energies MBPY

Article

Application of VMD and Hilbert Transform
Algorithms on Detection of the Ripple Components
of the DC Signal

Derong Luo *, Ting Wu !, Ming Li 2, Benshun Yi 3 and Haibo Zuo 4

1 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;

wting_tata@163.com

Zhejiang Institute of Metrology, Hangzhou 310018, China; liming_ah@163.com

School of Electronic Information, Wuhan University, Wuhan 430072, China; yibs@whu.edu.cn
State Grid Yangzhong County Electric Power Supply Company, Yangzhong 212200, China;
zuohbyz@163.com

*  Correspondence: hdldr@sina.com; Tel.: +86-139-0748-8608

check for
Received: 1 January 2020; Accepted: 15 February 2020; Published: 19 February 2020 updates

Abstract: Accurate detection of ripple components of the direct-current (DC) signals is essential
for evaluating DC power quality. In this study, the combination algorithm based on variational
mode decomposition (VMD) and Hilbert transform (HT) is applied to detect and analyze the
characteristics of the ripple components of the DC disturbance signals. Firstly, the optimal modal
number of VMD algorithms is comprehensively determined by observing the center frequencies of
the mode components and the Index of Orthogonality (IO) of mode components. Through utilizing
the VMD algorithm, the DC disturbance signal is accurately decomposed into a series of amplitude
modulation-frequency modulation (AM-FM) functions. Then, the HT algorithm is applied to each
AM-FM function to obtain the corresponding instantaneous amplitude and frequency, and the
characteristics of DC disturbance signal are determined. Some case studies are implemented to
analyze the ripple components of the DC disturbance signal with the VMD-HT and empirical
mode decomposition (EMD) algorithm. Finally, the experiment results of Gree Photovoltaic Cabin
have verified the feasibility and effectiveness of the proposed combination VMD-HT algorithm by
comparison with EMD and the window interpolation fast Fourier transform (WIFFT) algorithms.

Keywords: DC disturbance signal; variational mode decomposition; Hilbert transform

1. Introduction

With the development of distributed energy such as PV systems, wind generation, or battery
storage, and the increase of user-side direct-current (DC) loads, DC transmission, and distribution
systems have been widely concerned due to their convenient access and low conversion losses [1-4].
The DC distribution systems become more attractive in industrial plants [5], which usually include
various DC loads and AC loads, and use power electronic converters to realize AC and DC power
conversion. These power converters provide fast response capability and effective filtering against
power disturbances [6-8]. However, compared to the study on power quality (PQ) factors of AC power
systems, many PQ issues have not been explicitly resolved or studied [9-11], including harmonics,
interharmonics, sag, swell, interruptions, transients, and notch, which are mainly caused by load
changes, switching phenomena, power electronic equipment, transformer charging, non-linear loads
and environmental factors [12]. In order to ensure reliable, secure and quality supply of power, it has it
has become an urgent task for distribution system operator to continuously monitor these disturbances.
In these disturbances, the ripple is a very complex subject, and the ripple detection in DC links is
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critical for the evaluation of PQ of DC systems, because evaluating PQ reasonably and effectively is the
first step in improving power supply quality [13], the quantification for ripple are convenient for the
construction of DC PQ evaluation model.

Currently, many methods for ripple detection of AC signal have been proposed [14-32], such
as Hilbert-Huang transform (HHT) [14,15], fast Fourier transform (FFT) [16-18], empirical mode
decomposition (EMD) [19,20] and variational mode decomposition (VMD) [21,22] etc. The FFT
algorithm is broadly utilized in industrial applications because of its fast and efficient advantages [16].
In order to avoid energy leakage and improve the detection accuracy, the window interpolation
fast Fourier transform (WIFFT) algorithm is presented [23,24]. However, the WIFFT algorithm is
constrained by the performance of window functions [25,26]. Especially, the mutual interference
between harmonics has great influence on the accuracy of harmonic analysis when the selected window
function has the poor ability of the spectrum leakage suppression. Therefore, the WIFFT is not effective
to detect and analyze the non-stationary ripple components, where the accuracy is determined by
the fixed size of analysis window [26]. In order to analyze the non-stationary ripple components, the
HHT algorithm is widely used [27,28]. In addition, the EMD algorithm is one of the most well-known
methods and has shown promising results in various application areas [29]. The basic idea of EMD is to
decompose time domain signals into several modes with different frequency characteristics according
to different frequency components. However, the EMD algorithm is sensitive to the noise, suffers from
the modal aliasing and lacks the mathematical theory [28]. It is worth noting that the VMD algorithm
is firstly proposed in [21], which improves the modal aliasing and the noise robustness of the EMD
algorithm. In the early stage, the VMD algorithm was widely utilized in rotating machinery fault
diagnosis, transformer fault diagnosis, lightning fault location of high voltage transmission lines [30].
Recently some VMD algorithms focused on the disturbances signal of AC PQ are reported in [31,32].
The VMD and decision tree are utilized to detect and classify the disturbance signals of AC PQ, which
performs good performance in detecting and analyzing the non-stationary disturbance signals of AC
signal, including the fundamental, harmonics, interharmonics [32]. Therefore, the VMD algorithms is
promising in detecting the real-life non-stationary signals of DC links. There are only a few articles
on the ripple detection of DC signal [33]. The discrete Fourier transform (DFT) algorithm for ripple
evaluation in DC Low Voltage networks are presented in [33], which exhibits similar performance with
the analog bandpass filter. However, it is limited for the random noise and the effective signal in the
low-frequency band [34].

