ dxv2

dt = kp1(Udcre f −Udc) + ki1xv1
(46)

where kp1 and ki1 are the proportional and integral coefficients of the PI controllers in outer DC voltage
control loop, respectively. Afterwards, the output control signal ∆Md2 is:

∆Md2 = −kp2 · [kp1(∆Udcre f − ∆Udc) + ki1∆xv1] − ki2∆xv2 (47)

According to inverse Park transformation matrix, the control signal ∆mv(t) of phase A in abc
coordinate system can be obtained from

Tdq−1 ·


∆Md2

0
0

 =


∆Md2 sin(ω1t)
−∆Md2 cos(ω1t− π

6 )

∆Md2 cos(ω1t + π
6 )

 (48)

According to the complex form of Fourier expansion, the ±1st coefficients of ∆mv(t) are: ∆mv+1 = −
j
2 · ∆Md2

∆mv−1 =
j
2 · ∆Md2

(49)

Assume the equivalent impedance on the dc side is ZL. According to Equation (9), ∆Udc is

∆Udc = ∆IdcZL = −3∆Ic0ZL (50)

Substituting (47) and (50) into (49), the ±1st coefficients of ∆mv(t) can be represented, as follows:

∆mv+1 =
j
2

kp2kp1∆Udcre f︸             ︷︷             ︸
1

+
3 j
2

kp2kp1ZL∆Ic0︸             ︷︷             ︸
2

+
j
2

kp2ki1∆xv1︸        ︷︷        ︸
3

+
j
2

ki2∆xv2︸    ︷︷    ︸
4

∆mv−1 = −
j
2

kp2kp1∆Udcre f︸               ︷︷               ︸
1

−
3 j
2

kp2kp1ZL∆Ic0︸               ︷︷               ︸
2

−
j
2

kp2ki1∆xv1︸          ︷︷          ︸
3

−
j
2

ki2∆xv2︸      ︷︷      ︸
4

(51)
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3.3.3. Small Signal Model of DC-Voltage Controlled MMC

The models of control system and open-loop system need to be integrated into one state-space
equation in order to establish the small signal model of the entire closed-loop system of MMC.

The state variables of the closed-loop system of MMC include four state variables of power stage
(∆ic, ∆v∑

cu, ∆v∑
cl, ∆is) and four state variables of control system (∆xi1, ∆xi2, ∆xv1, ∆xv2):

∆x(t) =
[

∆ic(t) ∆v∑
cu(t) ∆v∑

cl(t) ∆is(t) ∆xi1 ∆xi2 ∆xv1 ∆xv2
]T

(52)

The input variables of the closed-loop system of MMC are the same as the input variables of the
power stage of MMC:

∆uc(t) = [ ∆Udcre f ∆vs(t) ]
T

(53)

By combining the equations of control system (36), (45), (46) and (51) with the HSS model of
power stage in (34), the HSS model of the entire closed-loop system can be expressed as:

s∆x = (Ac −N)∆x + Bc∆uc (54)

where:
∆x = [∆x−h, · · · , ∆x−1, ∆x0, ∆x+1, · · · , ∆x+h]

T

∆u = [∆u−h, · · · , ∆u−1, ∆u0, ∆u+1, · · · , ∆u+h]
T (55)

Ac =



A0 A−1 A−2 · · · A−h

A+1
. . . . . . . . . . . . . . . O

A+2
. . . A0 A−1 A−2

. . . . . .
...

. . . A+1 A0N A−1O A−2
. . . . . .

A+h
. . . A+2 A+1N A0O A−1P A−2

. . . A−h
. . . . . . A+2 A+1O A0P A−1

. . .
...

. . . . . . A+2 A+1 A0
. . . A−2

O
. . . . . . . . . . . . . . . A−1

A+h · · · A+2 A+1 A0



(56)

Bc =



B0 B−1 B−2 · · · B−h

B+1
. . . . . . . . . . . . . . . O

B+2
. . . B0 B−1 B−2

. . . . . .
...

. . . B+1 B0 B−1O B−2
. . . . . .

B+h
. . . B+2 B+1 B0O B−1 B−2

. . . B−h
. . . . . . B+2 B+1O B0 B−1

. . .
...

