

Article

Influence of C₃N₄ Precursors on Photoelectrochemical Behavior of TiO₂/C₃N₄ Photoanode for Solar Water Oxidation

Swetha S. M. Bhat, Sang Eon Jun, Sol A Lee, Tae Hyung Lee and Ho Won Jang *

Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea; smjbhat@gmail.com (S.S.M.B.); sangeon1010@snu.ac.kr (S.E.J.); leesola21@snu.ac.kr (S.A.L.); sunshinety@snu.ac.kr (T.H.L.)

* Correspondence: hwjang@snu.ac.kr

Received: 17 January 2020; Accepted: 18 February 2020; Published: 21 February 2020

Abstract: Photoelectrochemical water splitting is considered as a long-term solution for the ever-increasing energy demands. Various strategies have been employed to improve the traditional TiO_2 photoanode. In this study, TiO_2 nanorods were decorated by graphitic carbon nitride (C_3N_4) derived from different precursors such as thiourea, melamine, and a mixture of thiourea and melamine. Photoelectrochemical activity of TiO_2/C_3N_4 photoanode can be modified by tuning the number of precursors used to synthesize C₃N₄. C₃N₄ derived from the mixture of melamine and thiourea in TiO_2/C_3N_4 photoanode showed photocurrent density as high as 2.74 mA/cm² at 1.23 V vs. RHE. C_3N_4 synthesized by thiourea showed particle-like morphology, while melamine and melamine with thiourea derived C3N4 yielded two dimensional (2D) nanosheets. Nanosheet-like C3N4 showed higher photoelectrochemical performance than that of particle-like nanostructures as specific surface area, and the redox ability of nanosheets are believed to be superior to particle-like nanostructures. TiO_2/C_3N_4 displayed excellent photostability up to 20 h under continuous illumination. Thiourea plays an important role in enhancing the photoelectrochemical performance of TiO₂/C₃N₄. This study emphasizes the fact that the improved photoelectrochemical performance can be achieved by varying the precursors of C_3N_4 in TiO₂/C₃N₄ heterojunction. This is the first report to show the influence of C_3N_4 precursors on photoelectrochemical performance in TiO₂/ C_3N_4 systems. This would pave the way to explore different precursors influence on C_3N_4 with respect to the photoelectrochemical response of TiO_2/C_3N_4 heterojunction photoanode.

Keywords: photoelectrochemical; TiO_2 ; C_3N_4 ; heterojunction; water oxidation; photoanode; nanosheets; nanorods

1. Introduction

Photoelectrochemical water splitting is one of the ideal methods for solar energy conversion. Enormous efforts have been made to achieve remarkable solar to hydrogen efficiency since the discovery of TiO₂ photoelectrochemical performance. However, development of an efficient photoelectrode with high solar to hydrogen efficiency, which determines how much solar energy is converted to chemical energy, remained as a challenge. TiO₂ remains as one of the benchmark semiconductors for photoelectrochemical performance due to its photostability, chemical stability, nontoxicity and abundance [1–4]. Despite these, TiO₂ suffers from low absorption of visible light due to its wide band gap and high recombination rate of charge carriers. Many strategies have been adopted to overcome these problems such as elemental doping, morphology tuning, and surface modifications—yet, only limited success has been achieved. Fabrication of TiO₂ heterojunction with narrow band gap

semiconductors has shown considerable improvement in the charge carrier separation and hence the photoelectrochemical performances.

Graphitic carbon nitride (C_3N_4) 2D material is emerging as the next generation material for photoelectrochemical water splitting owing to its visible light activity and robust chemical stability [5]. Additionally, C_3N_4 can easily be synthesized by simple thermal polymerization of abundantly available nitrogen rich precursors such as thiourea, melamine, urea, and dicyanamide. However, application of this material into photoelectrochemical water splitting only started recently, even though C_3N_4 has desirable band gap and oxidation and reduction potentials [6]. Unlike many promising metal oxides, metal free polymeric C_3N_4 possessing moderate band gap of 2.7 eV is known to be stable in acidic as well as alkaline electrolytes due to the strong covalent bond between carbon and nitrogen in the structure.

Semiconductors with staggered band alignments can be coupled to fabricate the heterojunction, which can improve the solar water oxidation of the photoelectrode due to the increased charge carrier separation [7–11]. Nano structural modification with high surface area is beneficial to further improve the photocurrent density of the heterojunctions [12,13].