In this paper, a combination algorithm based on VMD and Hilbert Transform (HT) is proposed to
detect the ripple components of DC signals for the first time, which makes use of the advantages that
the VMD algorithm is well processing densely distributed signals and the HT can accurately describe
the characteristics of non-stationary signal transient parameters [35]. In the VMD algorithm, the
Alternate Direction Method of Multipliers (ADMM) is utilized to iteratively solve the optimal solution
of the variational model, and the optimal mode number is comprehensively determined by observing
the center frequencies of the mode components of the input DC signals and the Index of Orthogonality
(IO) of mode components, then each modal component is closely around the corresponding central
frequency. Thus, the VMD algorithm theoretically overcomes the modal aliasing, moreover, the VMD
method essentially behaves as a wiener filtebank with adaptive center frequencies, which is robust to
noise. Finally, the comparative experiments with EMD and WIFFT algorithm are performed to prove
the effectiveness of the proposed VMD and HT(VMD-HT) algorithm. All experiments are carried in
the Gree photovoltaic cottage.

2. Definition of DC Signals

In this section, the compositions of DC signals are defined and analyzed.
Referring to the AC signal, the DC signal mainly includes three parts and it can be defined

as follows. F(f) = D + Zi":l Xi(t) + N(t) M
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where D is the main DC component, }." ; X;(t) represents the ripple component, and N(t) represents
the noise interference, respectively. m is the number of ripple components of input DC signals. Besides,
the sag/swell components may exist in the input DC signals, while this study mainly focusses on the
detection and analysis of the ripple component.

The ripple component of the DC signal can be further defined as follows

1’11:1 Xi(t) = V2X; cos(wt + ¢1) + V2X5 cos(2wt + ) + ... + V2Xy cos(mwt + dp) 2)

where ¢; represent the initial phase angle of the i-th ripple component, respectively.

Then, the RMS (Root Mean Square) value of DC signal ripple is obtained:

XM:\/X%+X§+...+X,2,Z 3)
From (1) and (3), the ripple coefficient of the DC signals can be obtained as,
X
_ M %
i == x100% (4)

As one important power quality index, the ripple coefficient u can also be utilized to assess the
PQ of the DC signals. In addition, the noise interference of DC signals is represented by random noise
and can be measured by signal-to-noise ratio.

3. The Proposed Detection Algorithms of DC Signals Based on VMD-HT

In this section, the detection algorithms of the DC signals are proposed, including VMD and HT
algorithms. Firstly, the principle of VMD algorithm is analyzed in detail, where the complex DC signals
can be decomposed into K modes. Next, the HT algorithm is utilized to obtain the instantaneous
amplitude, frequency and start-stop time of each mode. Finally, the selection of preset decomposition
scale K is also presented.

3.1. Variational Mode Decomposition

In general, the VMD algorithm is an adaptive, quasi-orthogonal and completely non-recursive
decomposition method, consisting of classical Wiener Filtering, Hilbert Transform and frequency
mixing. It decomposes the input signals composed of multi-components into several inherent modes
with limited bandwidth, and most of these modes are closely around their corresponding central
frequencies, which meet the definition of intrinsic mode functions (IMFs) [31].

Unlike the cyclic sieving decomposition used by EMD algorithm, the VMD algorithm transfers the
signal decomposition process to the variational framework and achieves adaptive signal decomposition
by searching the optimal solution of the constrained variational model. By solving the variational
model iteratively, the adaptive decomposition of the signal frequency band can be completed according
to the frequency domain characteristics of the decomposed signal, and several band-limited intrinsic
mode functions (BLIMFs) components can be obtained, where the sum of estimated bandwidth of
each BLIMFs is the smallest and equals to the decomposed signal [36]. For the original signal f, the
corresponding constrained variational model expression [31] is

| o
min }{§ o] (5(r) + %)w(t)]e-f%fnz}

{uge} Ay (5)
sty ug=f
k

where {u}(k=1,2,...,K) represents the k-th mode component obtained by decomposition, {wy}
represents the corresponding central frequencies of the k-th mode component, || |I§ represents the

square of norm-2. The first expression of Equation (5) is the optimization objective, and “s.t.” is the
abbreviation of “subject to”, which means the constraints of the related optimization problem.



