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Abstract: Among various tools implemented to counteract undesired effects of time-varying
uncertainties, disturbance observer (DOB)-based controller has gained wide popularity as a result
of its flexibility and efficacy. In this paper, a low-order DOB that is capable of compensating for the
effects of a biased harmonic disturbance, as well as plant uncertainties is presented. The proposed
low-order DOB can asymptotically estimate a harmonic disturbance of known frequency but
unknown amplitude and phase, by using measurable output variables. An analysis carried out
by using the singular perturbation theory shows that the nominal performance of the system can be
recovered from a real uncertain system when the observer gain is sufficiently large. The observer gains
that result in the performance recovery of the real uncertain system are obtained from the stability
condition of the boundary-layer system. To test the performance of the proposed observer, computer
simulations with a numerical example and laboratory experiments using a DC motor system have
been carried out. The experimental results show that the proposed low-order DOB-based control
scheme can provide enhanced performance.

Keywords: low-order disturbance observer; harmonic disturbance; output information; performance
recovery; DC motor

1. Introduction

Throughout all industrial systems, regardless of all measures taken to design an effective controller
that can achieve nominal performance, unforeseeable factors, such as unmodeled plant dynamics,
system parameter variations, and external time-varying disturbances inevitably give rise to system
performance deterioration. As a result, the robustness of a control system has become a crucial
quality and various methods have been proposed to guarantee the robustness of control systems [1,2].
Among these methods, disturbance observers (DOBs) have been widely studied [3]. By using this
method, any previously designed controller, which can achieve the desired performance under nominal
conditions, can be modified into a robust controller simply by adding a DOB. Thus, enabling the
recovery of nominal control performance of any exiting controller through disturbance compensation.
For more details on DOB, see [4] and references therein.

1.1. Literature Review

DOB studies can be classified into two categories. One of them uses the inverse system of the
controlled plant and does not assume the disturbance model [5–11]. Since a low pass filter such
as Q-filter is important to implement the inversion-based DOB, the robust performance of the DOB
with regard to the filter’s order was studied in [5]. For second-order systems, systematic design
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guidelines for Q-filter were suggested in [6]. The authors of [7] proposed a nonlinear DOB with
a rigorous theoretical analysis for guaranteeing robust performance recovery of the controlled system.
Extension of the inversion-based DOB application to non-minimum phase systems was tried in [8]
by using a parallel compensation filter. A high gain DOB was applied to a load frequency control of
power systems with multiple areas [9]. DOBs were also designed for the current control of a PMSM
(Permanent Magnet Synchronous Motor) [10] and the dynamic load emulation of a programmable
dynamometer [11].

Another DOB approach considers the disturbance to be a trigonometric function or a polynomial
one [12–22]. By using integral of estimation error, the proportional integral observer (PIO) has a more
robust structure against disturbances and system uncertainties than the Luenberger observer [12].
In [13], a nonlinear PIO was designed, and the estimation performance was proved by Lyapunov
analysis. Slowly varying disturbances or uncertainties can be modeled to constant values and estimated
in the PIO as augmented states. The approach has been applied to a DC motor system equipped
with an adaptive robust controller to achieve high performance motion control [14], an electric power
converter in a cascade manner [15], a time-delayed system combined with a communication DOB [16],
and a manipulator controlled by a sliding mode controller for adjusting the switching gain [17].
By using multiple integrators, a robust state observer was proposed in the presence of uncertainties
and measurement noise [18]. The authors of [19] adopted the polynomial disturbance model to deal
with a sinusoidal disturbance. In [20], a sinusoidal disturbance model was used to attenuate the effect
of torque ripple. A linear matrix inequality condition was established in [21] for the stability and
performance of the observer using a trigonometric disturbance model. The harmonic disturbance
model was used for the Q-filter design to asymptotically estimate the disturbance [22].

The approach in the first category copes with the disturbance effect by suppressing it rather than
asymptotically canceling it out. Therefore the disturbance rejection is based on an approximation.
On the other hand, the latter approach puts an internal model of disturbance into the structure
of the observer. Among the various DOB studies that implement this approach, those concerned
with compensating for the effects of harmonic disturbances have dealt with rapidly changing
periodic disturbances such as torque ripple in electric motor control [3,13,19–22]. In addition,
this approach allows the estimation of both the disturbance and the system internal states using
the output information.

