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Abstract: This paper introduces a gallium nitride (GaN) high electron mobility transistor
(HEMT)-based matrix converter for motor friendly drive systems. A fast switching characteristic
of the GaN devices causes high dv/dt. This increases the importance of noise immunity and the
reduction of parasitic components in system design. In addition, the high dv/dt in motor drive
systems leads to voltage spike at a motor input terminal and leakage current through a motor chassis.
Accordingly, a gate drive circuit consists of devices with a high common mode transient immunity.
A printed circuit board was designed to minimize parasitic inductance, which was analyzed by
performing simulations. To mitigate the dv/dt of the voltage applied to the motor and the leakage
current, a dv/dt filter and a sine-wave filter were utilized as an output filter of the matrix converter.
The effectiveness of each filter was verified by driving an induction motor.

Keywords: dv/dt; GaN HEMT; gate driver; parasitic inductance; matrix converter; dv/dt filter;
sine-wave filter; leakage current

1. Introduction

Wide bandgap (WBG) semiconductors like silicon carbide (SiC) metal oxide semiconductor
field effect transistor (MOSFET) or gallium nitride (GaN) high electron mobility transistors (HEMTs)
with high efficiency and a fast switching property have emerged as an alternative to silicon (Si)
semiconductors in industry. WBG devices have superior characteristics than Si devices. Figure 1 shows
the characteristics of Si, SiC, and GaN devices. GaN HEMT has the characteristics of high electric
breakdown field, high thermal conductivity, and fast electron mobility [1-3]. A lateral two-dimensional
electron gas (2DEG) channel has high electron mobility on AlGaN/GaN heteroepitaxy, which enables
fast switching transients with a low capacitance property. To utilize these advantages, recently,
AC motor drive systems with WBG devices have been studied [4-11]. In ref. [4], electro-hydrostatic
actuators with high performance are applied to the WBG-based integrated motor drive. In refs. [6,8],
the designs of GaN-based integrated modular motor drive systems are introduced. The fabricated
system has a power density of 0.71 kW/L, drive efficiency of 98 %, and motor efficiency of 96.6 % [8].
The factors that degrade the switching properties of SiC devices in pulse-width modulation (PWM)
inverter-fed induction motor drive are presented in [9], and the phenomenon of shaft voltage rising
due to fast switching is studied in [11].

As cited in the previous papers, many problems arise when the WBG devices are applied to motor
drive systems. Especially, the dv/dt problem makes it difficult to safely operate a stable system because
of fast switching transients. High dv/dt in motor drive systems reduces the life of the motor and is
a key factor generating electromagnetic interference (EMI). When the dv/dt occurs, a common mode
(CM) voltage is formed and the current through the motor bearings can reduce the life of the bearings.
Similarly, the common mode current flowing through the ground line causes common mode EMI.
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In the case of WBG devices, the large magnitude of EMI can cause noises and interferences in the
system. To solve this problem, a method of directly changing the motor structure is presented in [12].
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Figure 1. Electrical properties of Si, 4H-SiC, 2H-gallium nitride (GaN).

Common mode voltage generates electromagnetic coupling between the stator windings and
rotor windings. Electromagnetic shielding slot wedge is applied between the stator winding and the
rotor winding to form an electromagnetic shield layer that decreases the current flow to the bearings.

The way to reduce the dv/dt without directly changing the motor structure is to use filters
in the motor drive systems [13-32]. Comparisons of the filter performance in Si-insulated gate
bipolar transistor (IGBT)-based and SiC MOSFET-based motor drive systems are explained in [13-16].
The designs of EMI filters for eliminating common mode current are expressed in [17-21]. The sine-wave
filter is applied to WBG-based motor drive systems to verify the filter performance in [24-27], and the
dv/dt filter for high speed motor drive systems is studied in [22,23]. The novel filter structure,
not a typical LC filter structure is proposed in [29-32].