Energies 2020, 13, 935 4 0of 20

To obtain the optimal solution of the constrained variational problem, an augmented Lagrange
function is introduced to transform the constrained variational problem into a non-constrained
variational problem [31], which can be expressed as follows:

L(fug), i), {A)) = aX 1194 (5(t) + %)uk(t)]e—jmkt”; n
k

(6)
170~ S0P + (A0, £ - (o)
2

where a represents the quadratic penalty factor, which can guarantee the accuracy of signal
reconstruction in the presence of Gauss noise, and A represents the Lagrange operator, which can be
used to maintain the strictness of constraints. The first term of the augmented Lagrange function
represents the quadratic penalty term, and the last one is the Lagrangian multipliers term.

To seek for the optimal solution of the constrained variational problem (the saddle point of
the augmented Lagrange function), the alternating direction multiplier method (ADMM) is utilized.
By calculation, the expression of uZH can be given as follows:

i = angminfala (o) + (0o

urg€ (7)

HIFE) - T u(e) + 400}
i 2

where X represents all desirable sets of u;. The Equation (7) can be transformed into the frequency
domain by utilizing the Parseval/Plancherel Fourier equidistant transformation, it will lead to

An+1 2
i I

= argmin{allj(w — ) [1 +sgn(w)]i (w)Il;

ﬁk,ukEX

2 A Mw) 2 ®
HIfw) - T () + 2211}
i 2
where sgn(w) = (w)/|wl|, £(w) represents the Fourier transformation of signal x(), @ is random
frequency.

In the reconstructed approximation term, the conjugate symmetry characteristics of real signals
can be used to transform Equation (8) into a half-space integral form of non-negative frequencies,
which can be obtained as,

00 2
ﬁ;{‘“ = argmin{fo [401(0) - a)k)z)ﬁk(a})(
lAlk,MkGX

flw) - L isfw) + @ﬂda,} )

+2

For positive frequencies, it is easy to get the solution of this quadratic optimization problem if
making iI(k) = 0 as follows:
A N Mo
f@) = Ligi ti(w) + 75"

~n+1 — 2 10
o (@) 1+ 2a(w - wy)? 10

From (10), QZH (w) can be equivalent to the Wiener filter of the current residual signal, and the
full spectrum of the real mode can be obtained by conjugate symmetry. Thus, the real part {uy(t)} can

be achieved through utilizing the inverse Fourier transform of {ﬁZ“ (a))}

Similarly, to obtain the minimum value of a)ZH, the central frequency updating problem can be
transformed into the corresponding frequency domain, which can be expressed as follows,

a)]’(’+1 = argmin{f‘c><J (w— wk)2|ﬁk(w))2da)} (11)
0

Wk
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By calculations, the solutions of the central frequencies can be given,

0o 1. 2
e jé a)|uk(a))( dw
k 00 | A 2d
fo uk(w)) w
Therefore, the new value of wy can be set to the center of gravity of the corresponding modal

power spectrum.
To update the Lagrange operator A [31], the following expression is given,

(12)

A (@) — AMw) +1

flw) =Y artt <w>} (13)

k

where 7 represent Lagrange multipliers updating parameters.

According to the above analysis, the detailed procedures of VMD algorithm are given as follows.

(1) Initialize parameters {ﬁ;{’“}, {CDZ+1} and {f\Z“};

(2) Update uy and wy according to Equations (10) and (12);

(3) Update A according to Equation (13);

(4) Set the error ¢ > 0, If the inequality (} ||ﬁZJrl - A]’(‘H; / ||ﬁZ||§ < ¢) holds, then the iteration stops,
else go back to step (2).

According to the above analysis, a finite number of IMFs uy. with specific sparsity properties can
be obtained non-recursively. The VMD algorithm is more robust to noise, because wiener filter is
embedded to update the modes. Flow chart for solution of VMD is shown in Figure 1.

START

Initialization
Stepl F----- @ &
U o A

Figure 1. Flowchart of the variational mode decomposition (VMD) algorithm.
3.2. Hilbert Transform

Firstly, the preset decomposition scale K of input signals should be determined through utilizing
the Fourier transformation. Then, the PQ disturbance signals can be decomposed into the sum of a
series of mode functions with VMD algorithm, and each mode is a FM and AM function. Finally,
the instantaneous amplitude and frequency of the corresponding modes are obtained by Hilbert
demodulation. The specific steps can be given as follows.

(1) Determine the preset decomposition scale K of input signals.

(2) Decompose f(t) into K modes, which can be expressed as follows:

f(t) = ug(t) + up(t) +---ug(t) (14)
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(3) Obtain the corresponding instantaneous amplitude 4;(t) and frequency f;(t) of mode u;(t)
through utilizing the Hilbert transformation.

T = L f_ ), (15)

M) -7

The corresponding analytical signal can be given by
ua(t) = ui(t) + i () = ai(t)el (16)
Define ¢;(t) as the phase function of u;(t), then it will lead to

{ ailt) = [(t) + (1)) a”
Gi(t) = arctan[T; (1) /1)

The instantaneous frequency f;(t) of mode u;(t) can be obtained through gaining the derivation
of phase function ¢;(t).

filt) = %d(ﬁfﬂ (18)

As shown in Figure 2, the instantaneous amplitude, frequency and start-stop time of disturbance
signal will be detected by utilizing the VMD and HT algorithms.