 C_3N_4 is a metal free semiconductor possesses moderate band gap to harvest visible light. Graphitic-C-₃N₄ is a very potential layered material due to its ease of synthesis, low production cost, chemical and photostability. As C_3N_4 suffers from low sun light absorption capability and low charge mobility, new synthesis strategies are required to overcome these limitations and improve the photoelectrochemical response [14,15]. Although there have been enormous studies done on the modifications of C_3N_4 , little attention is paid to the influence of precursors on photoelectrochemical performances [16–22]. Morphology of C_3N_4 depends on the precursors used to synthesize, resulting in different photocatalytic activity [19]. Shalom et al. demonstrated the blue shift in the band gap of the C_3N_4 derived from cyanuric acid and melamine precursors compared to that of C_3N_4 synthesized from dicyanamide [23]. It is well recognized that the morphology modifies the electronic structure with the creation of new surface states [23]. Therefore, it is noteworthy that the band gap of C_3N_4 varies depending on the precursor used, as reported in the literature [24,25].

It is also evident from the previous reports that the precursors used for the synthesis of C_3N_4 play a crucial role in altering the photocatalytic behavior [20,22]. For instance, thiourea and urea were considered as precursors for the synthesis of C_3N_4 and found that the photocatalytic performance is enhanced with C_3N_4 obtained by thiourea precursor [26]. Authors claim that the sulphur containing precursor accelerates the thermal polymeric condensation with easy leaving -SH and thereby increases the photocatalytic activity [26]. However, the influence of the precursor on the photoelectrochemical performance has not been investigated. In this work, we have demonstrated the impact of the three different precursors of C_3N_4 such as thiourea, melamine, and mixture of thiourea and melamine with the ratio of 1:1.5 on photoelectrochemical performance of TiO_2/C_3N_4 heterojunction. The choice of precursor plays an important role in deciding the photoelectrochemical performances as it yields various morphological structures. The 1D TiO₂ nanorod arrays were decorated by C_3N_4 with 2D nanosheets and particle such as C₃N₄ derived from different precursors and their corresponding photoelectrochemical activity was analyzed and discussed in detail. Nanosheets of $C_{-3}N_4$ exhibit high surface area with high electronic mobility. Our work demonstrates the enhanced photocurrent density for TiO₂ heterojunction with C_3N_4 compared to reported TiO₂ modified C_3N_4 photoanode systems. To the best of our knowledge, this is the first study investigating the influence of C_3N_4 precursors on the photoelectrochemical activity of TiO_2/C_3N_4 photoanodes. This work provides a promising approach to improve solar water oxidation performance of TiO_2/C_3N_4 heterojunction.

2. Experimental

2.1. TiO₂ Nanorods Synthesis

 TiO_2 nanorods were synthesized by hydrothermal technique. Titanium butoxide (0.4 mL) was dissolved in hydrochloric acid (26 mL) and water (24 mL). The obtained transparent solution was

transferred to 100 mL Teflon containing fluorine doped tin oxide (FTO) at the bottom and heated in the oven for 3 h at 200 °C. The TiO₂ nanorods grown on FTO was extensively washed with water. TiO₂ nanorods were annealed at 350 °C for 3 h in air.

2.2. Graphitic C₃N₄ Synthesis

Graphitic C_3N_4 was synthesized by thermal polymeric condensation of different precursors such as thiourea, melamine, and a mixture of melamine and thiourea. Melamine precursor was mixed with a supramolecular complex cyanuric acid. In a typical procedure, 2 g of cyanuric acid (C), 3 g of melamine (M), and 3 g of thiourea (T) were taken for the fabrication of C_3N_4 2D nanosheet and is referred as C_3N_4 -CMT to distinguish the C_3N_4 obtained by different precursors. Two g of cyanuric acid (C) and 3 g of melamine (M) were used for the synthesis of C_3N_4 -CM, while the desired amount of thiourea (T) was considered to obtain C_3N_4 -T. The precursors were grinded in the mortar and transferred to the crucible with the lid. The crucible was placed in a furnace and annealed at 550 °C for 6 h. The obtained yellow powder was dispersed in a solution comprising of isopropyl alcohol and distilled water and ultrasonicated for 48 h. The supernatant solution of C_3N_4 was collected after the centrifugation.

2.3. TiO_2/C_3N_4 Fabrication

The heterojunction TiO_2/C_3N_4 was fabricated by dip coating method. TiO_2 on FTO substrate was dipped in 3 mL of milky white C_3N_4 (CMT, CM, and T) suspension for 3 h at room temperature. The substrate was dried using nitrogen gun and annealed for 3 h at 300 °C to obtain the maximum adhesion of C_3N_4 on TiO_2 .

3. Materials Characterization

The phase identification was carried out by Bruker D8 advance diffractometer equipped with Cu K α source. The morphology of TiO₂/C₃N₄-CMT, TiO₂/C₃N₄-CM, TiO₂/C₃N₄-T, and TiO₂ photoanodes was characterized by using a field-emission scanning electron microscopy (FE-SEM) with an acceleration voltage of 5 kV and working distance of 8 mm (SU-Hitachi). The transmission electron microscope (TEM) (Technai G2 F20, FEI Company, Hillsboro, OR, USA) analysis were carried out at voltage of 200 kV, which was equipped with high-angle annular dark-field image (HADDF), scanning TEM (STEM), and energy dispersive spectroscopy (EDS). UV-Visible absorbance spectra were measured by JASCO UV-vis spectrometer.