Motor drive applications with conventional inverters have a back-to-back structure where two
voltage source inverters (VSIs) share the same DC link which consists of capacitors of large volume.
Matrix converter is a good alternative to the back-to-back architecture, which allows direct conversion
of ac input voltage to ac output voltage and there are no DC link capacitors. The matrix converter for
motor drive systems has been increasingly studied due to the advantages of bidirectional power transfer,
adjustable input power factor, and reduced system size [33-38]. There are many studies on three-phase
matrix converters using WBG devices. However, the researches mainly focus on SiC devices, not GaN
devices. In [39], the bidirectional GaN device is fabricated and the matrix converter is operated to
drive an induction motor of 0.4kW. The output filter of the LC filter is shown on the circuit in the
paper, but the filter design process is not described, which makes it difficult to know the exact purpose
of its use. The objective of this paper is to design the GaN-based matrix converter having reliability
with high dv/dt caused by fast switching transients. This paper is organized as follows. In Section 2,
the designs of the gate driver circuit and power board for driving GaN HEMT. The design purpose
of the gate driver circuit is to have immunity for dv/dt and a stable gate driving capability. Layout
is performed to minimize the interference between the power loop and the gate loop. The parasitic
inductances between the gate driver circuit and the source of the GaN HEMT are estimated using the
Q3D Extractor. In Section 3, the dv/dt filter and sine-wave filter are introduced as output filters for
motor drive applications to reduce high dv/dt at the motor input terminal. In Section 4, the switching
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performance of GaN HEMT on the fabricated printed circuit board (PCB) is tested. The experimental
results, according to the output filter type, are compared. Finally, Section 5 summarizes the matrix
converter design for GaN HEMT in motor drive systems.

2. Design and Practical Implementation for GaN-Based Power System

Since the GaN device has lower input capacitance, gate charge, and output capacitance than super
junction MOSFET. It is possible to achieve hundreds of kV/us fast switching transients. However,
the CM current caused by the dv/dt can flow through parasitic inductance and capacitance within the
devices and PCB patterns, which produces high spike voltage and noise. This can cause a malfunction
of gate drivers, sensors, and microprocessors [40]. For proper design at high dv/dt, the devices with
high common-mode transient immunity (CMTI) should be selected. Also, the layout should be carried
out to minimize the effects of parasitic inductance. Then, parasitic inductance extraction was carried
out, and the results are analyzed.

2.1. Design of Gate Driver Circuit

Figure 2 shows the schematic of the proposed gate driver circuit for GaN HEMT. The DC/DC
converter is an insulated regulator with +9 V single output and 1 W. Because of a low inter-winding
capacitance between input and output of the DC/DC converter, it is possible to reduce the CM current
flowing through the inter-winding capacitor during short transients. Therefore, the corresponding
gate driver circuit can achieve high CMTI capability. For a gate driver, a Si827x series from Silicon
Labs is used. The gate driver is a digital insulated driver. The input signal modulates the carrier
provided by an RF oscillator using an on/off keying method providing a superior noise immunity and
immunity to magnetic fields. It also has the smallest input capacitance among the operating method of
the gate driver such as optocouplers, magnetic couplers, capacitive couplers, etc. The gate driver has
a CMTT of 200 kV/us, and coupling capacitance of 0.5 pF, which allows the gate driver circuit to have
the immunity against high dv/dt.
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Figure 2. Proposed gate driver schematic for GaN high electron mobility transistor (HEMT).

To assure the stability of the gate driver circuit, an unwanted turn-on phenomenon occurred by
a miller effect should be prevented. For this purpose, a gate current path with a low impedance must
be secured at turn-off. The selected gate driver has dual outputs and can be divided into on-current
path and off-current path so that the impedance can be adjusted by altering the gate resistor at each
path. The appropriate ratio of the gate on and gate off resistance can ensure the stability of the gate
driver. It is recommended that the ratio is selected as between 5 and 10 according to [41]. In addition,
the parasitic inductances in the gate driver circuit are one of the main factors affecting the stability of
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the gate driver. The gate inductance (Lg), common source inductance (L) are the key components that
cause ringing and overshoot on gate-source voltage. If the values are large, the oscillation problem can
lead to damage to the devices. Minimizing parasitic inductance in the gate driver circuit should be
achieved through the appropriate PCB layout design.