Input Signals

Selection of
mode number K

Decompositionby | _~
VMD algorithm A (t)ig‘u' ®
E
Yes
Hilbert | HT
transformation T (t)

Obtaining the
instantaneous amplitude - a(t) f,(t)
and frequency

Figure 2. Flowchart of the VMD-HT (Hilbert Transform) algorithm.
3.3. The Selection of Preset Decomposition Scale K

Before processing the DC signals with VMD-HT algorithm, the optimal modal number K should
be determined in advance. Whether the set of modal components is reasonable directly affects the final
decomposition results. If the presupposed K value is less than the number of useful components in the
processed signal, it will cause inadequate decomposition, so that some BLIMFs cannot be decomposed;
if the presupposed K value is larger than the number of useful components in the processed signal, it
will cause excessive decomposition, resulting in some useless false components, interfering with the
original signal. Once the modal number K is known, the detection of the amplitudes and frequencies
of these mode components becomes easier and more accurate. Therefore, the determination of mode
number K plays an important role in VMD-HT algorithm.
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As reported in [31,32], the optimal mode number K can be chosen mainly through observing
the central frequencies of the decomposed modes, and then the correctness of the selected K can be
determined by using the orthogonal index (IO) [27], which is defined as,

K K
YX ui(t)u(t)

i=1j=1 .
o=y — %] (19)
Zt‘ f2(t)

where f(t) is the input signal, u;(t) and u;(t) are the i and j modes, respectively. IO denotes the degree
of orthogonality between all modes.

The flowchart of mode number determination is shown in Figure 3. For the VMD-HT algorithm,
the different values of K correspond to different IO. The mode number K is initially determined by
observing the central frequencies of the decomposed modes. When IO is the minimum value, that is,
whether K decreases or increases, IO will increase, then the corresponding K value is optimal, and
the VMD-HT algorithm has the highest decomposition accuracy at the moment. Therefore, combined
with the observation of central frequencies of the decomposed modes and the value of 10, the mode
number K can be determined accurately, the under-decomposed or over-decomposed can be avoided.

START

Observing the spectrum of
input signal, K=K is obtained

f®, .0, f,
!

PHRAOIAC I
IO:Z‘li"l Hfz(t) LN

Center frequency is
overlapped?

Ng

Center frequency is
overlapped?

Center frequency is
overlapped?

The 10 is the minimum?

The optimal K is
obtained

‘ END

Figure 3. Flowchart of the optimal selection of mode number K of VMD-HT algorithm.

4. Simulation Results

In this section, some case studies are implemented to elaborate the proposed detection algorithm
based on VMD-HT algorithm, where both the noise-free and noisy condition are considered.
The sampling frequency is 1 KHz. Besides, the simulation comparison between VMD-HT and
EMD algorithm is conducted in this section.

4.1. DC Voltage Ripple Component without Noise

Assuming that the DC bus voltage is consisted of the main DC component and the ripple
components, which can be given as follows,

Vi = D+ Xj cos(2mfit) + Xp cos(2m fot) + X3 cos(27 f3t) (20)

where D = 200, f; =50 Hz, f, = 150 Hz, f3 =250 Hzand X; = 2V2, X, = V2and X3 = V2/2.
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The amplitude and spectrum of simulation signal V. are illustrated in Figure 4. According to the
VMD-HT algorithm, the mode number K needs to set before running. As can be seen in the spectrum,
the frequency of the ripple components mainly contains 50 Hz, 150 Hz and 250 Hz. Thus, the mode
number K is initially selected as 4. In order to better describe the selection process of K, as described
in Section 3.3, the center frequency under different K is observed firstly and recorded it in Table 1.
As seen in Table 1, when the mode number K is smaller than 4, some modes is missed. However, when
the mode number K is bigger than 4, the modes with approximate center frequencies occur, such as
150 Hz and 161 Hz, which means that the over-decomposition of modes may exist. The spectrum of
VMD-HT algorithm under K = 4 is shown in the Figure 5, where the ripple components are clearly
revealed. Additionally, the IO of VMD-HT algorithm decomposition under different K is shown in
Table 2. As can be seen, the IO is the minimum when the mode number K = 4. Therefore, the mode
number K is optimal to 4.

Ul

[
=

Ilagnitude(¥)

190
0 02 04 04 0 1 1 2
Times(s) 10 Frequenc yHz) 10 |
(a) (b)

Figure 4. Performance of input DC voltage under noise-free condition: (a) amplitude, (b) spectrum.

Table 1. Center frequency corresponding to different K.

Modes Center Frequency
2 0 250
3 0 150 250
4 0 50 150 250
5 0 50 136 150 250
6 0 50 136 150 161 250

Table 2. IO of VMD-HT algorithm decomposition under different K.