4. Photoelectrochemical Characterization

Photoelectrochemical performances of TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, TiO_2/C_3N_4 -CMT, and TiO_2 photoelectrochemical with a typical three electrode configuration using an Ivium potentiostat with Ag/AgCl as a reference electrode and Pt plate as a counter electrode. All the photoelectrochemical measurements were carried out at room temperature in sodium hydroxide electrolyte with pH 14. Using a reference cell, solar simulator's light intensity with an AM 1.5 G filter was calibrated to 1 sun (100 mW/cm²). Linear sweep voltammetry (LSV) measurements were carried out with scan rate of 20 mV/s in the anodic direction. Photostability was measured under standard solar illumination condition in sodium hydroxide electrolyte at 1.23 V vs. RHE. Incident to photon current conversion efficiency (IPCE) values were measured at 1.23 V vs. RHE using light source with monochromator. Electronic impedance spectroscopic measurement (EIS) was recorded at 1.23 V vs. RHE with the frequency range from 10 mHz to 100 kHz [27].

5. Results and Discussion

TiO₂ nanorod arrays on FTO were synthesized by facile hydrothermal technique. Decoration of obtained C_3N_4 - was carried out using dip coating method. TiO₂ nanorods were dipped in C_3N_4 suspension obtained by different precursors for 3 h followed by annealing at 300 °C for 3 h. SEM reveals

the morphological difference of C_3N_4 - derived from thiourea, melamine, and mixture of thiourea and melamine. When only thiourea is used for the synthesis of the C_3N_4 particle-like morphology was obtained, as shown in the Figure 1b. However, sheet-like 2D morphology was achieved by the melamine and melamine mixed thiourea precursors (Figure 1c,d). Schematic of the synthesis is provided in the Figure 2. It can be noticed from the SEM images that the C_3N_4 sheets have covered the TiO₂ nanorods. XRD of TiO₂/C₃N₄ shows only the TiO₂ peak, as C_3N_4 has low crystallinity and thin layers (Figure 3a). For the comparison, XRD of the C_3N_4 powder sample has also been presented in Figure 3a. HRTEM measurements have been carried out to further confirm the distribution of C_3N_4 sheets on TiO₂ nanorods in TiO₂/C₃N₄ heterojunction. C_3N_4 sheets have uniformly covered the TiO₂ nanorods, which is evident by the Figure 1. Elemental mapping of TiO₂/C₃N₄ demonstrates the presence of C, N, Ti, and O.

Figure 1. FE-SEM of (a) TiO₂, (b) TiO₂/C₃N₄-T (c) TiO₂/C₃N₄-CM, and (d) TiO₂/C₃N₄-CMT.

Figure 2. Schematic diagram of the synthesis of TiO₂, TiO₂/C₃N₄-T, TiO₂/C₃N₄-CM, and TiO₂/C₃N₄-CMT.

Figure 3. (a) X-ray diffraction patterns (XRD) of TiO₂, TiO₂/C₃N₄-T, TiO₂/C₃N₄-CM, and TiO₂/C₃N₄-CMT. (b) Transmission electron microscope (TEM) image of TiO₂/C₃N₄. (c) HAADF-STEM elemental mapping of sample TiO₂/C₃N₄ showing the distribution of Ti, O, C, and N.

While it is hard to distinguish the carbon present on the TiO_2 nanorod from the copper grid, the EDAX confirms the presence of the nitrogen surrounding the TiO_2 nanorod.

PEC performance was investigated for TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, TiO_2/C_3N_4 -CMT and TiO_2 to understand the influence of the precursor influence. Linear sweep voltammetry under chopped illumination has been performed and compared in Figure 4a. The pristine TiO_2 nanorod exhibits the photocurrent density of 0.76 mA/cm² while TiO_2/C_3N_4 -T and TiO_2/C_3N_4 -CM show 1.28 and 1.71 mA/cm², respectively, under 100 mW/cm² solar simulated radiation in the presence of sodium hydroxide electrolyte (pH = 14). When the thiourea mixed with melamine was used as a precursor for C_3N_4 , TiO_2/C_3N_4 -CMT exhibited 2.74 mA/cm², which is the highest photocurrent density reported to the best our knowledge for TiO_2/C_3N_4 photoelectrode.