2.2. Design of PCB Layout

To fabricate the designed gate driver circuit and power board circuit, the PCB layout was carried
out using Altium software. Bidirectional GaN HEMT switches are configured by a common source
structure. For the PCB layout, it is important to minimize the parasitic inductances such as gate loop
inductance, common source inductance, and power loop inductance in layout. The GaN HEMT device
used in this paper has a package without a wire bond. Compared to TO-247 switches having a package
source inductance values of about 10 to 15 nH resulting from long lead length, the GaN HEMT device
has a value of about 0.05 nH. This is a very small inductance value, which has a highly large advantage
in GaN HEMT operation and can minimize the impact of parasitic inductance. In order to reduce
the gate loop inductance, the gate driver is placed close to the gate of GaN HEMT device, and low
inductance is secured by using coppers instead of wiring with the trace. To reduce source inductance
(Ls) between the bidirectional GaN HEMT switches, a vertical power loop was used [42]. This structure
diminishes interference between the gate loop path and the power loop path and makes the value
of Ls low. Unlike the typical method of placing the switches in a lateral structure on the same layer
as shown in Figure 3a, one switch is placed in the top layer and the other in the bottom layer like
Figure 3b. In the lateral structure, the gate loop and the power loop are parallel, which is sensitive to
magnetic noise interference. However, the vertical structure can minimize coupling between the gate
loop and the power loop. By employing this structure, the inductance between switches is limited only
by the package inductance and size of the device, and PCB thickness. The paths among sources of each
switching device are connected through multiple vias, which can obtain a low value of Ls.

Gate Driver GaN HEMT  Gate Driver Gate Driver GaN HEMT
= S ——— (===
T “7 — Top Layer op Layer
B Layer | Bottom Layer |
Gate Driver
(@) (b)

Figure 3. (a) Lateral structure of GaN HEMT; (b) vertical structure of GaN HEMT.

2.3. Estimation of Parasitic Inductance

To analyze whether the designed PCB has a minimum parasitic inductance, a Finite-Element
Analysis (FEA) was conducted using ANSYS Electronics software. The sources of a bidirectional switch
are connected through several vias as shown in Figure 4a. AC resistance and AC inductance can be
obtained at various solution frequency conditions using a Q3D extractor. The analysis result yields a L,
of 1.5 pH for one bi-directional switch, which proves that the vertical loop design can have low source
inductance. Similarly, the gate loop inductance is analyzed through the FEA. In this paper, the parasitic
inductance of the gate-off current path is estimated at 10 kHz as shown in Figure 4b. The estimated
inductance is 4.32 nH, which means that the designed gate driver has enough reliability to drive the
GaN HEMT devices.
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Figure 4. (a) Gate driver circuit of fabricated printed circuit board (PCB); (b) ANSYS Q3D software view.

3. Output Filter Design

Table 1 shows specifications associated with dv/dt in national electrical manufacturers association
(NEMA) standards [43]. The specifications limit the maximum voltage and the rise time at the motor
input terminal to ensure a stable motor drive. The rise time of the GaN HEMT utilized in this paper
was 12.4 ns, so if the dv/dt is not mitigated by the output filter or gate resistance, then the minimum
rise time in standards is not satisfied. Therefore, to alleviate high dv/dt, dv/dt filter and sine-wave
filter were applied as an output filter, respectively. The output filters are shown in Figure 5, and the
transfer functions of output filters are as follows:

R;Cy £S5 + 1
Gapir(s) = LirCors2 @
dfCars” + Rdcdfs +1
Gaine(s) = ——— @
sine - Lsf CsfSZ +1
Ldf Lsf
o MN * o o M o
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R, /
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Figure 5. Output filter circuit; (a) for dv/dt filter; (b) for sine-wave filter.
Table 1. National electrical manufacturers association (NEMA) dv/dt standards.
Viated Vpeuk Thise
Viated < 600V Vipeak < 3.1-Vigted Tyise > 0.1 us
Viated > 600 V Vpeak < 2.04-Viapeq Trise > 1 us
The resonant frequency of each filter is calculated as below:
1
fsine = ——F—= @)

