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Abstract: This paper aims to present a comparative study into the cascade and series configurations
of the organic Rankine cycle based small-scale solar combined cooling, heating and power system for
civil application. The energy performance of the systems is studied by developing a thermodynamic
model. The simulation model is validated using the literature results. Analyses of the research results
indicated that the cascade system can achieve maximum value of the primary energy efficiency of
13.4% for cooling and power generation under solar collecting temperature of 115 ◦C in cooling mode.
The cascade system has more cooling output and less electricity output in cooling mode compared
with the series system. In heating mode, the single solar organic Rankine cycle (ORC) operation can
achieve highest primary energy efficiency of 19.6% for heating and power generation under solar
collecting temperature of 100 ◦C. Systems with R141b as ORC working fluid show better performance
than those with R123 and R1233zd(E).
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1. Introduction

Building sectors consumed a large amount of non-renewable energy resources. Regarded as
one of the most feasible renewable solutions for the building application, solar thermal technology is
proven to be the most mature technology among all currently available solar technologies, for meeting
building’s electricity and hot water demand. Solar thermal driven combined cooling, heating and
power systems (CCHP) can simultaneously produce multiple energy (electricity, heating and cooling)
to meet building’s multi-energy demands. In these systems, fuel cell, steam turbine or organic Rankine
cycle (ORC) is usually used for power generation while absorption or adsorption chiller is used for
cooling generation.

In the last decade, many researchers studied the combined cooling, heating and power system
experimentally and numerically. ORC is considered to be a useful technique to convert low-grade thermal
energy into electricity [1]. Riffat and Zhao [2] assessed the performance of a heating-cogeneration system
using ORC and the overall efficiency of the system was 59%. Using binary mixtures as working fluids is
one way to produce useful cooling and power energy. Goswami proposed a cycle for simultaneously
power and cooling production with ammonia-water mixture as working fluid [3]. The maximum effective
coefficient of performance (COP) of Goswami Cycle is near 1.1 when compared to work-optimized
results [4]. Zare et al. [5] carried out thermoeconomic analysis and optimization of an ammonia-water
power/cooling cogeneration cycle. They found that the sum of the unit costs of the products is reduced by
about 18.6% for the cost optimal design compared to that of the thermal efficiency optimal design.

Integration of ORC [6] and the absorption cycle has been considered in many recent studies.
Cho et al. [7] carried out a review on CCHP system to synthesize current status of CCHP research
regarding to energetic and exergetic analyses, optimization methods and emerging trends. Salek
et al. [8] presented a thermodynamic analysis of a hybrid ORC and ammonia absorption cycle to recover
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the energy of engine exhaust gas. Kanoglu and Dincer [9] considered four cogeneration plants for
buildings involving the generation of electricity and heat. In addition, several arrangements of CCHP
systems based on biomass [10], fuel cell [11,12] and waste heat recovery [13–15] have been studied and
relevant energy and exergy analyses have been carried out. For CCHP systems driven by solar energy,
Al-Sulaiman et al. [16] analysed a proposed solar driven CCHP system and found that the maximum
efficiency can reach 94%. Wang et al. [17] proposed a solar driven CCHP system combining a Rankine
cycle and an ejector refrigeration cycle, and found that the system can achieve a maximum exergy
efficiency of 60.33% under the conditions of the optimal slope angle and hour angle. Eisavi et al. [18]
investigated a CCHP system driven by solar energy integrated ORC and lithium bromide-water
absorption refrigeration system. The cogeneration heat and power efficiency of the combined system
reached 96.0%. Settino et al. [19] provided an overview of the main solar technologies to provide
heating, cooling and electricity. Zhao et al. [20] explored the effects of CCHP system configurations
with an ORC of 200 kW, which are clarified into sequential and parallel connections, on the system’s
thermodynamic performance. The study focused mainly on the solar parabolic trough collector (PTC),
which required a tracking system, to produce heat with temperature of 150 ◦C to 300 ◦C.