IPCE was measured with three electrode configurations in sodium hydroxide electrolyte at 1.23 V vs. RHE. As expected TiO₂ shows IPCE (Figure 4b) only under short wavelength region, which ranges from 300 nm to 400 nm. TiO₂/C₃N₄-CMT photoanode showed higher photoconversion response (80%) compared to TiO₂/C₃N₄-T, TiO₂/C₃N₄-CM, and TiO₂. TiO₂/C₃N₄-T exhibits 42% of IPCE in 400 nm wavelength while melamine with cyanuric acid derived C₃N₄ in TiO₂/C₃N₄- CM showed enhancement in the IPCE, which is about 69% at 400 nm. The pristine TiO₂ photo-response was limited to the UV region, the C₃N₄ decorated TiO₂ photoconversion efficiency was slightly extended to visible region.

Figure 4. (a) LSV, and (b) IPCE of TiO_2 , TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, and TiO_2/C_3N_4 -CMT. (c) Stability of TiO_2/C_3N_4 -CMT in sodium hydroxide electrolyte with pH 14 at room temperature.

The investigation by Yang et al. shows IPCE extended to visible region as in the absorption edge of C_3N_4 decorated TiO₂ red shifted compared to that of TiO₂ [28]. Similar trends were noticed with several TiO₂/C₃N₄ systems [29,30].

The obtained IPCE spectra are in consistent with the absorption spectra of TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, TiO_2/C_3N_4 -CMT and TiO_2 where TiO_2/C_3N_4 photoanodes exhibit slight decrease in the band gap (Figure 5b). The enhanced IPCE for TiO_2/C_3N_4 -CMT could be due to improved charge separation at the interface as TiO_2 forms staggered band alignment with C_3N_4 [29–31].

Figure 5. (a) Electronic impedance spectra measured in the presence of sodium hydroxide electrolyte (pH 14) at 1.23 V vs. RHE and (b) Tauc plot of TiO₂, TiO₂/C₃N₄-T, TiO₂/C₃N₄-CM, and TiO₂/C₃N₄-CMT.

To evaluate the stability of the TiO_2/C_3N_4 -CMT photoanode, the photoresponse for 19 h was measured in sodium hydroxide electrolyte at 1.23 V vs. RHE, as shown in Figure 4c. Slight increase in the photocurrent was noticed for the initial hours which could be due to the photocharging. Negligible decrease in the photocurrent density was noticed after the prolonged light irradiation.

The LSV plots for TiO_2/C_3N_4 -CMT before and after the photostability measurement are shown in Figure S2a. The fresh electrode shows 2.74 mA/cm² of photocurrent density, whereas the aged electrode exhibits 2.10 mA/cm². The FE-SEM image is presented in Figure S2b. The post-mortem analysis of the aged electrode confirms that the morphology of C_3N_4 nanosheets on the TiO_2 was similar to that of the fresh electrode (Figure 1d).

The slight decrease in the photocurrent density could be due to slow etching of C_3N_4 nanosheets with prolonged time. The remarkable stability and photocurrent density of TiO_2/C_3N_4 reveals the high photostability of the heterjunction.

EIS is a powerful tool to study the kinetic charge transfer at the electrode/electrolyte interface. The Nyquist plots for TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, TiO_2/C_3N_4 -CMT, and TiO_2 are depicted in the Figure 5a. TiO_2/C_3N_4 -CMT shows the depressed arc, implying that the charge transfer rate is enhanced in the heterojunction, whereas the largest arc shown by the pristine TiO_2 implies the large charge transfer resistance. The abo-ve results suggest that the coating of C_3N_4 obtained by thiourea with melamine on TiO_2 nanorod decreases the charge transfer resistance, which indicates that the facile charge transport at the interface. This observation is in consistent with the LSV in Figure 4a.

The optical absorption of the photoelectrodes were measured by the UV-visible diffused reflectance spectra. The Tauc plot can be used to determine the optical band gap of the semiconductors. It is observed from the Tauc plot (Figure 5b) that there is only slight variation in the band gap of TiO_2 and TiO_2/C_3N_4 heterojunctions, which is quite obvious when bulk C_3N_4 is reduced to nanoscale the band gap of the C_3N_4 increases.

The chemical states of the TiO₂/C₃N₄ photoelectrode have been analysed by XPS (Figure 6 and Figure S1). The high-resolution spectra of XPS confirm the presence of Ti, C, N, and O (Figure S1). Figure 6a compares the N s peak arising from TiO₂/C₃N₄-T, TiO₂/C₃N₄-CM, and TiO₂/C₃N₄-CMT. It is noticed that a broad peak, which can be deconvoluted to two overlapping peaks, appear at 400.33 eV and 399.36 eV for N1s, which indicates the formation of C₃N₄ and this peak corresponds to N-(C)₃ [32]. The high-resolution C 1s XPS spectra exhibit two signals peaked at 284.6 eV and 288.5 eV, suggesting the presence of two chemical states of carbon. The peak at 284.6 eV originates from sp² carbon adsorbed on the surface of C₃N₄, while the second peak centered at 288.5 eV indicates the presence of N-C=N bonding. XPS spectra of Ti for TiO₂/C₃N₄-CMT show two distinct peaks corresponding to Ti 2p_{1/2} and Ti 2p_{3/2} at 463.91 eV and 458.13 eV, which can be ascribed to the presence of Ti⁴⁺.