2n /LstSf
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where f;;, is the resonant frequency of the sine-wave filter and f;,4 is the resonant frequency of the
dv/dt filter. The resonant frequency is determined in the same way by the inductance and capacitance
in each filter. However, depending on the purpose of each filter, the resonant frequencies are located at
different boundaries. The resonant frequency of the sine-wave filter should be within the range of
greater than the fundamental frequency and less than the switching frequency. The sine-wave filter
attenuates the switching frequency components of the output voltage. So, since the sinusoidal voltage
with fundamental frequency is applied to the motor, problems by high dv/dt are mitigated. On the
other hand, the purpose of the dv/dt filter is to limit the rise time of the voltage applied to the motor
input terminal. The minimum rise time in the standard is 0.1 ps, so the resonant frequency of dv/dt
filter should be within the range of greater than the switching frequency and less than 10 MHz [31].

Table 2 shows the parameters of the designed output filter. The frequency response of each output
filter is illustrated in Figure 6. As shown in Figure 6, the resonant frequency of each output filter is
located within the above frequency constraints. Figure 7 shows the output voltages of the matrix
converter and the dv/dt filter. The magnitude of the output voltage is considered as the peak value
of the input line-to-line voltage, which is the maximum value that the matrix converter can generate.
The designed dv/dt filter enables the matrix converter to meet the specification in Table 2.
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Figure 6. Bode plot of dv/dt filter and sine-wave filter (red line: sine-wave filter, blue line: dv/dt filter).
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Table 2. Output filter parameters.

Parameter dv/dt Filter Sine-Wave Filter
Filter inductance 48 uH 250 uH
Filter capacitance 2.35nF 10 uF

Damping resistance 100 QO None
Cutoff frequency 4.74 MHz 3.18 kHz

4. Experimental Results

Figure 8 shows the schematic of the direct matrix converter. A normally-off enhancement-mode
650 V GaN HEMT (GS66516T, GaN Systems) is used in this paper [44]. To implement a modulation
algorithm, the input line-to-line voltages were measured by using LV-25P from LEM, and the
control board equipped with a microcontroller, TMS320F28377S from Texas Instrument, was used.
The experimental electrical specifications are described in Table 3.
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Figure 8. Schematic of matrix converter system.

Table 3. Experimental electrical specifications.

Parameters Value
Input voltage (line-to-line) 200 Vims (3-phase)
Input frequency 60 Hz
Voltage transfer ratio (VIR) 0.7
Output frequency 60 Hz
Switching frequency 10 kHz
Maximum power 1kVA

4.1. Switching Performance

The experiments for evaluating switching performances of the fabricated matrix converter are
carried out. Since the switching characteristics in drain-source voltage can be degraded in induction
motor drives [9], the switching performance experiment is carried out in resistive load conditions.
Figure 9 shows the gate-source voltage and the drain-source voltage at turn-on of GaN HEMT and
turn-off of GaN HEMT respectively. The rise time of the gate-source voltage is 5.9 ns, and the fall time
is 5.4 ns. The rise time of the drain-source voltage is 194.2 ns, and the fall time of the drain-source
voltage is 10.4 ns. While very fast switching transients are possible in gate-source voltage, the rise time
of the drain-source voltage is considerably large. This may occur because the power loop inductance,
except for the source inductance between the GaN HEMT switches, has not been considered in the
entire design procedures. This phenomenon needs be improved in future work to make correct
turn-off operation.
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4.2. Output Filter Experiments