. . . . . . B+2 B+1 B0
. . . B−2

O
. . . . . . . . . . . . . . . B−1

B+h · · · B+2 B+1 B0



(57)

Additionally, N is the same as (20).
The variables ∆xi1, ∆xi2, ∆xv1, ∆xv2, and ∆Udcref in (55) are all dc components. When these

variables are transformed into Fourier series, they only have values at the frequency of 0 Hz, and the
components of other frequencies are zero.
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The control signals ∆mi+1, ∆mi−1, ∆mv+1, and ∆mv−1 in (56) are added to the system matrix
Ac, and they are only related to the matrix components A0O, A0P, A0N, A−1O, A−1N, A1O, and A1P.
The other matrix components A0, A+1, A−1, A+2, A−2 . . . are only dependent on the main circuit of
MMC. Subsequently, the specific expressions of these matrix are presented in the Appendix A.

Similarly, for the input matrix Bc, as shown in (57), the controlling signals ∆mv+1 and ∆mv−1 need
to be added into the matrix, and they are only related to the matrix components B0O, B+1O, and B−1O.
The specific expressions are also presented in the Appendix A.

In general case, circulating current mainly contains dc and second harmonic components and
the capacitor voltages mainly contains dc, fundamental, second and third harmonic components.
Therefore, the harmonic order considered in the HSS model is h = 3.

4. Stability Analysis Based on the HSS-Based Small Signal Model

Table 1 shows the main parameters of the studied MMC. It is worth mentioning that the number
of modules in one arm is 20 to reduce the simulation time. Figure 5 shows the MMC operates in
dc voltage control mode. Firstly, the outer loop controller parameters are set as kp1 = 0.87 and ki1 =

10, the inner loop controller parameters are set as kp2 = 0.019 and ki2 = 0.057. It needs to be noted
that, since the four state variables of control system ∆xi1, ∆xi2, ∆xv1, and ∆xv2 only have values at
the frequency of 0 Hz, they do not have significance at other frequencies (−3ω1, −2ω1, −1ω1, 1ω1,
2ω1, 3ω1). Thus, there are always 24 eigenvalues at the origin (0, j0), having no effect on the stability
analysis of the system. After calculation, it is confirmed that in addition to these 24 eigenvalues, there is
another eigenvalue that is located at the origin. Therefore, these 25 eigenvalues will not be discussed
in this paper. Additionally, other eigenvalues are plotted as shown in Figure 6. It can be seen that all
eigenvalues are on the left half plane of the complex plane, which indicated that the MMC system is
stable with these controller parameters.

Table 1. The main parameters of MMC in calculation and simulation.

Parameter Value

DC side voltage Udc/V 700
AC side voltage vs/V 310

Number of SMs on one arm 20
Arm inductance L/mH 15
Arm resistance R/mΩ 0.1
SM capacitor CSM /µF 7200
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The concept of oscillation mode is introduced, that is, a real root or a pair of conjugate complex roots
represent one oscillation mode of the system in order to further analyze the eigenvalues. Additionally,
the participation factor analysis is introduced to analyze the interaction between state variables and
oscillation modes. The participation factor of the kth state variable in the ith oscillation mode of the
system can be calculated by [25]:

Pki = ΦkiΨik (58)

where Φki is the element in the kth row and ith column of the right eigenvector matrix, and Ψ ik is the
element in the ith row and kth column of the left eigenvector matrix.

Table 2 lists the oscillation modes of the MMC systems and their main participating state variables,
according to the value of the participation factors.

Table 2. The oscillation modes of the MMC systems and their main participating state variables.

Oscillation
Mode Eigenvalue Oscillation

Frequency (Hz)
Participating
State Variable

1 λ1,2 = −141.617724 ± 427.494287i 68.037 ∆ic0
2 λ3,4 = −0.003333 ± 529.349354i 84.248 ∆ic1
3 λ5,6 = −0.003333 ± 99.017871i 15.759 ∆ic1
4 λ7,8 = −13.492959 ± 413.017170i 65.733 ∆ic2
5 λ9,10 = −15.070545 ± 827.734452i 131.738 ∆ic2
6 λ11,12 = −0.003333 ± 757.351868i 120.536 ∆ic3
7 λ13,14 = −0.003333 ± 1187.683351i 189.025 ∆ic3
8 λ15,16 = −0.003333 ± 215.165741i 34.244 ∆is0
9 λ17,18 = −777.873222 ± 564.833532i 89.896 ∆is1

10 λ19,20 = −0.003333 ± 414.542740i 65.976 ∆is2
11 λ21,22 = −0.003333 ± 844.874223i 134.465 ∆is2
12 λ23.24 = −0.157052 ± 756.783394i 120.445 ∆is3
13 λ25,26 = −0.628342 ± 1187.336919i 188.970 ∆is3
14 λ27,28 = −13.608391 ± 176.910594i 27.691 ∆ucu0, ∆ucu1, ∆ucl0, ∆ucl1
15 λ29,30 = −3.728758 ± 2.717311i 0.432 ∆xv11
16 λ31 = −2.47713152442756 0 ∆xv21

∆icn, ∆isn, ∆ucun, ∆ucln, ∆xv1n, ∆xv2n is nth harmonic component of ∆ic(t), ∆is(t), ∆ucu(t), ∆ucl(t), ∆xv1(t), ∆xv2(t),
respectively, and n = 0, 1, 2, 3.