Modes K=2 K=3 K=4 K=5 K=6
10 1.506e° 1.254e~7 1.554e~? 2.775e¢~? 7.817¢~°
1010
m s
S 10 50Hz  150Hz 250 Hz]
5 0 \
w0 o ]
E = —7 Fz
10°
Ol 102
Frequency(Hz)

Figure 5. Spectrums of VMD-HT algorithm under K = 4 under noise-free situation.

The VMD-HT and EMD algorithms are utilized to decompose the input DC bus voltage. Figures 6
and 7 show the decomposed modes of the corresponding algorithms. By utilizing the VMD algorithm,
the complex DC bus voltage is decomposed into 4 modes, including the main DC component and
three ripple components. However, the input DC voltage is decomposed into 6 modes when utilizing
the EMD algorithm, because the EMD algorithm is a recursive screening mode, and it is essentially a
binary filter bank. Therefore, the EMD algorithm belongs to the adaptive decomposition, where its
mode number is determined adaptively instead of manually. However, the VMD algorithm employs a
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non-recursive algorithm framework to adaptively estimate all the signal components, it essentially
behaves as a wiener filtebank with adaptive center frequencies. In addition, in the EMD algorithm, the
upper and lower envelopes inevitably have errors due to spline interpolation, which causes modal
aliasing [19], and the last two modes of Figure 7 are aliasing modes. Although the over-decomposition
occurs in the EMD algorithm, the ripple components are still detected accurately with the EMD and
VMD algorithm under the noise-free condition.

200. 5 T T T T T T T T T 2 T T T T T T T T T
2 ° \ il
@ I I I I I I l
B8 200 ﬁ 0 I I [ T AR | A R A
= =
199. ¢ i i i i i i i i i -9 i i i i i i i i i
5 T T T T T T T T T 1 T T T T T T T T T
Py 3 | |
s 0 20
s = \ | \ | \ | 1 |
-5 I I I L L L L L L -1 I I I I I I Il L L
0 0.2 0.8 1 0 0.2 0.8 1

0.4_ 0.6 0.4_ 0.6
Time(s) Time(s)

Figure 6. The decomposed modes of VMD-HT algorithms.

2 T T T T T T T 0. 05] T T T T T T T T T
™ ©
I <5}
§ 0 HGRTYRAR R ‘1‘;‘1‘ AN A ‘|“ Ui l‘li N H S oF o U S SR
= =
) | | | | | | | | | -0.05 | | | | | | | | |
0 0.2 0.4 . 0.6 0.8 1 0 0.2 0.4 . 0.6 0.8 1
Time(s) Time(s)

Figure 7. The decomposed modes of empirical mode decomposition (EMD) algorithms.

To further verify the correctness and effectiveness of the proposed VMD algorithms, some case
studies are carried out, including (1) X; = 2 V2, X, = V2, X3 = V2/2, 2) X5 = V2, X, = V2/2,
X5 = V2/4, B)X;=2 V2, X, =242/3, X3 = V2/2. Other parameters keep constant.

As seen in Table 3, the ripple coefficients of DC voltage are calculated when utilizing the VMD-HT
and EMD algorithms. As shown, both the ripple coefficients with VMD and EMD algorithm are close
to the actual value, which means that the ripple components can detected and analyzed accurately by
utilizing both the two algorithms under the noise-free condition.

Table 3. Ripple components of direct-current (DC) voltage without noise.

Case 1 Case 2 Case 3

Ri Actual VMD-HT EMD Actual VMD-HT EMD Actual VMD-HT EMD

ipple Xou(V)

m

DC value 200.00 200.00 200.00 200.00 200.00 200.01 200.00 200.00 200.00
1st 2.0000 1.9999 2.0351 1.0000 1.0001 1.0175 2.0000 1.9998 2.0614
2nd 1.0000 0.9990 0.8429 0.5000 0.4995 0.4215 0.6667 0.6660 0.5271
3th 0.5000 0.4990 0.5342 0.2500 0.2495 0.2671 0.5000 0.4990 0.0246
U 1.15% 1.15% 1.13% 0.57% 0.57% 0.57% 1.09% 1.08% 1.06%

Next, the condition that the amplitude of the ripple components of simulation signal is time-variant
is considered, where only X, of Equation (20) is time-variant. Figure 8 shows the amplitude and
spectrum of the input DC voltage.
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Figure 8. Waveforms of input DC voltage under noise-free condition: (a) amplitude, (b) spectrum.

As shown in Figures 9 and 10, the input DC bus voltage is decomposed different modes by
utilizing the VMD-HT and EMD algorithm. With the VMD-HT algorithm, the ripple components with
constant and time-variant amplitude are extracted accurately, while the modal aliasing problem will

occur when utilizing the EMD algorithm.

Mode 4
(=]

0.4 _. 0.6 0.8
Time(s)

0.4 _. 0.6
Time(s)

Figure 9. The decomposed modes of VMD-HT algorithms.

0.5

Mode 5

0F

Mode 4
(=]

0.4 0.6
Time(s)

0.4 _ 0.6
Time(s)

Figure 10. The decomposed modes of EMD algorithms.