However, the use of a high-order estimator increases the order of the entire control system. This can
make the analysis complicated and increase the amount of numerical computation. To circumvent this
problem, low-order observer-based controller design methods have been studied [23–29]. The order of
a reduced-order linear functional observer in [23] depends on the ratio of the number of independent
output measurements to the number of independent inputs. Based on the state function estimation,
the estimation problem of the state and the unknown inputs was solved by using only the known input
and the output information [24]. A reduced-order observer was designed for a nonlinear system under the
condition that the unmeasured state variables are differentially stable [25]. In [26], a reduced-order DOB
using Q-filter was proposed for nonlinear uncertain systems. It was shown that the reduced-order DOB
has the same robust performance with a previous full-order DOB. By using the system output information
rather than the full state, a low-order constant DOB was presented in [27,28] without an experimental
validation. However, assuming a constant disturbance may degrade the estimation performance of
the DOB when the disturbance is time-varying, such as a harmonic disturbance. The authors of [29]
have presented a low-order disturbance observer to estimate a harmonic disturbance using only output
measurement without robustness analysis and experimental validation.

1.2. Proposed Method

This paper designs a low-order DOB to deal with a biased harmonic disturbance based on
measurable output information. The frequency of the disturbance is assumed to be known [3,13,20–22].
Inspired by [27], a new DOB structure is first presented based on full state information. Based on the
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structure, a new low-order DOB is proposed by using the output information rather than the full state.
The proposed DOB can be implemented with a low dynamic order according to a rank factorization
result of a matrix related to the unmeasurable system states. For the stability of the proposed DOB,
a sufficient condition is presented.

A theoretical analysis is also performed on the augmented system to illustrate the performance
recovery property of the proposed observer against parameter uncertainties. The main idea used in
this study is the singular perturbation theory [2], which is motivated by the fast observer dynamics.
A stability condition for the fast boundary-layer system is found out to design observer gains such
that the real uncertain system recovers to the nominal plant without uncertainties. The stability
condition can be satisfied by adjusting the observer parameters, while it depends on a real system
parameter. Under the condition, it is shown that the quasi-steady-state system can closely approximate
the nominal plant as the observer poles are placed sufficiently left of the s-plane.

In order to explain the proposed design procedure, a numerical simulation test is first carried out
by using the existing example in [24,27]. Comparative computer simulations and practical experiments
have also been performed for a DC motor system. The system is under various parameter uncertainties,
as well as a biased harmonic disturbance. The proposed low-order observer can estimate the system
state as well as the equivalent disturbance to achieve the control goal. The experimental results show
that the proposed disturbance observer can be effectively applied to cope with parameter uncertainties
and the disturbance.

The main difference from [29] is that this paper includes the theoretical analysis of the performance
recovery property of the proposed observer. A more compact form of the rank factorization matrix is
also presented. In addition, not only the theoretical analysis but also comparative experiments are
performed in the paper. The contribution of this work can be summarized as follows.

1. A new low-order DOB is presented to asymptotically estimate a biased harmonic disturbance
and to compensate for the effects of plant uncertainties based on the output measurement rather
than the full state information.

2. Theoretical analysis is carried out to show the performance recovery property from a real uncertain
system to the nominal one without accounting for the uncertainties when the observer gain is
sufficiently large under a stability condition.

3. Comparative computer simulations and practical experiments are carried out to validate the
theoretical analysis and the performance of the proposed approach by using a DC motor system
against parametric uncertainties and a biased sinusoidal disturbance.

This paper is organized as follows. Section 2.1 introduces the system and the disturbance models.
When all state variables are measurable, a model-based DOB is designed in Section 2.2. A low-order
DOB using output information is presented in Section 2.3. Section 4.1 considers a numerical example
to explain the proposed observer. The theoretical analysis on the performance recovery property is
presented in Section 3. A robust position control problem of a DC motor system is considered in
Section 4.2. Section 5 concludes the paper.

Notations: Moore–Penrose pseudoinverse of a matrix F is denoted by F+. In and 0n×n are the (n× n)
identity matrix and the zero matrix, respectively. Â is the nominal value of a system parameter A,
while x̂ denotes the estimate of a state variable x of a dynamic system.
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2. DOB for a Biased Harmonic Disturbance

2.1. System and Disturbance Models

This paper considers an output measurement-based low-order DOB design problem of a system
described by

ẋ = Ax + Bu + Fd, (1a)

y = Cx (1b)

where x ∈ Rn, u ∈ Rm, d ∈ R, and y ∈ Rl are the states, the input, the disturbance, and the
output, respectively.