Eigenvalue loci when kp1 and kp2 changes are shown in Figure 7a,b, respectively, to analyze the
effect of the controller parameters on the stability of MMC. When increasing the parameter kp1 of outer
voltage loop with other parameters unchanged, as shown in Figure 7a, oscillation modes 2, 3, 6, 7, 8,
10, 11 remain unchanged, which means that these eigenvalues are not affected by the change of kp1

and most of other oscillation modes move to the right. As kp1 gradually increases, oscillation modes 4,
12, 14, 15 move horizontally to the right whose imaginary parts are nearly unchanged. Additionally,
when kp1 is 1.57, oscillation mode 14 firstly moves to the right half plane, which causes the instability
of the system. For example, when kp1 = 2.87, the eigenvalues of oscillation mode 14 are (4.196 ± j176.9).
The corresponding oscillation period is 2π/176.9 = 0.0355 s.

Based on the analysis of participation factor, the oscillation mode 14 is strongly related to the dc
component of the submodule capacitor voltage. It indicates that the instability is due to the change
of proportional coefficient kp1 of the outer dc voltage controller, which affects the dc component of
submodule capacitor voltage, in turn causing oscillation mode 14 to move to the right half plane and
causes instability.

Only the eigenvalues whose imaginary parts remain unchanged could cross into the right half
plane, even if kp1 continues to increase. This indicates that with the dc-voltage control mode, the change
of controller parameter kp1 will not change the unstable oscillation frequency of the MMC system.
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When increasing the proportional coefficient kp2 of inner current control loop with other parameters
unchanged, as shown in Figure 7b, oscillation modes 2, 3, 6, 7, 8, 10, 11 remain unchanged, which means
that these eigenvalues will not be affected by the change of kp2, and most of other oscillation modes
move to the right. As kp2 gradually increases, oscillation modes 5, 12, 13, and 15 move horizontally to
the right, whose imaginary parts are nearly unchanged. Additionally, when kp2 is 0.042, oscillation
mode 12 firstly moves to the right half plane, which causes the instability of the system. For example,
when kp2 = 0.16, eigenvalues of oscillation mode 12 are (0.107 ± j756.8). The corresponding oscillation
period is 2π/756.8 = 0.0083 s.

The oscillating modes 12 is related to the third frequency component of the ac side current based on
the analysis of participation factors. It indicates that the instability is due to the change of proportional
coefficient kp2 of inner current controller, which affects the third frequency component of the ac side
current, in turn causing the oscillation mode 12 to move to the right half plane and cause instability.

Even if kp2 continues to increase, only the eigenvalues whose imaginary parts remain unchanged
could cross into the right half plane, which indicated that with the dc-voltage control mode, the change
of controller parameter kp2 will also not change the unstable oscillation frequency of the MMC system.

5. Simulation Verifications

The small signal model of MMC that is based on HSS method is built in m. file in MATLAB
and the considered order is set to be 3 in the model. Time-domain simulations are carried out in the
MTLAB/Simulink and parameters adopted are as shown in Table 1 to validate the theoretical analysis.

5.1. Open-Loop Control Mode

When MMC operates in open-loop control mode and the reference of m(t) has a step change from
0.885sin(ω1t + ϕ) to 0.87sin(ω1t + ϕ) at 3 s, the transient response of ic(t) is presented in Figure 8a and
the zoom-in view is shown in Figure 8b, showing good agreement between the small-signal model and
the simulation results.

