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Abstract: Adsorption refrigeration has become an attractive technology due to the capability to
exploit low-grade thermal energy for cooling power generation and the use of environmentally
friendly refrigerants. Traditionally, these systems work with pure fluids such as water, ethanol,
methanol, and ammonia. Nevertheless, the operating conditions make their commercialization still
unfeasible, especially owing to safety and cost issues as a consequence of the working pressures,
which are higher or lower than 1 atm. The present work represents the first thermodynamic insight
in the use of mixtures for adsorption refrigeration and aims to assess the performance of a binary
system of ammonia and ethanol. According to the Gibbs’ phase rule, the addition of a component
introduces an additional degree of freedom, which allows to adjust the pressure of the system varying
the composition of the mixture. The refrigeration process was simulated with isothermal- isochoric
flash calculations to solve the phase equilibria, described by the Peng-Robinson-Stryjek-Vera (PRSV)
equation of state for the vapor and liquid phases and by the ideal adsorbed solution theory (IAST)
and the multicomponent potential theory of adsorption (MPTA) for the adsorbed phase. In operating
condenser and evaporator, pressure levels around atmospheric pressure can be achieved using an
ammonia/ethanol mixture with a mole fraction of ethanol in the range of 0.70−0.75. A good agreement
in the predictions of the adsorbed phase composition was also reported using the IAST and the
MPTA methods.

Keywords: adsorption refrigeration; adsorption thermodynamics; ammonia; ethanol; ideal adsorbed
solution theory; multicomponent potential theory; chiller; heat pump

1. Introduction

The growing awareness of global warming and the need for reducing carbon emissions has
resulted in incentives to fully develop renewable energy conversion technologies including refrigeration
and air conditioning [1]. Increasing attention has been given to processes using fluids with zero ozone
depletion potential and low global warming potential [2]. In this context, adsorption refrigeration is
very promising due to the utilization of natural and environmentally friendly refrigerants and to the
capability to exploit low-grade heat, especially in places characterized by high solar radiation [3–6].
In recent years, adsorption refrigeration has been also proposed for aerospace applications thanks to
the absence of an electrical compressor, making these systems vibration-free. Tzabar [7,8] developed
a Joule–Thomson cryocooler able to work in the range of temperatures interesting for satellites,
independent from any active control and highly reliable. Potential applications include the Cube Sats,
a new generation of satellites used for monitoring the Earth conditions. The need to mitigate any
thermal gradient within them for enhancing the resolution of the collected data makes adsorption
compressors a viable solution, as they supply cooling power without causing further vibrations.
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The reason that adsorption heat transformers are still not commercialized lies in their high costs
which are mainly associated with the operational pressures, which in turn are strictly related to the
operating fluid saturation temperatures. As extensively reported in the literature, the most significant
physical properties in the choice of a refrigerant are the latent heat of vaporization (λvap) and the
saturation pressure (Psat). Table 1 reports the relevant physical properties of the most common fluids
used for refrigeration at 283 K. In a recent study by Santori and Di Santis [9], performances of the
thermodynamic cycle were also related to the fluid critical temperature (Tcr), critical pressure (Pcr),
critical density (ρcr), acentric factor (ω), and molar heat capacity of ideal gas at critical point (cp

0
,cr). This

approach confirmed the advantage of using traditional fluids for adsorption refrigeration and showed
that other fluids, such as isopropanol, have promising properties, anticipating values of coefficient of
performance (COP) not far from ethanol and methanol (Table 1).

Table 1. Physical and Critical Properties of Common Refrigerants.

Fluid λvap (@283 K)
[kJ mol−1]

Psat (@283 K)
[kPa] Tcr [K] Pcr [kPa] ρcr [mol m−3] ω [-] cp

0
,cr [kJ

mol−1 K−1]

Water 44.6 1.2 647.3 22,048 17,857 0.344 0.037
Ammonia 21.4 611.2 405.7 11,300 13,889 0.253 0.038
Methanol 37.6 7.4 512.6 8140 8547 0.566 0.061
Ethanol 43.9 3.1 513.9 6120 5952 0.643 0.098

Isopropanol 46.8 2.2 508.3 4790 4525 0.670 0.133

These fluids exhibit different saturation pressures at the same working temperature. Water is
characterized by a low saturation pressure, which bounds the design to sub-atmospheric operating
conditions, although it is attractive for its non-toxicity, non-flammability, high latent heat, and
availability. The use of methanol or ethanol as alternatives to water enables higher but still
sub-atmospheric working pressures while with ammonia, the cycle operates at pressures considerably
higher than 1 atm. Pressures lower than the atmospheric pressure require expensive vacuum
components and demand periodical vacuum-tightness checks. On the other hand, operating with
pressures higher than the atmospheric pressure makes unavoidable the use of components with high
metal thicknesses, especially in the adsorption heat exchangers. Such heat exchangers need to be
cooled down and heated up, requiring a remarkable amount of sensible heat that is not directed
to the adsorbent material. The decrease in thickness of the heat exchanger pipes can reduce the
metal/adsorbent mass ratio up to 50% resulting in a COP increase of 0.1 [10].