For the GaN-based matrix converter in motor drive system, the dv/dt filter and the sine-wave filter
have been established for experimental validation of the performance analysis. Figure 10 shows the
experimental results of the matrix converter without and with the different output filters, where Vy;y
is the line-to-line terminal voltage of the induction motor, and Ij; is the motor current in phase U.
The case without any filter can be observed in Figure 10a. When the output filter is not adopted in the
GaN-based matrix converter, the input quality of Vy;y and I;; has high-frequency components above
the switching frequency of 10 kHz in the steady-state. In the case of the dv/dt filter, the high-frequency
components of the motor input current are considerably reduced, although the line-to-line terminal
voltage still has high-frequency components as Figure 10b. As shown in Figure 10c where the sine-wave
filter is adopted, a pure sinusoidal waveform of V;y and I; without the high-frequency harmonics
could be observed as expected. Here, it is clear that the output filters reduce the voltage stress of the
motor drive system, but the detailed performance comparison of the output filters can be discussed
with the common mode current which is given in the following section.

VDS V VDS
/ (200V/div) Ves s NV (200V/div)

¥y avaw /(10”/""”)7 A

Vin
\‘ A SV 2 SRV S AU PN
1

(100ns/div) (100ns/div)
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Figure 9. Switching waveform of GaN HEMT in matrix converter; (a) at turn-on of GaN HEMT; and (b)
at turn-off of GaN HEMT.
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Figure 10. Experimental results of matrix converter in induction load; (a) without output filter; (b) with
dv/dt filter; and (c) with sine-wave filter.

Figure 11 shows the line-to-line voltage at the induction motor input terminal of the GaN-based
matrix converter without and with the dv/dt filter. As shown in Figure 11a, it has high-frequency
voltage ringing and high dv/dt spikes due to the fast rise time of the GaN devices where the rise time
is 78 ns. However, as shown in Figure 11b, the rise time of 0.1 us by NEMA standards can be satisfied
with the designed dv/dt filter where the rise time is 478 ns. It shows that the dv/dt filter significantly
mitigates the high-frequency ringing components at the motor terminal.
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Figure 11. Experimental results of line-to-line voltage in motor input terminal in the case of (a) without

output filter; and (b) with dv/dt filter.

Figure 12 shows the common mode current measurement results of the GaN-based matrix
converter according to the various output filter options. The common mode current considerably
decreases by using the output filters. For the detailed analysis, the frequency spectrums without and
with the output filters is obtained in Figure 13. The magnitude of the common mode current is reduced
by the sine-wave filter in the frequency range from 1.5 MHz to 10 MHz.
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Figure 12. Cont.
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Figure 12. Experimental results of leakage current in time scale; (a) without output filter; (b) with dv/dt
filter; and (c) with sine-wave filter.
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Figure 13. (a) Common mode current spectrum without or with sine-wave filter; and (b) Common
mode current spectrum without or with dv/dt filter.

Meanwhile, in the case of the dv/dt filter, the common mode current amplitude slightly decreases
in the frequency range from 3.5 MHz to 10 MHz. From the frequency spectrum results, it is confirmed
that the sine-wave filter has better mitigation performance for the common mode current due to its
pure sine-wave voltage on the input motor terminal.

5. Conclusions

In this paper, a design of the GaN-based matrix converter was suggested to obtain a robustness
for high dv/dt. The gate driver circuit was designed for high CMTI and reliable operation of the GaN
HEMT. PCB layout was also designed to minimize parasitic inductance and interference between the
digital loop and the power loop, leading to the remarkable results from the parasitic inductance of
the gate path and source path. It was confirmed that NEMA standards were satisfied by applying
the dv/dt filter and sine-wave filter. With the dv/dt filter, the experimental result shows that the rise
time of line-to-line voltage in motor input terminal is 478 ns above 0.1 us. With the sine-wave filter,
the closely pure sinusoidal output voltage and current waveforms were obtained to meet the rated
magnitude and frequency without any harmonic components. Finally, CM current according to each
output filter was compared. The magnitude of CM current was decreased by about 47% when the
output filters were applied compared to the absence of the output filters. The CM current spectrum
results show that the output filters are effective at MHz frequency band and the sine-wave filter can
reduce the CM current more than the dv/dt filter. Based on the results of the experiments, the dv/dt
filter is suitable when the NEMA standards should be considered and the sine-wave filter is suitable
when the CM current reduction should be considered preferentially.
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