Instead of a constant disturbance [27] or a sinusoidal function [13] that are mainly dealt with
in the low-order DOB studies, the paper considers a harmonic disturbance with a constant offset as
given by

d(t) = d0 + d1 sin ωt + d2 cos ωt (2)

where all the parameters except for the frequency ω have unknown values. The disturbance can be
also represented by

χ̇ = Aχχ, d = Cχχ (3)

where χ ∈ R3, Aχ =

0 1 0
0 0 1
0 −ω2 0

, Cχ =
[
1 0 0

]
, and the initial condition χ(0) is unknown.

Instead of constructing a conventional extended observer accounting for the full model of the
disturbance, this paper presents a new low-order DOB to asymptotically estimate the disturbance.

Remark 1. A number of works have been performed to estimate harmonic disturbances having known
frequencies [3,13,20–22]. In order to cope with disturbances with unknown frequencies, further researches
should be devoted to combining them with frequency estimation algorithms as in [30,31].

Before designing a new low-order DOB using output information, the next section presents
a DOB using full state information. Based on the structure, the output-based DOB is designed in the
following section.

2.2. DOB Using Full State Information

The Laplace transformation of Equation (2) is given by

d(s) =
(d0 + d2)s2 + d1ωs + d0ω2

s (s2 + ω2)
. (4)

This paper aims to make the transfer function from the disturbance (d) to the estimate (d̂) have
the following form:

d̂(s) =
α2(τs)2 +

(
α1 − (τω)2) (τs) + α0

(τs)3 + α2(τs)2 + α1(τs) + α0
d(s) (5)

where τ > 0 and the coefficients αi (i = 0, 1, 2) are design parameters such that the denominator
is Hurwitz.
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When the disturbance estimation error d̃ := d− d̂, the transfer function to the error is given by

d̃(s) =
τ3s

(
s2 + ω2)

(τs)3 + α2(τs)2 + α1(τs) + α0
d(s). (6)

By substituting Equation (4) into Equation (6), it can be seen that the estimation error d̃
asymptotically converges to zero and the convergence rate depends on τ and αi (i = 0, 1, 2).

Equation (5) can be realized as

δ̇ =

−α2/τ 1 0
−α1/τ2 0 1
−α0/τ3 0 0

δ +

 α2/τ

α1/τ2 −ω2

α0/τ3

d =: Aδδ + Bδd (7a)

d̂ =
[
1 0 0

]
δ =: Cδδ (7b)

where Aδ is stable.
To implement Equation (7) without d, we replace it with known variables from Equation (1a) by

using Moore–Penrose pseudoinverse matrix F+ as follows:

d = F+ (ẋ− Ax− Bu) (8)

where F+ = (FT F)−1FT and the pseudoinverse is a row vector satisfying F+F = 1.
Since the derivative of the state x is included in Equation (8), a new variable ξ is defined as

ξ = δ− BδF+x, ξ ∈ R3. (9)

From Equations (7)∼(9), the DOB using full state information can be designed as follows:

ξ̇ = Aδδ− BδF+ (Ax + Bu) , (10a)

δ = BδF+x + ξ, (10b)

d̂ = δ1. (10c)

To be implemented the DOB, Equation (10) needs all the state information of the system. Since the
states are not always measurable in many cases, the next section presents a low-order DOB based on
output measurements by using a rank factorization scheme as in [27].

2.3. DOB Using Output Information

The state variables in Equation (10) can be divided into measurable and unmeasurable parts [27].

x = C+Cx + (In − C+C)x = C+y + Ncx (11)

where C+ is the pseudoinverse of C, In ∈ Rn×n is the identity matrix, and Nc ∈ Rn×n.
Using Equation (11), Equation (10) can be represented by

ξ̇ = Aδδ− BδF+A
(
C+y + Ncx

)
− BδF+Bu, (12a)

δ = BδF+
(
C+y + Ncx

)
+ ξ. (12b)

A rank factorization of the unmeasurable part of Equation (12) can be described by[
BδF+Nc

−BδF+ANc

]
x =

[
Bδ 0
0 Bδ

] [
F+Nc

−F+ANc

]
x =

[
Bδ 0
0 Bδ

]
UVTx =

[
BδU1

BδU2

]
η (13)
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where the new variable η := VTx and VT ∈ Rw×n when rank

{[
F+Nc

−F+ANc

]}
= rank {U} = w.