As the combined cooling, heating and power system can improve the solar energy utilization
ratio and match solar energy supply and energy use, it has attracted the increasing research interests.
While most of the present studies referred to large scale plants [21], which were relatively mature
technologies [22], a few researches focused on small-scale CCHP systems, for example the small-scale
ORC expander [23], the solar micro-CCHP based on dual-ORC [24], the small-scale concentrated solar
combined heat and power system [25], the domestic scale solar-powered ORC and vapour compression
cycle coupled system [26]. Small-scale systems were considered a relatively more suitable solution for
building applications [27]. To further understand the insights of such technology for civil applications,
such as residential buildings, a comparative investigation into the thermal performance of cascade
and series configurations of a small-scale CCHP system will be carried out. Furthermore, compound
parabolic concentrator (CPC) with a larger acceptance angle and without a tracking requirement is
used to reduce the cost and complexity of the system [28]. Thermal performance of the systems will
be presented, as well as thermo-fluid analyses, numerical model development, model running up,
modelling result analyses. The system configurations will be described in Section 2.

2. System Descriptions

The proposed designs of the systems contain a CPC solar collector, a heat storage tank, an ORC
and a single-effect absorption heat pump. The designs are classified into cascade system (CS) and
series system (SS). The operational mode of the CCHP system is designed to generate cooling and
power in cooling mode while generating heating and power in heating mode.

Figure 1 shows the schematic diagram of the cascade system (CS). Compound Parabolic Collector
(CPC) collectors absorb solar radiation heat energy and transfer to thermal oil. In the system, thermal
oil absorbs solar heat energy from Compound Parabolic Collector (CPC) collectors and releases heat
to the heat storage tank. The heat transfer fluid carries heat from the heat storage tank to the ORC
evaporator/heat exchanger and vaporises the working fluid within the ORC evaporator. In the ORC
cycle, superheated vapour working fluid (t,i) expands to condensation pressure (t,o) through the
expander and generates electricity due to the enthalpy drop. Within the condenser of ORC (generator
of absorption cycle), the vapour is condensed into liquid at the same temperature, releasing the
condensation heat. Meanwhile, the condensed liquid out of the condenser (p,i) is pumped to higher
pressure (p,o) and flows back to the evaporator. In the absorption cycle, the working pair and the
refrigerant are LiBr-H2O and water/steam, respectively. The generator of the absorption cycle absorbs
heat rejected from ORC and produces cooling effect in the evaporator while rejecting heat in the
condenser and absorber. The ORC system is set up as a topping sub-system that absorbs all thermal
oil rejected energy, while absorption system is set up as a bottoming sub-system. In cooling mode,
evaporator produces cooling as useful energy, while in heating mode condenser and absorber produce
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desired heating energy. A configuration of single solar ORC without absorption cycle, in which the
condenser of ORC is considered to provide heat energy to users, is also comparatively studied for
heating mode.
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Figure 1. Schematic diagram of the cascade system (CS) for solar combined cooling, heating and
power generation.

Figure 2 shows the configuration of the series system (SS), where the ORC system acts as a front
subsystem and absorption system acts as a rear subsystem. In this way, the entire mass flow rate of the
thermal oil absorbs the solar energy and then rejects heat to ORC and absorption system sequentially.
The ORC sub-system and the absorption cycle of SS are both powered by thermal oil, where ORC
system is driven by higher temperature thermal oil and absorption cycle by lower temperature thermal
oil. The driven temperature for absorption cycle is limited by the outlet temperature of the thermal oil
out of the ORC evaporator.
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Figure 2. Schematic diagram of the series system (SS) for solar combined cooling, heating and
power generation.

3. Mathematical Analyses

In this study, a numerical model for the combined solar cooling heating and power systems was
developed based on the principles of thermodynamic. The model comprises three subsystem models:
CPC solar collector model, ORC model and absorption system model. The following assumptions
have been applied:

a. The system is considered to operate at steady state.
b. The refrigerant flows inside all components of the system is simplified as one-dimensional form.
c. Heat losses from the working fluid transportation lines, ORC turbine and pumps to the ambient

are neglected.
d. The isentropic efficiencies of the ORC turbine and pumps are fixed at a constant value.
e. The working fluids flow within all components of the system are considered as homogeneous

mixtures. The thermal and physical properties are calculated as the averaged values of
each substance.

f. The working fluid exiting the condenser and evaporator of the absorption cycle is assumed at its
saturated condition. Superheated vapour steam from generator of the absorption cycle is pure
steam without LiBr substance.
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3.1. CPC Solar Collector Model

A CPC solar collector can absorb both beam and diffuse radiation. The thermal efficiency of the
CPC collector is expressed as [29]:

η = η0 −
A
G
(T − Ta) −

B
G
(T − Ta)

2 (1)

where η0 is the optical conversion of CPC, 0.661, A is the first heat loss coefficient of CPC collectors,
0.82 W/m2K and B is the second heat loss coefficient of collectors of CPC collectors, 0.0064 W/m2K [29].