Figure 9 shows the harmonic components of ∆ic(t) with open-loop control mode, which indicated
that fundamental component’s change of m(t) would result in both dc and second harmonic components’
changes of ic(t), which proves that the small-signal model that is presented in this paper could reflect
the internal harmonic interactions of MMC.
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5.2. DC-Voltage Control Mode

When MMC operates in dc-voltage control mode and the dc voltage reference value Udcref has
a step change from 700 V to 735 V at 3 s, the transient response of ic(t) is presented in Figure 10a,
and the transient response of v∑

cu(t) is presented in Figure 10b, all showing good agreement between
the small-signal model and simulation results, thus verifying the accuracy of the modeling presented
in this paper.
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The outer loop controller parameter kp1 is first changed to 2.87 o verify the predicted oscillation
period with different parameters, while other parameters remain unchanged in the simulation model.
Figure 11 shows the simulation waveform of ic(t) with kp1 = 2.87. It can be seen that the MMC system is
unstable and the measured oscillation period of ic(t) is approximately 0.032 s, which is almost consistent
with the predicted oscillation period 2π/176.9 = 0.0355 s in Section 4.
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Subsequently, the inner loop controller parameter kp2 is changed to 0.162, while other parameters
in the simulation model remain unchanged. Figure 12 shows the simulation waveform of ic(t) with kp2

= 0.162. It can be seen that the MMC system is unstable, and the measured oscillation period of ic(t) is
about 0.009 s, which is almost consistent with the predicted oscillation period 2π/756.8 = 0.0083 s in
Section 4.Energies 2020, 13, 1056 17 of 23 
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Appendix A 

A0 is determined by the main circuit of MMC and does not involve the closed-loop control part, 
which is: 
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6. Conclusions

An accurate and complete small signal model of MMC with dc voltage control mode that is
based on the HSS modeling method is derived, which considers the internal and external harmonic
interactions, thus achieving higher accuracy. Subsequently, through the analysis of the eigenvalues,
participation factors, and the calculation of oscillation frequencies under different controller parameters,
the effect of controller parameters on the stability of MMC is studied and the following conclusions
can be drawn. Besides, the time-domain simulation built in MATLAB/Simulink verifies the accuracy of
the HSS-based MMC model and validity of stability analysis.
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(1) When MMC operates with dc-voltage control mode, either too large outer loop proportional
coefficient kp1 or inner loop proportional coefficient kp2 might cause the system unstable.

(2) The too large proportional coefficient kp1 of outer dc voltage control loop will cause an oscillation
mode with certain frequency, while the too large proportional coefficient kp2 of inner current
control loop will cause another oscillation mode with another certain frequency.
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Appendix A

A0 is determined by the main circuit of MMC and does not involve the closed-loop control part,
which is:

A0 =



−
R
L −

1
4L −

1
4L 0 0 0 0 0

1
2Carm

0 0 1
4Carm

0 0 0 0
1

2Carm
0 0 −

1
4Carm

0 0 0 0
0 −

1
2L

1
2L −

R
L 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(A1)

A0O represents the relationship between s∆x0 and ∆x0. According to (46) and (50), ∆Udc, s∆xv1

are related to ∆Ic0, and s∆xv2 is related to both ∆Ic0 and ∆xv1. Thus A0O could be noted as:

A0O =



−
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0 −
1
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3ZL 0 0 0 0 0 0 0
3kp1ZL 0 0 0 0 0 ki1 0


(A2)

A0N, A0P represent the relationship between s∆x−1 and ∆x−1, s∆x+1 and ∆x+1 respectively.
According to (45), the first part of ∆mi+1 is related to∆Is+1 and the first part of ∆mi−1 is related to ∆Is−1.
Therefore, A0N and A0P are noted as:

A0N =


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
(A3)
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A0P =


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
(A4)

A+1 is determined by the main circuit of MMC and does not involve the closed-loop control part,
which is:

A+1 =


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
(A5)

A+1N represents the relationship between s∆x0 and ∆x−1. According to (41), s∆xi1 and s∆xi2 are
both related to ∆Is−1. Thus A+1N could be noted as:

A+1N =


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
(A6)

A+1O represents the relationship between s∆x+1 and ∆x0. According to (45) and (51), the second
part of ∆mi+1 is related to ∆xi1 and the third part of ∆mi+1 is related to ∆xi2; the second, third and
fourth part of ∆mv+1 are related to ∆Ic0, ∆xv1, ∆xv2 respectively. The specific expression of A+1O is
presented as:

A+1O =
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

(A7)
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A−1 is determined by the main circuit of MMC and does not involve the closed-loop control part,
which is:

A−1 =


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
(A8)

A−1P represents the relationship between s∆x0 and ∆x+1. According to (41), s∆xi1 and s∆xi2 are
both related to ∆Is+1. Thus A−1P could be noted as:

A−1P =


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(A9)