Based on the aforementioned discussion and the previous reports, plausible mechanism has been depicted in Figure 7 [29–31,33]. The band diagram of TiO₂ and C₃N₄ heterojunction can be envisaged as displayed in Figure 7. The heterojunction exhibits type II heterojunction once the Fermi level reaches the equilibrium, the conduction band minimum is more negative than that of TiO₂ and valance band maximum position is suitable for hole transport from TiO₂ to C₃N₄. Therefore, it forms a favourable interface for the transfer of the charge carriers. The holes are collected on the surface of the C₃N₄, while electrons are collected on TiO₂ nanorod.

It is well recognised that 2D nanosheets exhibit superior photoelectrochemical activity compared to the particle-like nanostructures [34]. Nanosheets-like morphology facilitates an easier flow of photocharge carriers towards the surface than particle-like nanostructures. Therefore, 2D nanosheets of C_3N_4 in TiO₂/C₃N₄-CM and TiO₂/C₃N₄-CMT outperform the particle-like C_3N_4 of TiO₂/C₃N₄-T. This study emphasizes the fact that the thiourea modified C_3N_4 shows enhanced performance than that of the C_3N_4 synthesized from only thiourea or melamine. Cyanuric acid is known to form supramolecular complexes with melamine which yields sheet-like 2D structure [23,35]. This offers the ability to synthesize the 2D sheet-like C_3N_4 simply by forming the supramolecular complexes and altering the precursors. However, C_3N_4 prepared from only thiourea yielded particle-like morphology, which showed enhanced photoelectrochemical performance than the pristine TiO₂. It is noteworthy that the thiourea modified C_3N_4 has a profound influence in altering the morphology and thereby the photoelectrochemical performance of the TiO₂. Cyanuric acid and melamine form hydrogen bonding, which prohibits the immediate sublimation of melamine, cyanuric acid, and thiourea, thus promoting polycondensation reaction. From the previous reports it is evident that thiourea influences the level of the polymerization during the growth of C_3N_4 [36]. The conventional C_3N_4 was prepared by bulk condensation of the nitrogen rich monomers such as melamine, urea, and dicyanamides, where $-NH_2$ is the leaving group during the polycondensation [32]. However, the polycondensation suffers incomplete polymerization due to kinetic limitations [14]. Previous reports have claimed that the sulphur mediated polycondensation, where the -SH group serves as a leaving group. Sulphur atom is expected to influence the polymeric network of g-C₃N₄ such as conformation and connectivity of the polymer, which in turn tunes the texture and electronic properties [14,36,37]. Density functional theory simulations have confirmed that the polymerization has a remarkable influence on H₂ evolution rate as it brings slight change in the potential of the conduction band. In the present case, the TiO_2/C_3N_4 -CMT outperforms the individual precursor melamine and thiourea derived C₃N₄ heterojunction counterparts. The enhanced photoelectrochemical performance is presumably due to the presence of the thiourea with melamine and cyanuric complexes. Photocurrent density value of TiO₂/C₃N₄-CMT was compared with various reported photoanodes of TiO_2/C_3N_4 heterojunctions (Table 1). Wang et al. reported the fabrication of TiO_2/C_3N_4 where C_3N_4 was synthesized by expensive arc ion plating technique. The photocurrent density achieved by this photoanode was ~0.7 mA/cm² [38].

Table 1. Comparison of photocurrent density of various TiO_2/C_3N_4 photoanodes for water oxidation.

Photoanode	Photocurrent Density (mA/cm ²)	Reference
TiO ₂ /g-C ₃ N ₄ core shell array	0.045	[31]
CuNi@g-C ₃ N ₄ /TiO ₂ nanorods	0.89	[33]
TiO ₂ /P-g-C ₃ N ₄	0.20	[15]
$0D 1D g-C_3N_4/TiO_2$ nanotube arrays	0.12	[30]
g-C ₃ N ₄ /TiO ₂ nanorod	0.29	[29]
C_3N_4/TiO_2 nanotube	1.5	[28]
C ₃ N ₄ /TiO ₂ nanorod	2.74	This Work

Figure 6. X-ray photoelectron spectra (XPS) of (**a**) C 1s and (**b**) N 1s of TiO_2/C_3N_4 -T, TiO_2/C_3N_4 -CM, and TiO_2/C_3N_4 -CMT photoanode.

Figure 7. Schematic diagram illustrating the possible mechanism of water oxidation by TiO₂/C₃N₄-CMT.