With a pure fluid as refrigerant, once the working temperature has been chosen, the pressure level
is univocally fixed. According to the Gibbs’ phase rule, the introduction of another component to the
system adds a degree of freedom, so that by varying the composition of the mixture, the operating
pressure can be adjusted to be close to atmospheric pressure. While adsorption heat transformers
working with pure fluids as refrigerant have been widely investigated, the literature on mixtures
is still poor. The existing publications are mainly focused on experimental studies and involve a
small scientific community. Wang and Zhu [11] carried out experiments and modelled an apparatus
for the characterization of a system working with a mixture of ammonia and water adsorbed on
zeolite 13X. The weakness of their work lies in the evaluation of the COP as the authors did not
include the mixing enthalpy in calculating the heat of adsorption. This term is in fact significantly
non-linear for associating mixtures such as the ammonia/water system. Tzabar [12] applied the notions
of pure fluid adsorption isotherms to derive the adsorption of mixtures using extended isotherm
models. Taking into account the degree of approximation, the capability of working with pure fluid
isotherm parameters allows a straightforward use of existing information in literature. In a following
paper, Tzabar and Grossman [13] designed an adsorption Joule-Thompson cryocooler that works
with nitrogen/methane and nitrogen/ethane mixtures. Their analysis showed clear limitations in the
description of the equilibrium as they modelled the adsorption of mixtures through the extended
Langmuir model without considering non-idealities occurring in the adsorbed phase.
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To accurately evaluate the performance of an adsorption refrigeration process involving a
mixture, a full thermodynamic cycle needs to be simulated in detail. A conventional process
consists of an adsorption bed acting as a thermal compressor, a condenser, an evaporator, and a
throttling valve connected as shown in Figure 1a. The thermodynamic cycle is depicted in the
pressure-temperature-concentration (P-T-x) diagram in Figure 1b. The operational steps of the thermal
adsorption compressor can be scheduled as:

• Isosteric heating (1−2): As a result of low-grade heating the pressure in the adsorption bed
increases from Pevap to Pcond while the adsorption bed temperature increases from T1 to T2.

• Isobaric desorption (2−3): The adsorption bed continues to receive heat and its temperature keeps
raising from T2 to T3, which results in the desorption of the refrigerant vapor to the condenser
under a constant vapor pressure. The working fluid concentration shifts from xmax to xmin.

• Isosteric cooling (3−4): As a result of cooling, the pressure in the adsorption bed decreases from
Pcond to Pevap while the adsorption bed temperature decreases from T3 to T4.

• Isobaric adsorption (4−1): The adsorption bed continues to be cooled and its temperature keeps
lowering from T4 to T1, which results in the adsorption of the refrigerant vapor from the evaporator
under a constant vapor pressure. The working fluid concentration shifts back from xmin to xmax.
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Figure 1. Schematic (a) and P-T-x cycle diagram (b) of a conventional adsorption refrigeration process.

The present study aims to demonstrate the potential of using fluid mixtures instead of pure
components as refrigerants so that the adsorptive refrigerators can work at pressures close to
atmospheric pressure. The approach involves a rigorous thermodynamic framework to describe
vapor-liquid equilibria in the evaporator and condenser as well as adsorption equilibria in the
adsorption bed. This investigation is essential to clarify the limiting performance of the process
excluding any transient phenomenon associated with heat and mass transfer. Within the scope of the
present study, a mixture of ammonia and ethanol was selected. At the working temperatures of the
condenser and the evaporator, ammonia shows a saturation pressure higher than 1 atm while ethanol
shows a saturation pressure below 1 atm. Therefore, it is aimed to change the composition of the
mixture to obtain an operating pressure close to atmospheric pressure and to assess the performance of
the resulting refrigeration cycle.