Since UVT does not include Bδ, it has a more compact form than the matrix in [29].
When the rank w is less than n− l, a low-order DOB can be constructed by estimating the state

η ∈ Rw. By the definition of η, Equation (12) is represented by

ξ̇ = Aδδ− BδF+AC+y + BδU2η − BδF+Bu, (14a)

δ = BδF+C+y + BδU1η + ξ. (14b)

The final form of the DOB is obtained by constructing an additional estimator for η as follows:

ξ̇ =Aδδ− BδF+AC+y + BδU2η̂ − BδF+Bu, (15a)

ż = Rη̂ +
(

VT−QC
)

Bu +
(

VT−QC
)

Fd̂ + Sy, (15b)

η̂ = z + Qy, (15c)

δ = BδF+C+y + BδU1η̂ + ξ, (15d)

d̂ = δ1 (15e)

where z is an additional state for constructing the estimate η̂. The matrices Q, R, and S are the
parameters to be designed such that η̂ estimates the unmeasurable state η.

When η̃ := η − η̂, the error dynamics are given by

˙̃η = Rη̃ +
{(

VT−QC
)

A− RVT − SC
}

x +
(

VT−QC
)

Fd̃. (16)

The matrices Q, R, and S are chosen such that the following conditions are satisfied [27]:(
VT −QC

)
A− RVT − SC = 0, (17a)(

VT −QC
)

F = 0. (17b)

From Equation (17), it can be obtained that

˙̃η = Rη̃. (18)

Since Equation (18) does not depend on the dynamics of x and ξ in Equation (15), the proposed
observer can successfully estimate the disturbance when R is chosen to be Hurwitz.

Remark 2. Since VT A = RVT + SC + QCA in Equation (17a), a necessary and sufficient condition for the
existence of the matrices Q, S, R is given by

rank
(

VT A
)
= rank


VT

C
CA


 . (19)

Instead of Equation (17b), a static output feedback algorithm can be adopted to find the matrices stabilizing
the error dynamics under Condition (19) as in [28].

The result of this section can be summarized in the next proposition.

Proposition 1. If the rank of V from the rank factorization in Equation (13) is less than the number n− l, i.e.,
w < n− l, the output measurement-based DOB in Equation (15) is a low-order observer having less dimension
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than the conventional reduced-order observer. Under Equation (17) with a stable R, the proposed DOB in
Equation (15) can asymptotically estimate the disturbance in Equation (2).

As an application of the proposed DOB, it can be incorporated with an existing controller
to maintain the pre-designed nominal performance of a controlled system in the presence of the
external disturbance. The next section investigates the nominal performance recovery property of the
feedforward compensation using the proposed DOB against additional parameter uncertainties via
the singular perturbation analysis [2].

3. Performance Recovery via Disturbance Compensation and Singular Perturbation Analysis

3.1. System Model

For the performance recovery analysis, we consider a single input system that has a canonical
form given by

A=



0 1 · · · 0

0 0
. . . 0

...
... · · ·

...
0 0 · · · 1
−a0 −a1 · · · −an−1


, B=F=


0
0
...
0
b

 (20)

where uncertain parameters lie in the last rows and their nominal values are utilized for the
observer design.

Assumption 1. The parameter b in Equation (20) is supposed to be in a known bound, and its sign is positive
without loss of generality, i.e., b > 0 and its nominal value b̂ > 0.

To deal with parametric uncertainties, an equivalent disturbance is defined as follows:

ẋ = Ax + B(u + d) = Âx + B̂(u + de), (21a)

de := B̂+(Ãx + B̃u + Bd) (21b)

where Â and B̂ are the nominal values; Ã = A− Â and B̃ = B− B̂.
Suppose that a pre-designed control input ur achieves a desired control performance for the

following nominal system:

ẋ = Âx + B̂ur. (22)

The next subsection shows that a feedforward compensation for Equation (21) (u = ur − d̂e)
using the proposed disturbance estimation (d̂e) can approximately recover the nominal performance of
Equation (22) via singular perturbation theory. An additional stability condition of the boundary-layer
system is found out for selecting observer gains that result in the performance recovery.
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3.2. Robustness Analysis

