
energies

Article

Automated Negotiation for Peer-to-Peer Electricity
Trading in Local Energy Markets

Christie Etukudor 1,* , Benoit Couraud 1, Valentin Robu 1 , Wolf-Gerrit Früh 1, David Flynn 1

and Chinonso Okereke 2

1 Department of Electrical, Electronic and Computer Engineering, Heriot-Watt University,
Edinburgh EH14 4AS, Scotland, UK; b.couraud@hw.ac.uk (B.C.); v.robu@hw.ac.uk (V.R.);
w.g.fruh@hw.ac.uk (W.-G.F.); d.flynn@hw.ac.uk (D.F.)

2 Department of Electrical and Information Engineering, Covenant University, Ota 112233, Ogun State,
Nigeria; chinonso.okereke@covenantuniversity.edu.ng

* Correspondence: caa30@hw.ac.uk

Received: 28 December 2019; Accepted: 14 February 2020; Published: 19 February 2020
����������
�������

Abstract: Reliable access to electricity is still a challenge in many developing countries. Indeed, rural
areas in sub-Saharan Africa and developing countries such as India still encounter frequent power
outages. Local energy markets (LEMs) have emerged as a low-cost solution enabling prosumers with
power supply systems such as solar PV to sell their surplus of energy to other members of the local
community. This paper proposes a one-to-one automated negotiation framework for peer-to-peer
(P2P) local trading of electricity. Our framework uses an autonomous agent model to capture the
preferences of both an electricity seller (consumer) and buyer (small local generator or prosumer), in
terms of price and electricity quantities to be traded in different periods throughout a day. We develop
a bilateral negotiation framework based on the well-known Rubinstein alternating offers protocol,
in which the quantity of electricity and the price for different periods are aggregated into daily
packages and negotiated between the buyer and seller agent. The framework is then implemented
experimentally, with buyers and sellers adopting different negotiation strategies based on negotiation
concession algorithms, such as linear heuristic or Boulware. Results show that this framework and
agents modelling allow prosumers to increase their revenue while providing electricity access to the
community at low cost.

Keywords: automated negotiation; P2P electricity trading; local electricity markets; local energy
markets; multi-agent systems; bilateral energy negotiations

1. Introduction

Universal access to affordable, reliable, and sustainable energy is one of the sustainable
development goals (SDG) of the United Nations [1]. Indeed, access to electricity is still a major
challenge in developing countries. Eleven percent of the world population (840 million people)
lack access to electricity especially in rural areas, which represent 87% of this population. With
573 million people out of those 840 million, the sub-Saharan African (SSA) region includes twenty
of the least-electrified countries of the world [2]. In most of these countries, insufficient generation
capacity often due to total dependence on fossil-fuel generators and weak grid infrastructure [3] are the
cause of this lack of electricity access. The size of the countries along with the cost of new generation
development and grid reinforcement make it economically unfeasible to extend the high voltage grid
to supply the whole population, both in the short and medium term [4]. Hence, such developing
countries face important shortage, polluting electricity production, and low quality electricity with
large voltage fluctuations that can be harmful to power electronics-based devices [5,6]. Consequently,
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small scale fossil fuel-based generators are widely used by electricity consumers for off-grid electricity
generation. However, the high electricity cost resulting from these generators hinders the economic
development in these regions [7,8]. In addition, the environmental pollution caused by the widespread
use of (often inefficient) carbon fuel generators [9,10] is a growing health and safety concern due to
toxic generator emissions; as well as the recorded deaths from these emissions, especially in developing
countries [11,12].

Several innovative and cost-efficient solutions incorporating available local renewable energy
sources (RES) such as solar, wind, and hydro have also been proposed and widely utilized. These include
solar lighting [13], solar home systems (SHSs) integrating battery storage [14,15], hydropower [16], as
well as community microgrids with battery storage systems [17,18]. These solutions provide several
advantages such as reduced cost of electricity, ease of deployment, and environmental sustainability.
This is especially valuable in developing country settings, where installing large-scale generation,
centralized transmission/distribution, and storage assets are often expensive, due to limited power
system infrastructure and access to finance [4]. Off-grid SHSs and community microgrids have
also been observed as being the most effective solution in enabling millions of rural dwellers gain
access to electricity [19]. Given the variable characteristic of RES in general, these off-grid SHS and
community microgrids are usually designed and sized to generate and store adequate electricity for
daily consumption, during periods of low-resource availability such as severe weather conditions [20].
Conversely, they also generate excess, unutilized/wasted energy during periods of high resource
availability, which could be used by neighbours or peers via peer-to-peer (P2P) energy sharing/trading
within the community, as demonstrated in the Swarm Electrification project of Bangladesh [21] where
local consumers and prosumers (consumers who own solar home systems) are connected and morphed
into village microgrids for energy sharing purposes, using a DC distribution system.