2. Thermodynamic Model

As previously mentioned, equilibrium takes place between the vapor and liquid phases in both
the evaporator and the condenser, while in the adsorption bed, the vapor phase is in equilibrium with
the adsorbed phase within the solid phase, which does not actively take part in the process. When the
evaporator, for instance, and the adsorption bed are connected and the thermodynamic equilibrium is
established, the pressure and the vapor phase mole fractions are the same in the two vessels (Figure 2).
Note that the vessels are at the different temperatures Tevap and Tads.
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To model the vapor and liquid phases, the Peng-Robinson-Stryjek-Vera (PRSV) equation of
state [14] was selected with a ϕ-ϕ approach. It has been reported that this equation works reasonably
well in the vapor phase but reveals some weaknesses to predict the equilibrium of liquid phases
containing associative compounds such as ammonia and ethanol [15]. Nevertheless, for the purpose
of the present work, this deviation is taken as acceptable. This was checked in an analysis of the
vapor–liquid equilibrium data against the proposed model in the range of compositions, pressure, and
temperatures of interest. To model the adsorbed phase, two approaches were followed, and two case
studies were accordingly designed. In case study A, the ideal adsorbed solution theory (IAST) was
considered [16]. IAST is the most widespread theory for multicomponent adsorption interpretation and
it postulates the existence of an adsorbed phase, which behaves as a Raoult’s ideal solution [17]. For this
case, the three connections proper of a single-bed adsorption cycle were simulated, namely adsorption
bed/evaporator, adsorption bed/condenser, and evaporator/condenser connections. Simulations took
into account several initial compositions of the refrigerant mixture and multiple cycles were run until
the convergence of the pressures in the condenser and in the evaporator was achieved. In case study B,
the multicomponent potential theory of adsorption (MPTA) was implemented [18] focusing only on
the connection between the evaporator and the adsorption bed. The two adsorption models were also
compared in terms of prediction of the adsorbed phase mole fractions at equilibrium.

2.1. Case Study A: Complete cycle modelling with PRSV + IAST

In the single-bed adsorption cycle, there are three vessel connections to model. For each of them,
the thermodynamic equilibrium is solved through a system of non-linear algebraic equations.

(a) Adsorption bed/Evaporator connection: In this stage, the valve between the adsorption bed and the
evaporator is open and the vapor generated in the evaporator is adsorbed in the bed. The modelling
of this connection can be extended from our previous works [19,20] based on ideal and non-ideal
isothermal-isochoric flash for adsorption compressor considering the additional evaporator connected
to the adsorption bed at equilibrium. The resulting system of equations for NC component in the
adsorption bed is:

PϕV,ads
i yi = P0

i xads
i (1)

mads
N

=
NC∑

i = 1

xads
i
qi

(2)
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ψi =

P0
i∫

0

qid(ln Pi) (3)

ψi = ψeq (4)

Gads = Zads
PVads
RTads

(5)

Fads = Gads + N (6)

Fadszads
i = Gadsyi + Nxads

i (7)

The resulting system of equations for NC component in the evaporator is:

ϕ
V,evap
i yi = ϕ

L,evap
i xevap

i (8)

Gevap = Zevap
PVevap

RTevap
(9)

Fevap = Gevap + Levap (10)

Fevapzevap
i = Gevapyi + Levapxevap

i (11)

Equations (1)–(4) follow the ideal adsorbed solution theory while Equation (8) represents the
isofugacity condition for the VLE. Equations (5) and (9) are the gas equations of state with the
compressibility factor, Equations (6) and (10) are the overall mass balances, and Equations (7) and (11)
are the component mass balances in the adsorption bed and the evaporator, respectively. A detailed
description of all the symbols can be found in the Nomenclature section of this document.

Additional equations are needed to calculate the compressibility factors, the fugacity coefficients,
and the mass of adsorbent. The compressibility factor of the vapor phase in both the evaporator and
the adsorption bed can be written for the PRSV equation of state as [21]:

Z3 + Z2(B− 1) + Z
(
A− 3B2

− 2B
)
+ B3 + B2

−AB = 0 (12)

Furthermore, the fugacity coefficients of the liquid phase in the evaporator and of the vapor phase
in both the evaporator and the adsorption bed can be evaluated as [21]:

lnϕi =
bi
B
(Z− 1) − ln(Z− B) −

A

2
√

2B

(
2
∑

k xkaik

a
−

bi
b

)
ln

Z +
(
1 +
√

2
)
B

Z +
(
1−
√

2
)
B

(13)

Assuming that the adsorbent occupies all the volume available in the adsorption bed, the volume
of adsorbent is calculated from the mass of adsorbent by:

Vads =
mads
ρb

(
εb + (1− εb)εp

)
(14)

The system describing the adsorption bed (Equations (1)–(7)) consists of 4NC+1 equations,
whereas the evaporator is described by a system of 2NC+1 equations (Equations (8)–(11)). It is noted
that the adsorption bed has 2NC more equations which are required by the IAST to deal with the
additional solid phase. Thus, the total number of equations is 6NC+2. The initial conditions are the
temperature and the volume of both the evaporator (Tevap, Vevap) and the adsorption bed (Tads, Vads), the
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total number of moles in the evaporator (Fevap), and the overall mole fractions in the evaporator (zi
evap).