The proposed DOB for Equation (21) is given by

ξ̇ =Aδδ− Bδ B̂+AC+y + BδU2η̂ − Bδu, (23a)

ż = Rη̂ +
(

VT−QC
)

B̂u +
(

VT−QC
)

B̂d̂e + Sy, (23b)

η̂ = z + Qy, (23c)

δ = Bδ B̂+C+y + BδU1η̂ + ξ, (23d)

d̂e = δ1. (23e)

Using η̃ = η − η̂, Equations (23a) and (23d) can be rewritten as

ξ̇ =Aδδ− Bδ B̂+ Âx− BδU2η̃ − Bδu, (24a)

δ =Bδ B̂+x− BδU1η̃ + ξ. (24b)

When u = ur − d̂e, the composite system can be given by

ẋ =Ax + B (ur − δ1 + d) , (25a)

δ̇ =
(

Aδ − Bδ B̂+ B̃Cδ

)
δ− Bδ (U1R + U2) η̃ + Bδ B̂+

(
Ãx + B̃ur + Bd

)
, (25b)

˙̃η =Rη̃ (25c)

where B̂+B̃ = B̂+B− 1 = b/b̂− 1. The observer parameter R is selected to be R = −Iw/τ where Iw is
the identity matrix. The control ur has been designed for the nominal control system performance.

By the coordinate transformation σi = τ(i−1)δi (i = 1, 2, 3) and ν = τ−1η̃, the singular perturbation
form is obtained.

ẋ = Ax + B (ur − σ1 + d) , (26a)

τσ̇ = Aσσ + Bσ (U1 + τU2) ν + Bσ B̂+
(

Ãx + B̃ur + Bd
)

, (26b)

τν̇ = −Iwν (26c)

where Aσ =

 −α2B̂+B 1 0
−α1B̂+B + (τω)2B̂+ B̃ 0 1

−α0B̂+B 0 0

 and Bσ =

 α2

α1 − (τω)2

α0

.

According to the singular perturbation analysis, the variables x, ur, and d in Equation (26) are
regarded as slow variables, whereas the state σ and ν as fast variables. The system matrix of the fast

dynamics is

[
Aσ Bσ (U1 + τU2)

0w×3 −Iw

]
, and it can be seen that its stability depends on the eigenvalues

of Aσ. The characteristic polynomial of Aσ is given by

s3 +
b
b̂

α2s2 +

(
b
b̂

α1 −
b̃
b̂
(τω)2

)
s +

b
b̂

α0. (27)

Under Assumption 1, b/b̂ > 0 and αi > 0 from Equation (7) . Hence, Equation (27) is stable when

α2

(
b
b̂

α1 −
b̃
b̂
(τω)2

)
> α0 (28)

by the Routh–Hurwitz stability criterion. The coefficients αi can be chosen such that Equation (28) is
satisfied with a small τ.
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Under Condition (28), the quasi-steady-state solution of the boundary-layer system of
Equations (26b) and (26c) is

σ∗ = −A−1
σ Bσ B̂+

(
Ãx + B̃ur + Bd

)
, (29a)

ν∗ = 0. (29b)

This implies

σ∗1 =
b̂
b

B̂+
(

Ãx + B̃ur + Bd
) (30)

and σ∗2 = σ∗3 = 0. It is noted that Ã, B̃, and B have their non-zero elements only in their last rows,
respectively. Since

B
b̂
b
= B̂ and B̂B̂+ =

[
0(n−1)×(n−1) 0(n−1)×1

01×(n−1) 1

]
, (31)

it can be seen that

Bσ∗1 = Ãx + B̃ur + Bd. (32)

Therefore, in the quasi-steady-state, Equation (26a) becomes

ẋ = Ax + B (ur − σ∗1 + d) = Âx + B̂ur. (33)

This enables us to design the control ur in Equation (21) with the nominal parameters Â and
B̂ under parameter uncertainties as well as the harmonic disturbance. This means that the robust
performance can be achieved by using the proposed low-order DOB against the mixed uncertainties.
The next proposition summarizes the result of this section.