4.2. DC Voltage Ripple Component with Noise

To verify the noise robustness of VMD-HT algorithm, the simulation signal with noise is given as
(21), the corresponding amplitude and spectrum of input signal can be shown in Figure 11.

Vi = D+ Xj cos(2mfit) + Xp cos(2m fot) + X3 cos(2m f3t) + randn

(21)

where D = 200, f; =50 Hz, f, = 150 Hz, f3 =250 Hz and X; = 2V2, X, = V2 and X3 = V2/2.”randn”
represents the noise interference, its amplitude sets to 0.4.
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0.2

Magnitude( V)
=4
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—
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=

[] 0.8

(¥ T
Time(s)
(a) (b)
Figure 11. Performance of input signals under noise condition: (a) amplitude, (b) spectrum.

Comprehensive utilizing that the observation of center frequency and the 10 value of VMD-HT
algorithm under different K, the mode number K is selected as 4, and the spectrums of VMD-HT
algorithm under K = 4 is illustrated in Figure 12.

N

[y
o

150 Hz 250 Hz
50Hz — — /

" i
DN )
2
Frequency(Hz) 10

Amplitude(dB)
=

=
(=]
0

1
10
Figure 12. Spectrums of VMD-HT algorithm under K = 4 under noise situation.

Figures 13 and 14 show the decomposed modes of the corresponding VMD-HT and EMD
algorithms. As seen, the input DC bus voltage is decomposed into 4 modes with the VMD-HT
algorithm, including the main DC component and three ripple components. However, the input DC
bus voltage is decomposed into 8 modes with the EMD algorithm, where the over-decomposition
problem occurs and is even worse. Thus, the VMD-HT algorithm can realize the decomposition of
complex DC bus voltage more accurately than the EMD algorithm under the noise condition.

200. 5 T T T T T T T T T 2 T T T T T T T T
2 P b | I |
© I I |
g 200 1 8o i i 1”\‘\ TR Il AR R ‘I‘
= =
199.5 1 1 1 1 1 1 1 1 1 -2 i i i 1 1 i i I i
o 5 T T T T T T T T T < 2 T T T T T T T T T
2 g
§ 0 s 0
-5 i i i i i i i i i -2 i i i i i i i i i
0 0.2 0.4 _. 0.6 0.8 1 0 0.2 0.8 1
Time(s)

0.4 _ 0.6
Time(s)

Figure 13. The decomposed modes of VMD-HT algorithm.

To further verify the correctness and effectiveness of the proposed VMD-HT algorithms, some
case studies are carried out, including X; = 2 V2, Xo = V2, X3 = V2/2, 2)X; = V2, X, = V2/2,
X3 = V2 /4,(3) X1 =2 \/i, X, =2 V2 /3, X3 = V2 /2 and other associated frequencies remain constant.

Table 4 shows the ripple coefficients and associated RMS value of DC bus voltage under noise
condition by utilizing the VMD-HT and EMD algorithms. As shown, the ripple coefficients with
VMD-HT algorithm are closer to the actual value, while the ripple coefficients with EMD algorithm has
some difference from the actual value. Moreover, as mentioned before, the EMD algorithm suffers from
modal aliasing for that the upper and lower envelopes have errors due to spline interpolation. Thus,
the amplitude of modes loses practical meaning, the “x” denotes the useless modes. Due to mode
mixing problems, the EMD algorithm cannot realize the accurate detection of complex DC signals with
noise, and its ripple coefficients are also not accurate.
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Figure 14. The decomposed modes of EMD algorithm.
Table 4. Ripple components of DC signals with noise.
Case 1 Case 2 Case 3
Ripple Actual VMD-HT EMD  Actual VMD-HT EMD  Actual VMD-HT EMD
Xm(V)
DC value  200.00 200.00  200.00  200.00 200.00  200.01  200.00 200.00 200.00
1st 2.0000 1.9954 X 1.0000 1.0071 X 2.0000 1.9968 X
2nd 1.0000 1.0009 X 0.5000 0.5219 X 0.6667 0.6721 X
3th 0.5000 0.5170 X 0.2500 0.3010 X 0.5000 0.5285 X
u 1.15% 1.15%  117%  0.57% 059%  0.61%  1.09% 1.09% 1.15%

Finally, the condition that X, of Equation (21) is a time-variant is considered. Figure 15 shows
the amplitude and spectrum of the input DC bus voltage with noise. The decomposed modes with
VMD-HT and EMD algorithms are shown in Figures 16 and 17. As seen, the VMD algorithm can
achieve the goal of decomposing the input DC bus voltage with noise. While the EMD algorithm
cannot reach the decomposition goal, where the severe modal aliasing problem occurs.
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Figure 15. Performance of input signals under noise condition: (a) amplitude, (b) spectrum.
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Figure 16. The decomposed modes of VMD-HT algorithm.
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Figure 17. The decomposed modes of EMD algorithm.
5. Experiment Results

In this section, the experiment results with VMD-HT, EMD and WIFFT algorithms are presented.
The DC power data is provided by Gree Photovoltaic Cabin at Gree company. Figures 18 and 19 show
the Gree Photovoltaic Cabin and its corresponding system configuration. As seen, the system mainly
consists of four parts: the AC system, the photovoltaic panels, the PV air conditioning framework and
DC loads. The PV air conditioning framework can absorb power from the photovoltaic panels through
the DC/DC converter or absorb/support power from AC system through the AC/DC converter and the
transformer, and it will support the main DC loads and AC loads through the DC/DC and DC/AC
converter. In the DC distributed system, there are three DC buses. The experiment data is sampled
from DC bus 1, where the sampling frequency is 10 kHz and the rated voltage is 620 V.