3.2. ORC Model

Detailed fluid flow and convective heat transfer process in the heat exchangers [30] is neglected,
while a fix pinch temperature difference of 6 K is assumed. Heat transferred from oil to ORC evaporator
is calculated by [31]:

.
Qeva,orc =

.
morc

(
ht,i − hp,o

)
(2)

The power generated by the turbine is calculated by [31]:

.
Wt =

.
morc(ht,i − ht,o) (3)

The enthalpy of working fluid state out of turbine is calculated using isentropic efficiency of
turbine [31]:

ηt =
ht,i − ht,o

ht,i − ht,s
(4)

The power consumed by the pump is calculated by [31]:

.
Wp =

.
morc

(
hp,o − hp,i

)
(5)

The isentropic efficiency of pump is calculated by [31]:

ηp =
hp,s − hp,i

hp,o − hp,i
(6)

The net power generated by the ORC cycle is expressed as [31]:

.
Wnet =

.
Wtηg −

.
Wp (7)

where ηg is the product of gearbox and generator efficiency.
The heat reject from the ORC condenser is calculated by [31]:

.
Qcon,orc =

.
morc

(
ht,o − hpump,i

)
(8)

The overall ORC efficiency is defined by the ratio of the ORC net electric power output to the total
heat supplied [31]:

ηorc =

.
Wnet

.
Qeva,orc

(9)

3.3. Absorption Heat Pump Model

In the absorption cycle, the working pair is LiBr-H2O with H2O as the refrigerant. The energy
balances in the components are expressed as follows:

For the generator [32]:
.

Qgen =
.

mrh3a +
.

mstrh4a −
.

mwh2a (10)
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For the evaporator [32]:
.

Qeva =
.

mr(h8a − h7a) (11)

For the condenser [32]: .
Qcon =

.
mr(h3a − h6a) (12)

For the internal heat exchanger [32]:

.
mw(h2a − h12a) =

.
mstr(h4a − h45a) (13)

For the heat exchanger effectiveness [32]:

ηHEX =
h4a − h45a
h4a − h12a

(14)

For the absorber [32]: .
Qa =

.
mrh8a +

.
mstrh5a −

.
mwh1a (15)

For the pump [32]:
.

Wabs,p =
.

mw(h12a − h1a) (16)

The mass flow balances for the solution and LiBr substance in the absorption cycle are expressed
as follow [32]:

.
mw =

.
mr +

.
mstr (17)

Xw
.

mw = Xstr
.

mstr (18)

Finally, the coefficient of performance of the absorption heat pump for cooling and heating
production are defined using the following equations [31]:

COPc =

.
Qeva

.
Qgen +

.
Wabs,p

(19)

COPh =

.
Qa +

.
Qcon

.
Qgen +

.
Wabs,p

=

.
Qh

.
Qgen +

.
Wabs,p

(20)

3.4. System Indexes

To fairly consider different kinds of energy of heating, cooling and electricity for evaluating the
performance of the combined systems, the primary energy efficiency (PEE) is defined as follow:

PEE =

( .
Wnet +

.
Qeva

COPc
+

.
Qh

COPh

)
(G ·Aa)

(21)

where COPc and COPh are the coefficient of performance of standard cooling facility and heating facility.
In this paper, the COPc and COPh were set to the recommended 3.2 [33]. The cooling production

.
Qeva

is considered for cooling mode, while the heating production
.

Qh is calculated for heating mode.

4. Model Validation

In the modelling of the system, Matlab is used to solve the governing equations, and the working
fluid properties is obtained by calling Refprop [34]. Before the analysis of the thermal performance
of the systems, the developed model should be validated to make sure that it is sufficiently accurate.
However, there are few studies of the same systems as mention in the paper. Therefore, the subsystem
models, i.e., CPC model, ORC model and absorption heat pump model, have been validated separately,
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and compared with the results published in other literatures. To evaluate the accuracy of the model,
the root mean square percentage deviation (RE) is used and it can be calculated by:

RE =

√∑
[100× (Xr −X)/Xr]

2

n
(22)

where n is the number of calculation implemented; X and Xr represent calculated results with the
present model and the parameters from literature, respectively.

The comparison results between the present models and the literature results [1,35] for the ORC
model and absorption heat pump model are provided in Tables 1 and 2. The deviations are small, with
RE of 0.1% and 0.097% for ORC model and absorption heat pump model, respectively, thus indicating
the accuracy of the models. Overall, the numerical results of the present work are in good accordance
with the literature data. In order to carry out a fair comparison among the different configurations of
the solar driven CCHP, the same conditions are applied as shown in Table 3.