Proposition 2. Under Assumption 1, the positive coefficients τ and αi (i = 0, 1, 2) in Equation (7) can
be chosen such that Equation (28) is satisfied. Then, in the presence of parametric uncertainties and the
harmonic disturbance of Equation (2), the augmented system of Equation (25) behaves like the nominal system
of Equation (33) when Equation (17) holds with R = −Iw/τ and 0 < τ � 1.

In the next section, a numerical example and a practical DC motor application illustrate the design
procedure and the performance of the proposed DOB.

4. Illustrative Examples

4.1. A Numerical Example

This section explains the design procedure of the proposed low-order DOB by using the example
in [24,27] where a constant disturbance is considered. The system parameters are the same as the
previous ones except for the disturbance matrix F.

Consider System (1) with

A =


0 0 −0.0034 0 0
0 −0.041 0.0013 0 0
0 0 −1.1471 0 0
0 0 −0.0036 0 0
0 0.094 0.0057 0 −0.051

, B =


−1 0 0
0 0 0
0 0 0.948

0.916 −1 0
−0.598 0 0

, F =


1

−0.132
−7.189

0
0

, (34)
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and C =

[
1 0 0 0 0
0 1 0 0 0

]
. Hence, the dimensions n = 5, m = 3, and l = 2.

From the rank factorization in Equation (13), it can be obtained that U = [0.1364 0.1564]T and
VT = [0 0 − 1 0 0] with w = 1. Since Condition (17) is satisfied with the matrices Q = [7.189 0],
S = [0 0], and R = −1.172, the proposed low-order DOB of Equation (15) can be designed by
Proposition 1.

Figure 1 shows that the proposed DOB (Prop.) can asymptotically estimate the disturbance
d = 1.0 + 5 sin(5πt) in the simulation. The observer parameters α0 = 1, α1 = 3, α2 = 3, and τ = 0.01
for Aδ and Bδ. The estimation performance has been improved by using the proposed observer
(Prop.), compared to the previous one (Const.) assuming a constant disturbance.

(a) Disturbance estimation (b) Estimation error

Figure 1. Simulation results of a numerical example.

Remark 3. In order for a conventional full-order observer and a reduced-order one to asymptotically estimate the
disturbance under the observability assumption, the additional system order should be eight and six, respectively,
while the proposed observer in Equation (15) has the order four in this example. This means that the proposed
observer can be implemented by using a lower order dynamic equation than that of a conventional extended
observer. It should also be mentioned that, since System (34) is not observable, the conventional extended
observers using the disturbance Model (3) cannot be constructed to compare with the proposed observer.

4.2. Application to DC Motor Position Control

For experimental validation of the proposed DOB, this section deals with a robust position control
problem of a DC motor system, as shown in Figure 2.

d
dt

θm = ωm, (35a)

d
dt

ωm = −Bm

Jm
ωm +

Kt

Jm
ia, (35b)

d
dt

ia = −Ra

La
ia −

Kb
La

ωm +
1
La

(u + d), (35c)

y = [ θm ia ] (35d)

where θm and ωm are the rotor angle and its velocity, respectively; Bm and Jm denote the friction
coefficient and the rotor inertia, respectively; ia is the armature current, and Kt is the torque constant.
Ra and La denote the armature resistance and inductance, respectively; Kb is the back electromotive
force (EMF) constant. The control input u is the voltage input, and d is the disturbance. The measurable
output y is composed of the angle (y1 = θm) and the current (y2 = ia). Since all industrial processes
are subject to parameter variations, it is supposed that all the real parameters are uncertain, as shown
in Table 1. The uncertain real parameters are specified for the simulations.
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(a) One-link dc motor system (b) Digital control system

Figure 2. DC motor control system for experimental tests.

Table 1. System parameters.

Parameter Nominal (Real) Unit

Ra 0.06 (0.6) [Ω]

La 0.229 (0.191) [mH]

Kb 0.0277 (0.0252) [V/(rad/s)]

Kt 0.0252 (0.0277) [Nm/A]

Jm 94.7 (84.9) [g-cm2]

Bm 0.2108 (0.2318) [mNm/(rad/s)]

Remark 4. Since two states of Equation (35) are measurable, the conventional reduced-order observer can
estimate the disturbance using the same dynamic order with the proposed one in Equation (15) in this example.
The contribution of the section is to illustrate the design procedure and validate the proposed low-order disturbance
observer through practical experiments using a DC motor system.