The equipment used for data acquisition is the Hioki PW3390 high-precision power analyzer
with a voltage measurement range of 15-1500 V. The parameters collected on the DC side mainly
include: DC voltage, voltage ripple rate, and so on. The range of voltage ripple coefficient of the
DC buses 1 is 0.08%~1.05% under excellent power quality level, and 1.61%~3.53% under the poor
power quality level, respectively. The average value of voltage ripple coefficient under excellent
and poor power quality level is 0.54% and 2.88%, respectively. This information obtained by the
power analyzer used as a reference for comparison with the voltage ripple coefficient obtained by the
proposed detected algorithm, the smaller value of ripple coefficient deviation indicates the higher

accuracy of the detected algorithm.
Photovoltaic &%
Panels J,

A/

T
e

Figure 18. Gree Photovoltaic Cabin.
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5.1. DC Voltage Ripple Detection under Excellent Power Quality Level

The DC bus voltage is generated by the AC/DC and DC/AC devices. The magnitude and spectrum
of the sampled voltage signal under excellent power quality level are seen in Figure 20, observing that
the spectrum decomposed by FFT mainly contains 50 Hz, 250 Hz and 350 Hz, the modal number K is
firstly selected as 4. The corresponding spectrums of different modes can be obtained in Figure 21,
where the center frequencies are also 50 Hz, 250 Hz and 350 Hz, respectively. At the same time, the 10
values are illustrated in Table 5. As can be seen, when the K increases from 2 to 4, the IO becomes
smaller; when the K increases from 4 to 6, the IO becomes larger. Thus, comprehensively, the optimal

K s selected to 4.
& a2
= a0
]
= {18
= o ¥ 0T_ (X [ 10 1
Time(s) Frequeney(Hz) l
(a) (b)
Figure 20. Performance of input signals with noise: (a) magnitude, (b) spectrum.
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S
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Frquency(Hz)
Figure 21. Spectrums of different modes.

Table 5. Index of Orthogonality (IO) of VMD-HT algorithm decomposition under different K.

Modes K=2 K=3 K=4 K=5 K=6
10 1.764e~8 6.205¢? 1.506e 1.307¢~8 5.617e8

Next, by utilizing the EMD and VMD-HT algorithm, the DC bus voltage signal is decomposed.
Figures 22 and 23 show the decomposed modes of the corresponding algorithms. As can be seen, the
VMD-HT algorithm decomposes the input DC bus voltage signal into 4 modes, including the main DC
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component and three ripple components. While the EMD algorithm decomposes the DC bus voltage
signal into 7 modes. Intuitively, there will be the over-decomposition problem.

. Mode 3

Mode 4

0.2 0.4 0.6 0.8 1 20 0.2 0.4 _ 0.6 0.8 1
Time(s) Time(s)

Figure 22. The decomposed modes of VMD-HT algorithm (model: DC value 620 V, mode 2: 50 Hz,
mode 3:250 Hz, mode 4: 350 Hz).
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Figure 23. The decomposed modes of EMD algorithm.

In order to compare the ripple detection accuracy between the VMD-HT and the EMD algorithms,
the RMS of the 1st-3th ripple components and ripple coefficients of input DC bus voltage are calculated
and three groups data are shown in Table 6. As seen in Table 6, the ripple coefficient of both algorithms

is very small because of good performance of DC bus voltage. However, the EMD algorithm suffers
from the mode mixing, it cannot detect the ripple components of complex DC signals. Thus, the
VMD-HT algorithm is superior to the EMD algorithm when decomposing the complex DC signals.

Table 6. Ripple components comparison among two methods.

Group 1 Group 2 Group 3
Ri VMD-HT EMD VMD-HT EMD VMD-HT EMD
ipple
Xin(V)

DC value 620.00 620.00 620.00 620.0 620.00 620.00
1st 0.6046 X 0.5992 X 0.5997 X
2nd 0.1122 X 0.1075 X 0.1112 X
3th 0.0693 X 0.0892 X 0.0754 X

U 0.09% 0.12% 0.10% 0.12% 0.10% 0.13%

5.2. DC Voltage Ripple Detection under Poor Power Quality Level

To further verify the effectiveness of the proposed algorithm, the experiment data are sampled
when the nonlinear loads is applied in the system. Three methods including VMD-HT algorithm, EMD,
and WIFFT algorithm are compared in this section. The waveforms of input signal and spectrum are

illustrated in Figure 24.
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Figure 24. Waveforms of input signal with noise: (a) magnitude, (b) spectrum.