Table 1. Model validation for organic Rankine cycle (ORC).

Operating
Case

Pressure of
Condenser

/kPa

Pressure of
Evaporator

/kPa

Evaporating
Temperature/◦C

Superheating
Temperature

/◦C

Efficiency of
Ref [1]

Efficiency of
Present Work Deviation

Case 1 90.2 610.2 88.97 10.52 8.2% 8.21% 0.12%
Case 2 83 497.8 80.65 9.05 7.7% 7.7% 0%
Case 3 73.1 414.8 73.53 5.86 7.4% 7.39% 0.14%

Table 2. Model validation for absorption heat pump.

TE (◦C) TG (◦C) TC (◦C) TA (◦C) COP of Ref [25] COP of Present Work Deviation

4 70 31 31 0.799 0.796 0.4%
4 69 31 35 0.675 0.683 1.1%
5 66 28 35 0.763 0.760 0.4%
6 72 33 37 0.715 0.719 0.5%
8 63 25 37 0.832 0.817 1.8%
8 85 46 39 0.574 0.577 0.6%
9 66 28 34 0.853 0.844 1.1%

Table 3. System parameters and operating conditions for the simulation.

Parameters Value Unit

Collector With 2.5 m
Collector Length 14 m

Solar system working fluid Therminol 66
Volume of the thermo oil storage tank 2 m3

ORC system 2.5 kW
ORC working fluid R123/R141b/R1233zd

ORC superheating temperature 10 ◦C
Pressure drop through ORC pipe 40 kPa

Turbine isentropic efficiency 80 %
Generator efficiency 70 %

Pump efficiency 70 %
Cooling capacity of absorption heat pump 11 kW

Evaporator temperature of absorption chiller 4 ◦C
Condenser temperature of absorption chiller 34 ◦C
Absorber temperature of absorption chiller 34 ◦C

Condenser temperature of absorption heat pump 37 ◦C
Absorber temperature of absorption heat pump 37 ◦C

Solar radiation 900 W/m2

Ambient temperature for cooling mode 32 ◦C
Ambient temperature for heating mode 5 ◦C



Energies 2020, 13, 946 8 of 15

5. Results and Discussion

The combined systems were expected to produce electricity, cooling and heating energy from solar
energy to meet the multi-energy demands in building sectors for different climate regions. In order to
comparatively evaluate the solar thermal efficiency of the CS and SS for different design parameters
and environment conditions. The impacts of the solar collecting temperature, working fluids, solar
radiation and ambient temperature on the thermal performance of the systems in cooling and heating
modes were analysed. The results were illustrated as below.

5.1. Cooling Mode

As the hot water demand is relatively small compared with the cooling load for residential
buildings in the cooling load dominant regions, the systems would operate for cooling and electricity
production in cooling mode. Therefore, useful outputs for this scenario include net electricity
production by ORC and cooling production by absorption heat pump. Figures 3–5 show the impact
of solar collecting temperature on the overall system efficiency, cooling output capacity, electricity
generation and primary energy efficiency for the systems with R123, R141b or R1233zd as ORC
working fluid. It can be seen that the SS shows the highest ORC efficiency and electricity outputs
and this is due to a lower ORC condensing temperature and thus larger pressure difference between
evaporator and condenser for shaft work output compared with the CS. The ORC efficiency and
electricity output increase with increased solar collecting temperature for both systems. For the CS, the
cooling energy efficiency decreases with the increase of the solar collecting temperature, while primary
energy efficiency is highest at the solar collecting temperature of 115 ◦C. The SS shows the highest
primary energy efficiency and cooling production at the solar collecting temperature of 115 ◦C. The
system with R141b as ORC working fluid shows best performance for ORC efficiency and primary
energy efficiency. Although the driving temperature for absorption cycle is lower and the heat energy
amount to drive the ORC is larger, the CS shows higher cooling output and primary energy efficiency,
while less electricity output and ORC efficiency. The reason is that all the waste heat from the condenser
of ORC is useful for the absorption sub-system though the temperature is relatively low, and the ORC
sub-system is more sensible to the temperature difference between the evaporator and condenser.
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Further, the energy performance of the CS and SS under the designed conditions of solar collecting
temperature of 115 ◦C and R141b as ORC working fluid, under which the systems show highest PEE,
was analysed. Varying the solar radiation from 300 to 900W/m2 and the ambient air temperature from
22 to 38 ◦C while keeping other parameters constant as shown in Table 3, simulation was carried out.
The results are shown in Figure 6. It can be found that increasing the solar radiation and ambient
temperature both lead to increase in PEE. The PEE of the CS is higher than that of the SS under
all conditions.
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5.2. Heating Mode