Since the vessels are connected, at equilibrium they share the same pressure and mole fractions of the
vapor phase. As a result, the system is square having 6NC+2 unknown variables: The equilibrium
pressure (P), the mole fractions of the vapor phase (yi), the surface pressures (Pi

0), the mole fractions
of the adsorbed phase (xi

ads), the number of moles of the adsorbed phase (N), the reduced grand
potentials (ψi), the number of moles of the vapor phase in the adsorption bed (Gads), the total number
of moles in the adsorption bed (Fads), the overall mole fractions in the adsorption bed (zi

ads), the mole
fractions of the liquid phase (xi

evap), the number of moles of the liquid phase (Levap), and the number of
moles of the vapor phase in the evaporator (Gevap). After manipulating the system, the Rachford–Rice
equations [22] can be used to solve the coupled isothermal-isochoric flash problems in the adsorption
bed and the evaporator:

NC∑
i = 1

zads
i

(
kads

i − 1
)

1 + Gads
Fads

(
kads

i − 1
) = 0 (15)

NC∑
i = 1

zevap
i

(
kevap

i − 1
)

1 +
Gevap
Fevap

(
kevap

i − 1
) = 0 (16)

where the phase equilibrium constants are defined as follows:

kads
i =

P0
i

PϕV,ads
i

(17)

kevap
i =

ϕ
L,evap
i

ϕ
V,evap
i

(18)

Due to their monotonic behavior, the Rachford–Rice equations can be effectively solved in
MATLAB environment [23] by the Newton numerical method without any issue on the estimation of
the best initial guess.

(b) Adsorption bed/Condenser connection: In this stage, the valve between the adsorption bed and the
condenser is open and the vapor desorbed from the bed is condensed in the condenser. New phase
equilibria need to be solved including vapor–liquid equilibrium in the condenser and adsorption
equilibrium in the adsorption bed. Since the two vessels are connected, the vapor released by the
adsorption bed has the same composition of the vapor in equilibrium with the liquid in the condenser.
At equilibrium, the pressures in the condenser and in the adsorption bed are equalized. Therefore,
the resulting system of equations is identical to point (a) provided the new initial conditions for the
condenser (Tcond, Vcond, Fcond, zi

cond) and the adsorption bed (Tads, Vads).

(c) Condenser/Evaporator connection: In this stage, the throttling valve between the condenser and
the evaporator is open and the condensed refrigerant vapor has to progress towards the evaporator
to start the thermodynamic cycle again. It was assumed that the recirculation exclusively involves
the amount of liquid phase that is desorbed from the adsorption bed and sent to the condenser. This
assumption is reasonable due to the entity of desorption and because the recirculated liquid amount is
taken from the bottom of the condenser. Therefore, the overall mole fractions in the condenser and the
evaporator can be written as:

zcond
i =

Gcondyi + (Lcond − Lrec)xcond
i

Fcond − Lrec
(19)

zevap
i =

Gevapyi + Levapxevap
i + Lrecxcond

i
Fevap + Lrec

(20)
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With the above assumption, it is possible to solve two different VLEs in the condenser and in the
evaporator. Both calculations are solved following the approach reported in [24]. The initial conditions
are the temperatures, volumes, total number of moles and overall mole fractions in the condenser
(Tcond, Vcond, Fcond, zi

cond) and in the evaporator (Tevap, Vevap, Fevap, zi
evap). The system of equations

allows for the calculation of equilibrium pressure, mole fractions of the vapor phase, mole fractions
of the liquid phase, number of moles of the vapor phase, number of moles of the liquid phase in the
condenser (Pcond, yi

cond, xi
cond, Gcond, Lcond), and in the evaporator (Pevap, yi

evap, xi
evap, Gevap, Levap).

Aside from simulating the complete thermodynamic cycle, the COP of the refrigeration system
can be calculated as:

COP =
Qevap

QH
(21)

where the heat removed from the evaporator (Qevap) and the total heat supplied to the system (QH) are
evaluated according to [25]:

Qevap = (xmax − xmin)∆Hevap (22)

QH = Qsol + Qdes + Qre f (23)

Qsol = cp,ads
(
Treg − Tint,h

)
(24)

Qdes = (xmax − xmin)∆Hdes (25)

Qre f =
xmax + xmin

2
cp,re f

(
Treg − Tcond

)
+ xmaxcp,re f

(
Tcond − Tint,h

)
(26)

where ∆Hevap takes into account the enthalpy of the ideal gas state and the residual enthalpy while ∆Hdes
is calculated through the differential isosteric heats of desorption of the components in the mixture [26].
The equilibrium mole fractions of the adsorbed phase, maximum (xmax) and minimum (xmin), are
obtained from the outcomes of the simulation. The values of cp,ref are taken from REFPROP [27]
knowing the pressure and the temperature of the system. The enthalpy of vaporization (∆Hevap) is
calculated directly from the equation of state selecting a consistent reference state and following the
approaches by Figueira et al. [28] and Tillner-Roth and Friend [29]. The enthalpy of desorption (∆Hdes)
is calculated by integrating the differential isosteric heat of desorption for ideal adsorbed mixtures [26].