A−1O represents the relationship between s∆x−1 and ∆x0. According to (45) and (51), the second
part of ∆mi−1 is related to ∆xi1 and the third part of ∆mi−1 is related to ∆xi2; the second, third and
fourth part of ∆mv−1 are related to ∆Ic0, ∆xv1, ∆xv2 respectively. The specific expression of A−1O is:

A−1O =
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(A10)

A+2 is determined by the main circuit of MMC and does not involve the closed-loop control part,
which is:

A+2 =
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(A11)
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A−2 is determined by the main circuit of MMC and does not involve the closed-loop control part,
which is:

A−2 =


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
(A12)

B0 and B±h are determined by the main circuit of MMC and does not involve the closed-loop
control part, which are:

B0 =

[
0 0 0 0 0 0 0 0
0 0 0 − 2/L 0 0 0 0

]T

(A13)

B±h =

[
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]T

(A14)

B0O represents the relationship between s∆x0 and ∆u0. According to (46), s∆xv1 and s∆xv2 are
related to ∆Udcref. Thus B0O could be noted as:

B0O =

[
0 0 0 0 0 0 1 kp1

0 0 0 − 2/L 0 0 0 0

]T

(A15)

B+1O represents the relationship between s∆x+1 and ∆Udcref. According to (51), the first part of
∆mv+1 is related to ∆Udcref. Thus B+1O could be noted as:

B+1O =
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(A16)

B−1O represents the relationship between s∆x−1 and ∆Udcref. According to (51), the first part of
∆mv−1 is related to ∆Udcref. Thus B−1O could be noted as:

B−1O =
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(A17)



Energies 2020, 13, 1056 21 of 22

References

1. Lesnicar, A.; Marquardt, R. An innovative modular multilevel converter topology suitable for a wide power
range. In Proceedings of the Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003;
Volume 3, p. 6.

2. Lesnicar, A.; Marquardt, R. A new modular voltage source inverter topology. In Proceedings of the European
Conference on Power Electronics and Applications, Toulouse, France, 2–4 September 2003.

3. Harnefors, L.; Antonopoulos, A.; Norrga, S.; Angquist, L.; Nee, H. Dynamic analysis of modular multilevel
converters. IEEE Trans. Ind. Electron. 2013, 60, 2526–2537. [CrossRef]

4. Ilves, K.; Antonopoulos, A.; Norrga, S.; Nee, H. Steady-state analysis of interaction between harmonic
components of arm and line quantities of modular multilevel converters. IEEE Trans. Power Electron. 2012,
27, 57–68. [CrossRef]

5. Peralta, J.; Saad, H.; Dennetiere, S.; Mahseredjian, J.; Nguefeu, S. Detailed and averaged models for a 401-level
MMC–HVDC system. IEEE Trans. Power Deliv. 2012, 27, 1501–1508. [CrossRef]

6. Saeedifard, M.; Iravani, R. Dynamic performance of a modular multilevel back-to-back HVDC system.
IEEE Trans. Power Deliv. 2010, 25, 2903–2912. [CrossRef]

7. Xu, J.; Gole, A.M.; Zhao, C. The use of averaged-value model of modular multilevel converter in DC grid.
IEEE Trans. Power Deliv. 2015, 30, 519–528. [CrossRef]

8. Ludois, D.C.; Venkataramanan, G. Simplified terminal behavioral model for a modular multilevel converter.
IEEE Trans. Power Electron. 2014, 29, 1622–1631. [CrossRef]

9. Rowe, H.E. Some general properties of nonlinear elements. II. Small signal theory. Proc. IRE 1958, 46,
850–860. [CrossRef]

10. Middlebrook, R.D. Small-signal modeling of pulse-width modulated switched-mode power converters.
Proc. IEEE 1988, 4, 343–354. [CrossRef]

11. Witulski, A.F.; Hernandez, A.F.; Erickson, R.W. Small signal equivalent circuit modeling of resonant converters.
IEEE Trans. Power Electron. 1991, 6, 11–27. [CrossRef]

12. Coelho, E.A.A.; Cortizo, P.C.; Garcia, P.F.D. Small-signal stability for parallel-connected inverters in
stand-alone AC supply systems. IEEE Trans. Ind. Appl. 2002, 38, 533–542. [CrossRef]

13. Diaz, G.B.; Suul, J.A.; D’Arco, S. Small-signal state-space modeling of modular multilevel converters for
system stability analysis. In Proceedings of the Energy Conversion Congress and Exposition (ECCE),
Montreal, QC, Canada, 20–24 September 2015; pp. 5822–5829.