In heating mode, heating and electricity production is considered as the useful energy output for
residential applications in the heating load dominant regions. The absorption system operates in heat
pump mode, i.e., the generator and evaporator absorb heat source energy from ambient or other waste
heat source, while the condenser and absorber reject heat for end users. As the condenser temperature
of the ORC sub-system could be higher than heating output temperature, a configuration design
without the absorption sub-system is studied in heating mode. The results are shown in Figures 7–9.
It can be seen that the SS shows higher ORC efficiency at different heat source temperatures. It is
due to the higher temperature difference between the heat source and the cold sink, leading to higher
ORC efficiency when assuming the efficiency of the turbine and pump is constant. The CS without
absorption sub-system (CS no ab) achieves the highest primary energy efficiency and electricity output,
while the heating output is not the least. The performance of the systems with R141b as the ORC
working fluid is better compared to that with R123 and R1233zd(E). However, it should be noted that
R141b is harmful to the environment, with ODP and GWP of 0.12 and 725, respectively. However,
the CS without absorption sub-system shows highest primary energy efficiency at the solar collecting
temperature of 100 ◦C, while the SS has the highest primary energy efficiency at a solar collecting
temperature of 115 ◦C. This is because higher collecting temperature results in higher ORC evaporating
temperature and more energy loss through the solar collector. Therefore, it has no benefit to further
increase the solar collecting temperature.

The impact of the environment conditions to the energy performance of the systems was analysed
under the designed conditions that yielded highest PPE, i.e., R141b as ORC working fluid, solar
collecting temperature of 115 ◦C for SS while 100 ◦C for both CS and CS without absorption sub-system.
Varying the solar radiation from 300 to 900W/m2 and the ambient air temperature from 2 to 18 ◦C
while keeping other parameters constant as shown in Table 3, simulation was carried out. The results
are shown in Figure 10. It can be found that increasing the solar radiation and ambient temperature
both lead to increase in PEE. CS without absorption sub-system shows higher PEE than other systems
under all conditions. Overall, the CS without the absorption sub-system is preferred for heating
mode operation.



Energies 2020, 13, 946 11 of 15Energies 2019, 12, x FOR PEER REVIEW 11 of 15 

 

 

Figure 7. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R123 as 
ORC working fluids in heating mode. 

 

Figure 8. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R1233zd as 
ORC working fluids in heating mode. 

Figure 7. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary
energy efficiency for the CCHP systems under different solar collecting temperature with R123 as ORC
working fluids in heating mode.

Energies 2019, 12, x FOR PEER REVIEW 11 of 15 

 

 

Figure 7. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R123 as 
ORC working fluids in heating mode. 

 

Figure 8. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R1233zd as 
ORC working fluids in heating mode. 

Figure 8. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary
energy efficiency for the CCHP systems under different solar collecting temperature with R141b as
ORC working fluids in heating mode.



Energies 2020, 13, 946 12 of 15Energies 2019, 12, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R1233zd as 
ORC working fluids in heating mode. 

 

Figure 10. PEE of the systems as a function of solar radiation and ambient temperature. 

6. Conclusions 

CS and SS configurations of small-scale CCHP that integrate organic Rankine cycle (ORC) with 
absorption heat pump are comparatively studied. The system can be designed to generate electricity 
and cooling output in cooling mode for residential applications in the cooling load dominant regions 
or electricity and heating output in heating mode for residential applications in heating load 
dominant regions. In CS, ORC system is set up as a topping sub-system that absorbs all energy 
rejecting from thermal oil, while absorption system is set up as a bottoming system to generate the 
cooling output in cooling mode or heating output in heating mode driven by the heat from ORC 
condenser. In heating mode, the CS without absorption cycle is also studied. In the SS, thermal oil 
absorbs the solar energy then rejects heat to ORC system and absorption system sequentially, thus 
ORC system acts as the front sub-system and absorption system acts as the rear sub-system. 

Figure 9. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary
energy efficiency for the CCHP systems under different solar collecting temperature with R1233zd as
ORC working fluids in heating mode.