The initial conditions used in the simulations are reported in Table 2 for the evaporator, the
condenser, and the adsorption bed. For case study A, simulations were run considering eight different
initial overall compositions (Table 2) to observe how the pressure in the condenser and evaporator
and the COP are affected by the choice of the mixture. Mixtures were prepared starting from a known
amount of ethanol and progressively adding ammonia, which is, at the same time, the most volatile
component in the VLE and the most strongly adsorbed component in the adsorption equilibrium. All
the scenarios were assessed considering an adsorption and condensation temperature of 298.15 K (25
◦C), a desorption temperature of 353.15 K (80 ◦C), and an evaporation temperature of 283.15 K (10 ◦C).
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Table 2. Initial Conditions of the Refrigeration System Using the Binary System Ammonia (1)/Ethanol
(2).

Variable Evaporator Condenser Adsorption Bed

Temperature, T [K] 283.15 298.15 298.15 (ads); 353.15 (des)
Volume, V [L] 10 10 0.213

Total number of moles, F
[mol] 7 7 Calculated

Overall mole fraction, z2
[-]

0.55 0.55

Calculated

0.60 0.60
0.65 0.65
0.70 0.70
0.75 0.75
0.80 0.80
0.85 0.85
0.90 0.90

Thanks to availability of adsorption equilibrium data for both ammonia and ethanol, the SRD
1352/3 was chosen as adsorbent material. SRD 1352/3 is an activated carbon obtained from processing
of coconut shell, manufactured by Chemviron Carbons Ltd., with properties listed in Table 3.

Table 3. Adsorption and Bed Properties of SRD 1352/3. Data are Taken from [30–32].

Form Origin Particle Size
[mm]

Surface Area
[m2 g−1]

mads [kg] εb [-] εp [-] ρb [kg m−3]
cp,ads

[kJ kg−1 K−1]

Grains Coconut
shell 0.5−2 2613 0.1 0.35 0.84 420 0.95

It was assumed that the bed density, the bed porosity, and the adsorbent porosity were the same
of those reported for activated carbon Norit R1 Extra [32]. Based on the experimental measurements
reported in [30,31], single component adsorption data were fitted using the dual-site Langmuir isotherm
to be coupled with the IAST. The mathematical expression is:

q =
qs1b01exp

(
−∆H1

RT

)
P

1 + b01exp
(
−∆H1

RT

)
P
+

qs2b02exp
(
−∆H2

RT

)
P

1 + b02exp
(
−∆H2

RT

)
P

(27)

This choice was made because the conventional Dubinin–Astakhov model does not have Henry’s
Law region, leading to incorrect IAST results. The dual-site Langmuir parameters for ammonia and
ethanol are reported in Table 4.

Table 4. Regressed Parameters of the Dual-Site Langmuir Model for Ammonia and Ethanol on SRD
1352/3. Equilibrium Data are from [30,31].

Component qs1
[mol kg−1] b01 [kPa−1] ∆H1

[kJ mol−1]
qs2

[mol kg−1] b02 [kPa−1] ∆H2
[kJ mol−1]

Ammonia (1) 53.27 8.97 × 10−8 23.45 5.10 5.78 × 10−12 55.04
Ethanol (2) 11.96 1.58 × 10−10 58.53 3.76 1.21 × 10−8 41.49

2.2. Case Study B: Adsorption bed/Evaporator Connection Modelling with PRSV +MPTA

This case study investigates the adsorption bed/evaporator connection, which was simulated by
imposing the system equilibrium pressure and the mole fractions of the vapor phase from the previous
calculations using the IAST method. In this way, the MPTA allows to calculate the mole fractions of
the adsorbed phase, which are readily comparable with the IAST predictions.
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In the MPTA method, the mole fraction of each component in the adsorbed phase is computed by
means of the ratio between the surface excess of the single component over the global surface excess.
The surface excess is the integral over the pore volume of the difference between the amount of fluid in
the proximity of the surface and the amount of fluid in the vapor phase [24]. Therefore, a system of
equations capable to find the local values of the molar densities and compositions of the adsorbed and
vapor phases is required. The unknowns of the system are NC: The local molar density (ρz) of the
adsorbed phase at the local adsorption pressure (Pz) and the local mole fractions of the adsorbed phase
(xi,z

ads). The resulting system of NC equations can be written as:

ϕV,ads
i,z Pzxads

i,z = ϕ
V,evap
i Pyiexp

(
εi

RTads

)
(28)

where

εi = εo
i

(
ln

z0

z

)1/β
(29)

The fugacity coefficients of the vapor and adsorbed phases are calculated with the PRSV equation
of state. The local pressure is also evaluated from the PRSV and it is function of the local molar density.
After imposing the component potentials and obtaining the local variable values, the surface excesses
of the single components in the mixture can be calculated as follows:

Γi =

z0∫
0

(
ρzxads

i,z − ρyi
)
dz (30)

The pore volume domain was discretized using 100 nodes between 0 and z0. Eventually, from the
surface excesses of the single components, the mole fractions in the adsorbed phase are found using
Equation (31):

xads
i =

Γi∑NC
j = 1 Γ j

(31)

The solution of the Equations (28)−(31) follows the theory formulated by Shapiro and Stenby [18]
and the investigations carried out by Sudibandriyo et al. [33] and Monsalvo et al. [34]. For the MPTA,
the available adsorption data for ammonia and ethanol were regressed from Brancato et al. [30] and
Tamainot-Telto et al. [31] using the Dubinin-Astakhov model, with mathematical expression and
parameters reported in Equation (29) and Table 5, respectively.