Following the analysis in Section 3, Equation (35) is rewritten as the canonical form of
Equation (20).

ẋ =

0 1 0
0 0 1
0 −a1 −a2

 x +

0
0
b

 (u + d) , (36a)

y =

[
1 0 0
0 Bm/Kt Jm/Kt

]
x (36b)

where x = [θm, ωm, ω̇m]T , a1 = (RaBm+KtKb)/(La Jm), a2 = (LaBm+Ra Jm)/(La Jm), and b =

Kt/(La Jm).
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4.2.1. The Nominal Control ur

In Section 3, the proposed DOB has been incorporated with ur to maintain its nominal performance
of Equation (22) in the absence of the uncertainties. In this section, an observer-based integral state
feedback law is employed as the nominal control ur to make the position θm follow the reference
θ∗ = 5.

ur = −k1θm − k2 x̂2 − k3 x̂3 + k0

∫ t

0
(θ∗ − θm)dτ (37)

where x̂2 = ω̂m and x̂3 = (−B̂m/ Ĵm)ω̂m + (K̂t/ Ĵm)ia with the nominal parameters. When ω̂m = ωm

and x̂3 = x3, the closed-loop transfer function from θ∗ to θm is given by

θm(s) =
bk0

γ(s)
θ∗(s) (38)

where γ(s) = s4 + (a2 + bk3)s3 + (a1 + bk2)s2 + bk1s + bk0. In the test results of the following
section, the control gain k in Equation (37) has been determined such that the characteristic polynomial
γ(s) = (s2 + 320s + 6400)(s2 + 400s + 10000).

Figure 3 exhibits the control block diagram of this section incorporating the nominal control of
Equation (37) with the proposed DOB.

Figure 3. Control block of DC motor control system.

4.2.2. Design of the Proposed DOB

From the rank factorization in Equation (13), it can be obtained that

Nc =

0 0 0
0 1/2 − Ĵm/(2B̂m)

0 −B̂m/(2 Ĵm) 1/2

 , UVT =

[
−L̂a/2

(L̂a/2)
(
â1 Ĵm/B̂m − â2

)]VT , (39)

and
η = VTx =

[
0 B̂m/K̂t − Ĵm/K̂t

]
x. (40)

When the design parameters Q = [q1, q2] and S = [s1, s2], Condition (17b) is satisfied with
q2 = −1 because

(VT −QC)F = − (1 + q2) /L̂a. (41)

From Equation (17a), it can be obtained that

(VT −QC)A− RVT − SC = [−s1K̂t, −q1K̂t−B̂m(R+s2), 2B̂m+ Ĵm(R−s2)]/K̂t.
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Hence, Condition (17) is satisfied with s1 = 0, s2 = R + 2B̂m/ Ĵm and q1 = −B̂m(R + s2)/K̂t.
Since Condition (17) is satisfied, the proposed DOB in Equation (15) can be designed by

Proposition 1. The parameter R in Equation (18) can be any negative number. R = −1000 in
the experiments of the next section.

4.2.3. Experimental Results

This section discusses computer simulations and practical experiments in the presence of
parametric uncertainties as well as the biased harmonic disturbance. The uncertain real parameters
are specified in Table 1. The disturbance d = 0.5 + sin(40πt) is enforced at t = 0.6 s.

The test results are presented in Figures 4–8. The three different observer-based control schemes
in Table 2 have been compared in the results:

(i) (PIO): The first controller used the proportional-integral observer (PIO) [12] for ω̂m and the
disturbance estimation, assuming that the disturbance is an unknown constant. In this case,
the observer dynamic order is four. The controller is given by u = ur − d̂0 where[

˙̂x
˙̂d0

]
=

[
Â B̂
0 0

][
x̂
d̂0

]
+

[
B̂
0

]
u+

[
G1

G2

]
(y− ŷ). (42)

(ii) (FM-Obs.): Accounting for the full model of Equation (3), of the disturbance, the second controller
(FM-Obs.) is based on the augmented system combined with its dynamic model in Equation (3).
The dynamic order of the full-model observer is six. The controller u = ur − d̂ = ur − χ̂1, where

[
˙̂x
˙̂χ

]
=

[
Â B̂Cχ

0 Aχ

][
x̂
χ̂

]
+

[
B̂
0

]
u+

[
G3

G4

]
(y− ŷ); Aχ =

0 1 0
0 0 1
0 −ω2 0

, Cχ =
[
1 0 0

]
. (43)