14. Li, T.; Gole, A.M.; Zhao, C. Harmonic instability in MMC-HVDC converters resulting from internal dynamics.
IEEE Trans. Power Deliv. 2016, 31, 1738–1747. [CrossRef]

15. Jamshidi Far, A.; Jovcic, D. Small-signal dynamic DQ model of modular multilevel converter for system
studies. IEEE Trans. Power Deliv. 2016, 31, 191–199. [CrossRef]

16. Lu, X.; Lin, W.; Wen, J.; Yao, W. Dynamic phasor modelling and operating characteristic analysis of half-bridge
MMC. In Proceedings of the International Power Electronics and Motion Control Conference (IPEMC-ECCE
Asia), Hefei, China, 22–26 May 2016; pp. 2615–2621.

17. Sun, J.; Liu, H. Sequence impedance modeling of modular multilevel converters. IEEE J. Emerg. Sel. Top.
Power Electron. 2017, 5, 1427–1443. [CrossRef]

18. Wang, X.; Blaabjerg, F. Harmonic stability in power electronic-based power systems: Concept, modeling,
and analysis. IEEE Trans. Smar. Grid 2019, 10, 2858–2870. [CrossRef]

19. Love, G.N.; Wood, A.R. Harmonic state space model of power electronics. In Proceedings of the International
Conference on Harmonics and Quality of Power, Wollongong, Australia, 28 September–1 October 2008;
pp. 1–6.

20. Orillaza, J.R.C.; Wood, A.R. Harmonic state-space model of a controlled TCR. IEEE Trans. Power Deliv. 2013,
28, 197–205. [CrossRef]

21. Kwon, J.; Wang, X.; Blaabjerg, F.; Bak, C.L.; Sularea, V.; Busca, C. Harmonic interaction analysis in a
grid-connected converter using harmonic state-space (HSS) modeling. IEEE Trans. Power Electron. 2017, 32,
6823–6835. [CrossRef]

22. Lyu, J.; Zhang, X.; Cai, X.; Molinas, M. Harmonic state-space based small-signal impedance modeling of a
modular multilevel converter with consideration of internal harmonic dynamics. IEEE Trans. Power Electron.
2019, 34, 2134–2148. [CrossRef]

http://dx.doi.org/10.1109/TIE.2012.2194974
http://dx.doi.org/10.1109/TPEL.2011.2159809
http://dx.doi.org/10.1109/TPWRD.2012.2188911
http://dx.doi.org/10.1109/TPWRD.2010.2050787
http://dx.doi.org/10.1109/TPWRD.2014.2332557
http://dx.doi.org/10.1109/TPEL.2013.2268856
http://dx.doi.org/10.1109/JRPROC.1958.286938
http://dx.doi.org/10.1109/5.4421
http://dx.doi.org/10.1109/63.64999
http://dx.doi.org/10.1109/28.993176
http://dx.doi.org/10.1109/TPWRD.2016.2542188
http://dx.doi.org/10.1109/TPWRD.2015.2478489
http://dx.doi.org/10.1109/JESTPE.2017.2762408
http://dx.doi.org/10.1109/TSG.2018.2812712
http://dx.doi.org/10.1109/TPWRD.2012.2215926
http://dx.doi.org/10.1109/TPEL.2016.2625802
http://dx.doi.org/10.1109/TPEL.2018.2842682


Energies 2020, 13, 1056 22 of 22

23. Sun, J. Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 2011, 26,
3075–3078. [CrossRef]

24. Xiong, L.; Liu, X.; Zhao, C.; Zhuo, F. A fast and robust real-time detection algorithm of decaying DC
transient and harmonic components in three-phase systems. IEEE Trans. Power Electron. 2020, 35, 3332–3336.
[CrossRef]

25. Kundur, P.S. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPEL.2011.2136439
http://dx.doi.org/10.1109/TPEL.2019.2940891
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basic Theory of MMC 
	Small Signal Modeling of MMC Based on HSS 
	HSS-Based Large Signal Model of MMC Power Stage 
	HSS-Based Small Signal Model of MMC with Open-loop Control 
	HSS-Based Small Signal Model of MMC with DC-Voltage Control 
	Small Signal Model of Inner Current Control Loop 
	Small Signal Model of Outer DC-Voltage Control Loop 
	Small Signal Model of DC-Voltage Controlled MMC 


	Stability Analysis Based on the HSS-Based Small Signal Model 
	Simulation Verifications 
	Open-Loop Control Mode 
	DC-Voltage Control Mode 

	Conclusions 
	
	References