Table 5. Parameters of the Dubinin–Astakhov Model for Ammonia and Ethanol on SRD 1352/3.
Equilibrium Data are from [30,31].

Component z0 [cm3 g−1] ε0 [kJ mol−1] β [-]

Ammonia (1) 0.82 4.40 1.2
Ethanol (2) 0.82 8.78 1.5

3. Results and Discussion

3.1. Case Study A: PRSV + IAST

All of the simulations were run for several cycles until convergence of the equilibrium pressures
and mole fractions of the different phases. From Figures 3–5 it can be inferred that, after nine complete
cycles, the stability of pressures and phase compositions was achieved in both the condenser and
evaporator. The plots refer to a run having an initial overall mole fraction of ethanol equal to 0.75 in
both evaporator and condenser. The evolution of the equilibrium variables is linked with the complete
thermodynamic cycle, which is composed of the three systems of equations being solved one after the
other, so that the solutions of the first system become the input variables for the second system and so
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on. It can be noticed that the pressure in the evaporator decreases with the cycles while an opposite
trend is observed in the condenser (Figure 3). Accordingly, all phases result enriched in ethanol in the
evaporator and depleted in ethanol in the condenser with the increased cycle number (Figures 4 and 5).
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mole fraction in the liquid phase (x2) of ethanol in the condenser with the cycle number for an initial
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Figure 6 shows the equilibrium pressures in the evaporator and condenser obtained at the end
of the last cycle for different initial loading compositions. In order to have operating pressures of
around 1 atm, an initial overall mole fraction of ethanol in the range of 0.70−0.75 is required. The
optimal operating window is highlighted in Figure 6 by the intersected shaded area. For lower
ethanol mole fractions, the equilibrium pressures, especially in the condenser, become too high while
for higher ethanol mole fractions, the equilibrium pressures, especially in the evaporator, become
sub-atmospheric. Working outside the optimal composition range needs to be avoided to minimize
the cost associated to the heat exchangers and heat utilities as well as to enhance process safety.
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To assess the performance of the novel process involving a mixture of vapors, COPs were calculated
at different initial loading compositions, as shown in Figure 7.
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The COP trend reveals a minimum for an initial ethanol overall mole fraction of around 0.80
while it keeps rising at the two ends of the investigated mixture composition range. It has been
reported in the literature that the expected COP from an adsorption cycle working with pure ethanol
on SRD1352/3 was 0.63 considering 7 ◦C as evaporation temperature and 30 ◦C as condensation and
minimum adsorption temperature [30]. For a system working with pure ammonia on SRD1352/3, at
approximately the same working temperatures of 10 ◦C for evaporation and 35 ◦C for condensation, the
resulting COP was 0.55 [31]. In this work, with an initial mixture loading of 0.55−0.90 of ethanol mole
fraction, the calculated COP range was 0.265−0.281, hence a sensible reduction in the thermodynamic
cycle performance was observed.

Considering the terms of Equation (21) for the COP evaluation, the sensible heat of the adsorbed
phase Qref is at least one order of magnitude lower than the heat of desorption Qdes while the sensible
heat of the adsorbent Qsol is constant and composition independent. This reduces the COP to be
proportional to the ratio ∆Hevap/∆Hdes. Since in the IAS theory the heat of desorption results in an
almost linear function of the composition, as depicted in Figure 8, the low COP values are explained by
the low latent heats of vaporization of the mixture compared to those of the pure components. Ethanol
and ammonia, in fact, establish associative interactions in the liquid phase that make the mixture easier
to evaporate. This can be quantified by the values of the residual enthalpies, which can constitute a
significant contribution to the latent heat of vaporization. The mixing process of a non-ideal solution
can be exothermal or endothermal, depending on the temperature, pressure, nature of the fluids, and
the concentration of the mixture [35]. In this regard, Figure 8 confirms that the calculated latent heats of
vaporization of the mixture are always lower than those of the pure components, showing a minimum
at about 0.60 of ethanol mole fraction. At 283.15 K, the values of the pure component latent heats of
vaporization are, in fact, 21.4 kJ mol−1 and 43.9 kJ mol−1 for ammonia and ethanol, respectively.
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This highly non-ideal behavior is confirmed by studies reported in the literature working on
the similar mixture ammonia/water [36] and by an experimental datum of excess enthalpy equal to
−26.3 kJ mol−1 for the ammonia/ethanol mixture found in the DETHERM database [37]. Although the
excess enthalpy is reported at 25 ◦C and z2 = 0.986, this value lowers the latent heat of vaporization of
pure ethanol by 60%. It can be concluded that, depending on the nature of the refrigerant vapors, the
latent heat of vaporization of the mixture can be well below those of pure components, with COPs
reduced by similar ratios.