(iii) (Prop.): For the proposed controller (Prop.) u = ur − δ1, the observer parameters α0 = 1, α1 = 3,
α2 = 3, and τ = 0.001 for Aδ and Bδ. Since η ∈ R (w = 1), the observer dynamic order is
four. The proposed observer can estimate both the velocity and the disturbance at the same time.
The velocity estimation for the proposed controller is achieved by

ω̂m =
K̂t

2B̂m
(η̂ + ia) . (44)

Since the observers are expected to be significantly faster than the controller, the locations of
the observer poles are chosen further away leftward from the controller poles of Equation (38).
The observer gains of i), ii), and iii) are obtained by placing all the observer poles equally at s = −1000.

Table 2. Comparative controllers.

Case Label Controller Observer Dynamic Order Equation Number

(i) PIO u = ur − d̂0 4 (42), (37)
(ii) FM-Obs. u = ur − χ̂1 6 (43), (37)
(iii) Prop. u = ur − δ1 4 (15), (37)

Figures 4 and 5 compare the simulation and the experimental results of the motor angle position
and the velocity (estimation), respectively. In Figure 4, all the controllers could achieve the control
objective before the external disturbance was enforced at t = 0.6 s. The enlarged view of simulation
results at about 0.6 s are shown in Figure 6. The results show that (ii) (FM-Obs.) and (iii) (Prop.) can
successfully estimate the velocity and compensate for the unknown lumped disturbance to maintain
the nominal performance. It is also noted that the proposed method (Prop.) can be implemented
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by using a lower order dynamic equation than the conventional method (FM-obs.) without losing
the robust performance. Since the two control performances were only a little different in Figure 6,
the results of (ii) were excluded in the experimental results.

(a) Position (θm) (simulation) (b) Position (θm) (experiment)

Figure 4. Results of DC motor position.

(a) Velocity (ωm) (simulation) (b) Velocity estimation (ω̂m) (experiment)

Figure 5. Results of DC motor velocity.

(a) Position (Enlarged) (b) Velocity (Enlarged)

Figure 6. Results of DC motor position (enlarged).

Figures 7 and 8 show the estimated disturbances and the control inputs, respectively. It can be
seen that the experimental values in the figures are different from those of the simulation results.
The differences suggest the existence of additional uncertainties in the experimental system set.
This implies that the proposed approach can cope with additional practical disturbances.
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(a) Disturbance estimation (d̂e) (simulation) (b) Disturbance estimation (d̂e) (experiment)

Figure 7. Results of disturbance estimation.

(a) Control input (u) (sim) (b) Control input (u) (experiment)

Figure 8. Results of control input.

It may be possible to enhance the performance of PIO by increasing the observer gain. However,
the high-gain approach using a constant disturbance observer often causes undesirable noise
and vibrations.

For the laboratory experiments, all the control algorithms were discretized by using the trapezoidal
method and implemented into a TI DSP TMS320F28335. The digital algorithms are updated every
25 µs, which is also the sampling period of A/D conversion for the current. The PWM frequency is
20 kHz.

5. Conclusions

Based on a rank factorization scheme, a low-order DOB has been presented to asymptotically
estimate a biased harmonic disturbance using the output measurement information. An explicit
analysis of the robust performance recovery of the feedforward compensation using the proposed DOB
has been performed against additional parameter uncertainties. From the singular perturbation
analysis, a stability condition on the boundary-layer system is found out for the performance
recovery. Hence, the proposed DOB can be implemented to maintain nominal performance against
parameter uncertainties and the biased harmonic disturbance by using a lower order dynamic
system than conventional extended observers without losing the robustness guaranteed by previous
full-order DOBs.

To test the performance of the proposed observer, computer simulations with a numerical example
and laboratory experiments using a DC motor system have been performed. The proposed low-order
observer has successfully estimated a biased harmonic disturbance contained in an unobservable
system to which the conventional extended observer cannot be simply applied. Through comparative
simulations and experiments, it has been shown that the proposed observer can recover the control
performance of a DC motor position control system by estimating the velocity as well as the lumped
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disturbance. The proposed scheme can be extended to estimate disturbances with multiple frequencies
combined with any polynomial functions. Future works include the estimation of disturbances having
unknown frequencies.
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