For VMD-HT algorithm, the mode number K should be determined in advance. In Figure 24,

observing that the spectrum of input signal is mainly composed by 8 frequency components, and
the mode number K is initially selected as 8. The corresponding spectrums of VMD-HT algorithm
decomposition under different modes can be seen in Figure 25. Meanwhile, the 1O in Table 7 has the
minimum at K = 8. In summary, the optimal mode number K is 8.

)
N

, ©
N
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1 1
Figure 25. Spectrums of VMD-HT algorithm decomposition under different modes.

Table 7. IO of VMD-HT algorithm decomposition under different K.

Modes K=4 K=5 K=6 K=7 K=8 K=9 K=10

IO 8.767e78  5924e™%  4.866e° 1906e?  1.552¢7?  2.807e~° 3.548¢7?

Figures 26 and 27 show the decomposed modes of the corresponding algorithms. As seen, the

VMD-HT algorithm decomposes the input DC bus voltage signal into 8 modes, including the main DC
component and seven ripple components. While the EMD algorithm decomposes the DC bus voltage
signal into 11 modes. Intuitively, there will be the over-decomposition problem.

Mode 3 Mode 2 Mode 1

Mode 4

Mode 5

20

©
0 HHUAHEA LA AN E AL IA TE (AU il %
=

-20

0.8 1 0 0.2 0.8 1
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Figure 26. The decomposed modes of VMD-HT algorithm. (model: DC value 620 V, mode 2: 50 Hz,
mode 3:100 Hz, mode 4: 150 Hz, mode 5:200 Hz, mode 6:250 Hz, mode 7: 300 Hz, mode 8: 350 Hz).
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Figure 27. The decomposed modes of EMD algorithm.

The ripple estimation results of the WIFFT method based on hanning window [24] is illustrated in
Table 8, where “/” denotes the amplitude of DC component cannot obtained by the WIFFT method for
the application of interpolation algorithm [21]. In this method, the sample length is set as N = 1000.
It can be seen that the 1st-7th ripple parameters are obtained and the frequency deviation is within
4 Hz.

Table 8. Measured ripple components based on window interpolation FFT (WIFFT) algorithm.

Ripple Amplitude (V) Frequency (Hz) Phase (rad)
DC value / / /
1st 9.4165 50.1216 1.3125
2nd 3.4422 99.8489 —2.8849
3th 2.0455 150.8191 —-1.4951
4th 1.2022 200.9208 —-0.3612
5th 0.8051 250.0963 1.5785
6th 0.9446 300.2550 —-1.6007
7th 0.6408 353.6539 -1.3300

In order to compare the ripple detection accuracy of complex DC signals based on the VMD-HT,
EMD and WIFFT method, the RMS values X, of the 1st-7th ripple components and the calculated
ripple coefficient y under the poor power quality level are given in Table 9. According to the range
of voltage ripple coefficient in Gree Photovoltaic Cabin, namely, 1.61%~3.53%, the value of u based
on VMD-HT and WIFFT method is within a reasonable range. However, the u of EMD method is
out of the correct range because of the mode mixing. Thus, the EMD algorithm cannot detect the
ripple accurately.

In addition, compared to the average value of voltage ripple coefficient (2.88%) in Gree Photovoltaic
Cabin, the ripple coefficient deviation of VMD-HT method is smaller than that of the WIFFT method.
The WIFFT algorithms based on the classic windows relay on nonlinear least-square approach for
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harmonic frequency estimation, for complex DC signals, weak harmonic components can easily be
obscured by nearby strong harmonics due to the spectral leakage and picket fence effect [24]. Therefore,
the ripple detection accuracy of proposed VMD-HT algorithm is higher than the WIFFT method.

Table 9. Ripple components comparison among three methods.

. VMD-HT EMD WIFFT
Ripple
X (V)
DC value 619.8712 620.6774 /

1st 10.679 X 9.4165
2nd 4.2546 X 3.4422
3th 3.7142 X 2.0455
4th 2.6954 X 1.2022
5th 1.3837 X 0.8051
6th 0.9171 X 0.9446
7th 0.4531 X 0.6408

U 2.02% 1.36% 1.68%

6. Conclusions

In this paper, a combination algorithm based on VMD-HT algorithm is presented to detect and
analyze the ripple components of the complex DC signals. Before decomposing the input DC bus
voltage, the optimal mode number is determined by comprehensively observing the center frequencies
of mode components and the IO. By utilizing the VMD-HT algorithm, the input DC signals are
accurately decomposed into the main DC component and ripple components. From the comparison
with EMD and WIFFT algorithm, the ripple coefficients with VMD algorithm can be calculated more
accurately under the noise condition. Besides, in future work, our research mainly focuses on the
following two points: (1) adaptive section of the optimal mode number of the input DC disturbance
signal; (2) the research of sag/swell component of input DC signals.
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