3.2. Case Study B: PRSV +MPTA

Figure 9 summarizes the simulation results for the adsorption bed/evaporator connection where
the equilibrium in the adsorbed phase was solved using the MPTA and compared with the IAST. After
imposing the equilibrium pressure and the vapor phase composition, the mole fractions of ethanol in
the adsorbed phase were plotted against the initial overall mole fraction of ethanol for both methods.
As it can be observed, the resulting trends are relatively similar and almost linear in the composition,
although the predictions of the MPTA are always lower than those of the IAST with a maximum
deviation of around 3% for z2 = 0.75. The discrepancy can be explained by recalling that the two
methods use different adsorption isotherms. The IAST describes the multicomponent adsorption with
the dual-site Langmuir model while the MPTA uses the Dubinin-Astakhov model. Since in both cases
the vapor phase is described by the PRSV equation of state, the mismatch is exclusively related to the
adsorbed phase model. Considering the nature of the fluid mixture, the MPTA method might show
more reliable results than the IAST method because the latter does not take into account non-idealities
in the adsorbed phase. The MPTA, instead, is intrinsically based on the potential theory of adsorption,
which is capable to describe the adsorption of fluids in a wide range of pressures and temperatures,
and in peculiar situations such as in the vicinity of the dew point [18]. Nevertheless, the actual presence
of a Dubinin-type potential on the surface of the adsorption material is still questionable and needs
further proofs.
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theory (IAST) and multicomponent potential theory of adsorption (MPTA) methods vs. the initial
overall mole fraction of ethanol z2.

Another aspect of the discrepancy between the two methods could be attributed to the fitting
of the adsorption isotherms. In both cases, the single fluid adsorption isotherms were taken from
regressed values of studies found in literature. However, while for the MPTA the available adsorption
data for ethanol and ammonia were successfully regressed, respectively, by Brancato et al. [30] and
Tamainot-Telto et al. [31] using the Dubinin–Astakhov model, the dual-site Langmuir model parameters
used for the IAST were newly fitted in this study from data extrapolated by regressed isotherms. This
means that even if the quality of the fitting of the sources is reliable, it is not as accurate as a fitting
from original data.

4. Conclusion

Adsorption thermal compression is an emerging technology, which is currently under development
as a more sustainable and environmentally friendly refrigeration system and for the next long-term
aerospace applications. Conventional adsorption refrigerators work with pure fluids, which limit
the operating pressure to values considerably below or above atmospheric pressure, thus exhibiting
economic and safety concerns. The outcomes of the thermodynamic analysis of this work confirmed
the correctness of the insight that it is possible to adjust the operating pressures of the system varying
the composition of a refrigerant mixture. The full refrigeration cycle was simulated in detail focusing
on the three main connections involving the adsorption bed, the evaporator, and the condenser.
Phase equilibria were solved by isothermal-isochoric flash calculations using the PRSV equation of
state to describe the vapor and liquid phases and the IAST and the MPTA to describe the adsorbed
phase. An optimal operating pressure range slightly above 1 atm in both the evaporator and the
condenser was identified for an initial mole fraction of ethanol in the range of 0.70–0.75. With the same
composition range, COPs of the thermodynamic cycles were calculated. For the ammonia/ethanol
mixture, a decrease of performance was observed compared to systems using pure fluids mainly due
the magnitude of residual enthalpies.

Adsorption equilibria were further assessed comparing the predictions of the adsorbed phase
composition from the ideal adsorbed solution theory with the multicomponent potential theory of
adsorption. Both methods showed similar trends and comparable results with a maximum deviation of
around 3% in the ethanol mole fraction. Offering a higher degree of freedom, the appropriate selection
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of the fluid mixture and its composition in adsorption refrigeration processes could lead to improve
cycle performances, process safety, and economics in a wide range of applications.
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Nomenclature

A Polynomial coefficient A of PRSV equation of state [-]
a Second virial coefficient mixing parameter of PRSV equation of state [m6 mol−2]
ai Second virial coefficient of PRVS equation of state [m6 mol−2]
B Polynomial coefficient B of PRSV equation of state [-]
b Covolume mixing parameter of PRSV equation of state [m3 mol−1]
bi Covolume of PRSV equation of state [m3 mol−1]
b0,j Pre-exponential adsorption equilibrium constant of site j in the dual-site Langmuir model [kPa−1]
COP Coefficient of performance of refrigeration cycle [-]
cp