Energies 2019, 12, x FOR PEER REVIEW 12 of 15 

 

 

Figure 9. (a) ORC efficiency, (b) cooling output capacity, (c) electricity generation and (d) primary 
energy efficiency for the CCHP systems under different solar collecting temperature with R1233zd as 
ORC working fluids in heating mode. 

 

Figure 10. PEE of the systems as a function of solar radiation and ambient temperature. 

6. Conclusions 

CS and SS configurations of small-scale CCHP that integrate organic Rankine cycle (ORC) with 
absorption heat pump are comparatively studied. The system can be designed to generate electricity 
and cooling output in cooling mode for residential applications in the cooling load dominant regions 
or electricity and heating output in heating mode for residential applications in heating load 
dominant regions. In CS, ORC system is set up as a topping sub-system that absorbs all energy 
rejecting from thermal oil, while absorption system is set up as a bottoming system to generate the 
cooling output in cooling mode or heating output in heating mode driven by the heat from ORC 
condenser. In heating mode, the CS without absorption cycle is also studied. In the SS, thermal oil 
absorbs the solar energy then rejects heat to ORC system and absorption system sequentially, thus 
ORC system acts as the front sub-system and absorption system acts as the rear sub-system. 

Figure 10. PEE of the systems as a function of solar radiation and ambient temperature.

6. Conclusions

CS and SS configurations of small-scale CCHP that integrate organic Rankine cycle (ORC) with
absorption heat pump are comparatively studied. The system can be designed to generate electricity
and cooling output in cooling mode for residential applications in the cooling load dominant regions
or electricity and heating output in heating mode for residential applications in heating load dominant
regions. In CS, ORC system is set up as a topping sub-system that absorbs all energy rejecting from
thermal oil, while absorption system is set up as a bottoming system to generate the cooling output in
cooling mode or heating output in heating mode driven by the heat from ORC condenser. In heating
mode, the CS without absorption cycle is also studied. In the SS, thermal oil absorbs the solar energy
then rejects heat to ORC system and absorption system sequentially, thus ORC system acts as the front
sub-system and absorption system acts as the rear sub-system.

A mathematical model, which has been validated with the literature results, was developed to
simulate the performance of the integrated systems in cooling and heating mode. It can be concluded
that the CS has the highest primary energy efficiency of 13.4% in cooling mode, e, under the solar
collecting temperature of 115 ◦C. And the CS without absorption sub-system shows the highest primary
energy efficiency of 19.6% in heating mode, under the solar collecting temperature of 100 ◦C. The
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CS has more cooling output while less electricity output in cooling mode than the SS. Increase of
the solar collecting temperature results in a slight decrease of the cooling output, while an increase
of the electricity output for the CS in cooling mode. In heating mode, the CS without absorption
sub-system shows both higher heating and electricity output compared with the SS. Higher solar
collecting temperature results in less primary energy efficiency and heating output, as well as more
electricity output. Systems with R141b as the ORC working fluid show better performance than others.
It should be noted that R141b is harmful to the environment and the highest primary energy efficiency
of the system doesn’t stand for the best configuration. The configuration of CS would have to generate
electricity and cooling/heating simultaneously, while the SS is more flexible in separate control of
thermal and power generation. The configuration selection and control strategy of such technology
should be carefully designed to meet the building energy demand.
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Nomenclature

A first heat loss coefficient of CPC X value
Aa aperture area of solar collector, (m2) Greek
B second heat loss coefficient of CPC η efficiency

COPc
coefficient of performance of absorption heat
pump for cooling

Subscripts

COPc,st
coefficient of performance of standard cooling
facility

a absorption

COPh
coefficient of performance of absorption heat
pump for heating

con condenser

COPh,st
coefficient of performance of standard heating
facility

con,orc condenser of ORC

CP specific heat capacity(J/kg/K) eva evaporator
CS cascade system eva,orc evaporator of ORC
G solar irradiation(W/m2) HEX heat exchanger
hfi heat transfer coefficient(W/m2/K) g gearbox and generator
h enthalpy(kJ/mol) gen absorption generator
k conductivity(W/m/K) o outlet
m mass flow rate (kg/s) i inlet
n number p pump
PEE primary energy efficiency t turbine
Q energy(W) r receiver, refrigerant
SS series system s isentropic
T temperature (◦C) str strong solution
UL heat loss coefficient (W/m2/K) u useful
W power work(W) w weak solution
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