Wie et al. have demonstrated that melamine derived C_3N_4 with TiO₂ heterojunction, which exhibited the photocurrent density of 1.5 mA/cm² [39]. C_3N_4 sensitized TiO₂ nanotube showed 1.5 mA/cm² [28]. Yang et al. reported red C_3N_4 , which exhibited 2.2 mA/cm² in a higher voltage range, whereas in the lower voltage region it only showed 0.5 mA/cm² [40]. The current work demonstrates the role of thiourea on the photoelectrochemical performance and it is noteworthy that the photoelectrode TiO₂/C₃N₄–CMT achieved 2.74 mA/cm², which is highest photocurrent density reported for C₃N₄ sensitized TiO₂ till date.

6. Conclusions

We fabricated TiO_2/C_3N_4 heterojunction using different precursors of C_3N_4 such as thiourea, melamine and mixture of thiourea and melamine. It was found that the C_3N_4 derived from the mixture of thiourea and melamine in TiO_2/C_3N_4 heterojunction exhibited significantly enhanced photoelectrochemical activity. The photocurrent density of 2.74 mA/cm² at 1.23 V vs. RHE was achieved for TiO_2/C_3N_4 photoanode, which is the highest photocurrent density compared to previous reports, to the best of our knowledge. Melamine and the mixture of thiourea and melamine precursors yielded C_3N_4 nanosheets while particle-like morphology was obtained by thiourea precursor, which could be due to the difference in degree of polymerization during the growth of C_3N_4 . The formed C_3N_4 D nanosheet from the mixture of thiourea and melamine precursors in TiO_2/C_3N_4 heterojunction improves the charge separation resulting in enhanced photoelectrochemical performance for water oxidation. The IPCE value was 80% for TiO_2/C_3N_4 photoanode while the pristine TiO_2 showed only -31%. This study shows the precursor influence of C_3N_4 on photoelectrochemical performance of TiO₂/C₃N₄ heterojunction. This study sheds light on optimizing the photoelectrochemical activity by modifying the precursors of C_3N_4 and thereby improving the water oxidation performance of TiO₂. The present work revisits the strategies for the fabrication of heterojunction as well as achieving high photoelectrochemical performance of TiO₂/C₃N₄ photoanode.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/4/974/s1.

Author Contributions: Conceptualization, S.S.M.B. and H.W.J.; methodology, S.S.M.B.; validation, S.S.M.B.; formal analysis, S.S.M.B.; investigation, S.S.M.B.; resources, S.S.M.B. and H.W.J.; data curation, S.S.M.B., S.E.J., S.A.L. and T.H.L.; writing S.S.M.B.; preparation, S.S.M.B. and S.E.J.; review and editing S.S.M.B. and H.W.J.; visualization, S.S.M.B.; supervision, S.S.M.B. and H.W.J.; project administration, S.S.M.B. and H.W.J.; funding acquisition, H.W.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Korean Government (2017R1A4A1015811, 2019R1A2C1010215), the Ministry of Science, ICT & Future Planning (2017R1A2B3009135, 2019M3E6A1103818) and the Future Material Discovery Program (2016M3D1A1027666, 2018M3D1A1058793).

Conflicts of Interest: Authors declare no conflict of interest.