0
,cr Critical ideal gas molar heat capacity [kJ mol−1 K−1]

cp,ads Molar heat capacity of the adsorbent [kJ mol−1 K−1]
cp,ref Molar heat capacity of the refrigerant [kJ mol−1 K−1]
Fads Total number of moles in the adsorption bed [mol]
Fcond Total number of moles in the condenser [mol]
Fevap Total number of moles in the evaporator [mol]
Gads Number of moles of the vapor phase in the adsorption bed [mol]
Gcond Number of moles of the vapor phase in the condenser [mol]
Gevap Number of moles of the vapor phase in the evaporator [mol]
∆Hdes Enthalpy of desorption [kJ mol−1]
∆Hevap Enthalpy of vaporization of refrigerant in the evaporator [kJ mol−1]
∆Hj Enthalpy of adsorption of site j in the dual-site Langmuir model [kJ mol−1]
ki

ads Equilibrium constant of component i in the adsorption bed [-]
ki

cond Equilibrium constant of component i in the condenser [-]
ki

evap Equilibrium constant of component i in the evaporator [-]
Lcond Number of moles of the liquid phase in the condenser [mol]
Levap Number of moles of the liquid phase in the evaporator [mol]
Lrec Recirculated moles of liquid phase from the condenser to the evaporator [mol]
mads Mass of adsorbent [kg]
N Number of moles of the adsorbed phase [mol]
P Equilibrium pressure [kPa]
Pi

0 Surface pressure of component i [kPa]
Pcond Condenser pressure [kPa]
Pcr Critical pressure [kPa]
Pevap Evaporator pressure [kPa]
Psat Saturation pressure [kPa]
Pz Local adsorption pressure [kPa]
Qdes Heat of desorption for adsorbent regeneration [kJ mol−1]
Qevap Heat removed from the evaporator [kJ mol−1]
QH Total heat supplied to the system [kJ mol−1]
Qref Heat to bring the adsorbed phase from Tint,h to Treg [kJ mol−1]
Qsol Heat to bring the adsorbent from Tint,h to Treg [kJ mol−1]
qi Amount adsorbed of component i [mol kg−1]
qs,j Saturation adsorption capacity of site j in the dual-site Langmuir model [mol kg−1]
R Ideal gas constant [L kPa mol−1 K−1]
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Tads Adsorption temperature [K]
Tcond Condenser temperature [K]
Tcr Critical temperature [K]
Tdes Desorption temperature [K]
Tevap Evaporator temperature [K]
Tint,h Intermediate temperature of isosteric heating [K]
Treg Maximum temperature of adsorbent regeneration [K]
Vads Volume of the adsorption bed [L]
Vcond Volume of the condenser [L]
Vevap Volume of the evaporator [L]
xmax Mole fraction in the adsorbed phase at the end of adsorption [-]
xmin Mole fraction in the adsorbed phase at the end of desorption [-]
xi

ads Mole fraction of component i in the adsorbed phase [-]
xi

cond Mole fraction of component i in the liquid phase of the condenser [-]
xi

evap Mole fraction of component i in the liquid phase of the evaporator [-]
yi Equilibrium mole fraction of component i in the vapor phase [-]
yi

cond Mole fraction of component i in the vapor phase of the condenser [-]
yi

evap Mole fraction of component i in the vapor phase of the evaporator [-]
Z Compressibility factor [-]
Zads Compressibility factor of the vapor phase in the adsorption bed [-]
Zcond Compressibility factor of the vapor phase in the condenser [-]
Zevap Compressibility factor of the vapor phase in the evaporator [-]
z Pore volume [cm3 g−1]
z0 Pore volume at saturation [cm3 g−1]
zi

ads Overall mole fraction of component i in the adsorption bed [-]
zi

cond Overall mole fraction of component i in the condenser [-]
zi

evap Overall mole fraction of component i in the evaporator [-]

Greek Symbols
β Dubinin potential parameter [-]
Γi Surface excess of component i [mol m−2]
εb Adsorption bed porosity [-]
εi Potential field of component i [kJ mol−1]
εi

0 Characteristic adsorption energy of component i [kJ mol−1]
εp Adsorbent porosity [-]
λvap Latent heat of vaporization [kJ mol−1]
ρ Density of the vapor phase [mol m−3]
ρb Adsorption bed density [mol m−3]
ρcr Critical density [mol m−3]
ρz Local density of the adsorbed phase [mol m−3]
ϕi Fugacity coefficient of component i [-]
ϕi

L,evap Fugacity coefficient of component i in the liquid phase of the evaporator [-]
ϕi

L,cond Fugacity coefficient of component i in the liquid phase of the condenser [-]
ϕi

V,ads Fugacity coefficient of component i in the vapor phase of the adsorption bed [-]
ϕi

V,evap Fugacity coefficient of component i in the vapor phase of the evaporator [-]
ϕi

V,cond Fugacity coefficient of component i in the vapor phase of the condenser [-]
ψeq Reduced grand potential at equilibrium [mol kg−1]
ψi Reduced grand potential of component i [mol kg−1]
ω Acentric factor [-]
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