References

- Bhat, S.S.M.; Pawar, S.A.; Potphode, D.; Moon, C.K.; Suh, J.M.; Kim, C.; Choi, S.; Patil, D.S.; Kim, J.J.; Shin, J.C.; et al. Substantially enhanced photoelectrochemical performance of TiO₂ nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS₂ nanosheets. *Appl. Catal. B Environ.* 2019, 259, 118102. [CrossRef]
- 2. Lee, M.G.; Park, J.S.; Jang, H.W. Review Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review. *J. Korean Ceram. Soc.* **2018**, *55*, 185–202. [CrossRef]
- 3. Andoshe, D.M.; Jeon, J.M.; Kim, S.Y.; Jang, H.W. Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. *Electron. Mater. Lett.* **2015**, *11*, 323–335. [CrossRef]
- 4. Choi, S.; Hwang, J.; Lee, T.H.; Kim, H.H.; Hong, S.P.; Kim, C.; Choi, M.J.; Park, H.K.; Bhat, S.S.M.; Suh, J.M.; et al. Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO₂ passivated InAs Nanowire/p-Si heterostructure photocathode. *Chem. Eng. J.* **2019**, 123688. [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? *Chem. Rev.* 2016, 116, 7159–7329. [CrossRef] [PubMed]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* 2009, *8*, 76–80. [CrossRef]
- 7. Bhat, S.S.M.; Lee, S.A.; Suh, J.M.; Hong, S.P.; Jang, H.W. Triple planar heterojunction of SnO₂/WO₃/BiVO₄ with enhanced photoelectrochemical performance under front illumination. *Appl. Sci.* **2018**, *8*, 1765. [CrossRef]
- 8. Bhat, S.S.M.; Suh, J.M.; Choi, S.; Hong, S.P.; Lee, S.A.; Kim, C.; Moon, C.W.; Lee, M.G.; Jang, H.W. Substantially enhanced front illumination photocurrent in porous SnO₂ nanorods/networked BiVO₄ heterojunction photoanodes. *J. Mater. Chem. A* **2018**, *6*, 14633–14643. [CrossRef]
- Lee, B.R.; Lee, M.G.; Park, H.; Lee, T.H.; Lee, S.A.; Bhat, S.S.M.; Kim, C.; Lee, S.; Jang, H.W. All-Solution-Processed WO₃/BiVO₄ Core-Shell Nanorod Arrays for Highly Stable Photoanodes. *ACS Appl. Mater. Interfaces* 2019, *11*, 20004–20012. [CrossRef]
- 10. Bhat, S.S.M.; Jang, H.W. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting. *ChemSusChem* **2017**, *10*, 3001–3018. [CrossRef]
- 11. Bhat, S.S.M.; Sundaram, N.G. Photocatalysis of Bi₄NbO₈Cl hierarchical nanostructure for degradation of dye under solar/UV irradiation. *New J. Chem.* **2015**, *39*, 3956–3963. [CrossRef]
- Bhat, S.S.M.; Swain, D.; Feygenson, M.; Neuefeind, J.C.; Mishra, A.K.; Hodala, J.L.; Narayana, C.; Shanbhag, G.V.; Sundaram, N.G. Bi₄TaO₈Cl Nano-Photocatalyst: Influence of Local, Average, and Band Structure. *Inorg. Chem.* 2017, *56*, 5525–5536. [CrossRef] [PubMed]
- 13. Bhat, S.S.M.; Sundaram, N.G. Efficient visible light photocatalysis of Bi₄TaO₈Cl nanoparticles synthesized by solution combustion technique. *RSC Adv.* **2013**, *3*, 14371–14378. [CrossRef]
- Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. *Energy Environ. Sci.* 2011, 4, 675–678. [CrossRef]
- Qin, D.D.; Quan, J.J.; Duan, S.F.; San Martin, J.; Lin, Y.; Zhu, X.; Yao, X.Q.; Su, J.Z.; Rodríguez-Gutiérrez, I.; Tao, C.L.; et al. High-Performance Photoelectrochemical Water Oxidation with Phosphorus-Doped and Metal Phosphide Cocatalyst-Modified g-C₃N₄ Formation Through Gas Treatment. *ChemSusChem* 2019, *12*, 898–907. [CrossRef]
- 16. Yang, X.; Chen, Z.; Xu, J.; Tang, H.; Chen, K.; Jiang, Y. Tuning the Morphology of g-C₃N₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. *ACS Appl. Mater. Interfaces* **2015**, *7*, 15285–15293. [CrossRef]
- 17. Ho, W.; Zhang, Z.; Lin, W.; Huang, S.; Zhang, X.; Wang, X.; Huang, Y. Copolymerization with 2,4,6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C₃N₄. *ACS Appl. Mater. Interfaces* **2015**, *7*, 5497–5505. [CrossRef]
- 18. Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Waqas, M.; Gong, Y.; Zhang, J.; Mao, Y. Controllable synthesis of graphitic carbon nitride nanomaterials for solar energy conversion and environmental remediation: The road travelled and the way forward. *Catal. Sci. Technol.* **2018**, *8*, 4576–4599. [CrossRef]

- 19. Liao, Y.; Zhu, S.; Ma, J.; Sun, Z.; Yin, C.; Zhu, C.; Lou, X.; Zhang, D. Tailoring the Morphology of g-C₃N₄ by Self-Assembly towards High Photocatalytic Performance. *ChemCatChem* **2014**, *6*, 3419–3425. [CrossRef]
- 20. Jung, H.; Pham, T.T.; Shin, E.W. Effect of g-C₃N₄ precursors on the morphological structures of g-C₃N₄/ZnO composite photocatalysts. *J. Alloys Compd.* **2019**, *788*, 1084–1092. [CrossRef]
- 21. Zheng, Y.; Zhang, Z.; Li, C. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis. *J. Photochem. Photobiol. A Chem.* **2017**, 332, 32–44. [CrossRef]
- 22. Pham, T.T.; Shin, E.W. Influence of g-C₃N₄ Precursors in g-C₃N₄/NiTiO₃ Composites on Photocatalytic Behavior and the Interconnection between g-C₃N₄ and NiTiO₃. *Langmuir* **2018**, *34*, 13144–13154. [CrossRef]
- 23. Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. *J. Am. Chem. Soc.* **2013**, *135*, 7118–7121. [CrossRef]
- 24. Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W.K. In situ construction of g-C₃N₄/g-C₃N₄ metal-free heterojunction for enhanced visible-light photocatalysis. *ACS Appl. Mater. Interfaces* **2013**, *5*, 11392–11401. [CrossRef]
- Mishra, A.; Mehta, A.; Kainth, S.; Basu, S. A comparative study on the effect of different precursors for synthesis and efficient photocatalytic activity of g-C₃N₄/TiO₂/bentonite nanocomposites. *J. Mater. Sci.* 2018, 53, 13126–13142. [CrossRef]
- 26. Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. *J. Mater. Chem.* **2012**, *22*, 8083–8091. [CrossRef]
- 27. Wang, S.; Chen, P.; Yun, J.H.; Hu, Y.; Wang, L. An Electrochemically Treated BiVO₄ Photoanode for Efficient Photoelectrochemical Water Splitting. *Angew. Chem. Int. Ed.* **2017**, *56*, 8500–8504. [CrossRef]
- Yang, M.; Liu, J.; Zhang, X.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. C₃N₄-sensitized TiO₂ nanotube arrays with enhanced visible-light photoelectrochemical performance. *Phys. Chem. Chem. Phys.* 2015, *17*, 17887–17893. [CrossRef]
- 29. Kang, S.; Jang, J.; Pawar, R.C.; Ahn, S.; Lee, C.S. Direct coating of a g-C₃N₄ layer onto one-dimensional TiO₂ nanocluster/nanorod films for photoactive applications. *Dalt. Trans.* **2018**, *47*, 7237–7244. [CrossRef]
- 30. Xiao, L.; Liu, T.; Zhang, M.; Li, Q.; Yang, J. Interfacial Construction of Zero-Dimensional/One-Dimensional g-C₃N₄ Nanoparticles/TiO₂ Nanotube Arrays with Z-Scheme Heterostructure for Improved Photoelectrochemical Water Splitting. *ACS Sustain. Chem. Eng.* **2019**, *7*, 2483–2491. [CrossRef]
- Fan, X.; Wang, T.; Gao, B.; Gong, H.; Xue, H.; Guo, H.; Song, L.; Xia, W.; Huang, X.; He, J. Preparation of the TiO₂/Graphic Carbon Nitride Core-Shell Array as a Photoanode for Efficient Photoelectrochemical Water Splitting. *Langmuir* 2016, *32*, 13322–13332. [CrossRef] [PubMed]
- 32. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. *J. Mater. Chem.* **2008**, *18*, 4893–4908. [CrossRef]
- Rathi, A.K.; Kmentová, H.; Naldoni, A.; Goswami, A.; Gawande, M.B.; Varma, R.S.; Kment, Š.; Zbořil, R. Significant Enhancement of Photoactivity in Hybrid TiO₂/g-C₃N₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. ACS Appl. Nano Mater. 2018, 1, 2526–2535. [CrossRef]
- 34. Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y. The design of TiO₂ nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. *J. Phys. Chem. C* **2014**, *118*, 12727–12733. [CrossRef]
- Sun, Z.; Yuan, F.; Li, X.; Li, C.; Xu, J.; Wang, B. Fabrication of novel cyanuric acid modified g-C₃N₄/kaolinite composite with enhanced visible light-driven photocatalytic activity. *Minerals* 2018, *8*, 437. [CrossRef]
- Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H₂ evolution from water using visible light and structure-controlled graphitic carbon nitride. *Angew. Chem. Int. Ed.* 2014, 53, 9240–9245. [CrossRef]
- 37. Ye, L.; Chen, S. Fabrication and high visible-light-driven photocurrent response of g-C₃N₄ film: The role of thiourea. *Appl. Surf. Sci.* **2016**, *389*, 1076–1083. [CrossRef]
- Wang, R.; Liu, H.; Fan, Z.; Li, L.; Cai, Y.; Xu, G.; Luo, W.; Yang, B.; Zhou, Y.; Zou, Z. Unconventional gas-based bottom-up, meter-area-scale fabrication of hydrogen-bond free g-CN nanorod arrays and coupling layers with TiO₂ toward high-efficiency photoelectrochemical performance. *Nanoscale* 2018, 10, 3342–3349. [CrossRef]

- Wei, Q.; Yan, X.; Kang, Z.; Zhang, Z.; Cao, S.; Liu, Y.; Zhang, Y. Carbon Quantum Dots Decorated C₃N₄/TiO₂ Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. *J. Electrochem. Soc.* 2017, 164, H515–H520. [CrossRef]
- Yang, Y.; Wang, S.; Jiao, Y.; Wang, Z.; Xiao, M.; Du, A.; Li, Y.; Wang, J.; Wang, L. An Unusual Red Carbon Nitride to Boost the Photoelectrochemical Performance of Wide Bandgap Photoanodes. *Adv. Funct. Mater.* 2018, 28, 1–10. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).