P2P trading has been defined as a decentralized structure where all peers in the structure cooperate
to trade a good or service—in this case, electricity [22]. Indeed, P2P electricity sharing/trading has
emerged as a new paradigm, solving local network issues such as voltage fluctuation, congestion,
or electricity deficit [22–25]. This novel concept of electricity trading is driven by the development
of distributed energy resources (DER) and smart metering technologies along with communications
systems [26–28]. It provides prosumers with the unique opportunity of selling any excess electricity
generated to other households in need of electricity [29] especially in the case of islanded microgrids
or during electricity cut events, while empowering communities to take charge of their own energy
supply and usage. A typical case study is the Brooklyn Microgrid Project (BMG)—a network of
local neighbourhood prosumers and consumers who trade locally-available, cheaper and greener
electricity via a private blockchain system [30]. Other commercial P2P electricity trading projects
include xGrid and µGrid by Powerledger (www.powerledger.io/our-technology/); PicloFlex by Open
Utility (www.picloflex.com/); Vanderbron (www.vandebron.nl/) and Sonnenbatterie community
where members share their self-produced surplus energy stored in their Sonnenbatteries with other
members of the Sonnembatterie community (www.sonnenbatterie.co.uk/sonnencommunity/). Other
European research projects focused on the design and implementation of P2P electricity marketplace
include ElecBay—a P2P electricity trading platform for grid-connected microgrids [31]; EnerChain—a
blockchain-based energy trading platform “for wholesale products, flexibility options and kWhs within
energy communities” (www.enerchain.ponton.de/) [32]; NOBEL—a P2P energy market for trading
electricity in smart grid neighbourhoods (www.nobelgrid.eu/) [33] and P2P-SmartTest project (www.
p2psmartest-h2020.eu/) [34]. Hence, local peer-to-peer (P2P) trading would provide a great opportunity
for populations with limited access to electricity to access any unused/excess local energy within
the community.

While most P2P electricity markets use market clearing algorithms such as the double-auction
that match the prices and quantities proposed by prosumers and consumers in the market [35,36];
others use distributed optimization methods [37] based on dual prices such as alternating direction
method of multipliers (ADMM) [38] and consensus-based optimization [39]. However, automated
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negotiations have emerged as a key technology for P2P electricity markets. In an automated negotiation,
software agents negotiate and trade energy on behalf of their human owners in order to maximize the
utility defined by their owner. Hence, automated negotiations are defined as a form of interaction
in which a group of software agents (buyers and sellers), with conflicting interests but desirous of
cooperating with one another, choose to work together with the aim of reaching an agreement that
is acceptable by all parties in the process [40]. Fast, efficient, and reliable automated negotiation is
seen as a key coordination mechanism for the interaction of producers, suppliers, and consumers in
electronic markets such as P2P electricity markets [41]. Hence, the development of market frameworks
has been the focus of recent research in P2P electricity market sector. Optimization of electricity
production and consumption schedule in a wholesale market where buyer and seller agents cooperate to
determine the best energy contract, is one of such developmental research frameworks [42,43]. Current
research also focuses on bilateral contract networks between suppliers and centralized producers [44];
computational properties of negotiation algorithms [45]; prosumers’ behavioural pattern based on
their bidding strategy [46]; optimized scheduling of energy storage for a P2P microgrid model using
automated negotiations [47]; as well as enabling communication technologies [48]. Furthermore,
agent-coordinated electricity trading between homes in a cooperative residential setting has been
shown to lead to an overall battery capacity reduction and reduced energy losses [49,50]. However,
electricity pricing was not considered for negotiations in these studies.

In this paper, we present bilateral agents’ negotiation heuristics that enable community P2P
energy market in order to reduce the bill of electricity traders and promote access to electricity in
the case of developing countries. The aim of the paper is to provide a new formal model of buyers
and sellers agents that can be used to carry out automated negotiations. This formal model is then
integrated within a novel automated negotiation framework where electricity quantities and prices
are electronically negotiated by players in the market. The paper shows how consumers can access
more local electricity at lower cost, while allowing local prosumers to increase their benefits and
reduce their generation system’s payback period. The paper also proposes novel heuristic negotiation
strategies (applicable in such localized P2P markets) where agents representing residential prosumers
and consumers bargain with each other towards reaching a mutually satisfactory trade.

In Section 2 of the paper, we describe this novel automated negotiation framework, including the
formal model of buyers and sellers and the negotiation protocol. In Section 3, we present different
negotiation strategies that can be used in a local energy market. Then, in Section 4, the proposed
framework and negotiation strategies are applied to a case study focused on developing countries
(specifically India), where the considered community represents a rural area with poor access to
electricity. Experimental analysis shows that the proposed framework increases access to electricity,
while increasing the revenues for SHS owners. Finally, in Sections 5 and 6, we discuss and conclude on
the potentials of the proposed automated negotiation framework for P2P energy markets and highlight
how it allows for reduction in the electricity deficit of some communities while promoting the use of
community-based renewable energy sources.

2. Automated Negotiation Framework

We develop a negotiation framework in which two types of agents (buyer and seller) bilaterally
negotiate to trade electricity. The framework is constituted by a negotiation protocol and models of
agents, as explained below.

2.1. Negotiation Protocol

The negotiation protocol is defined by the operator or facilitator of the local market in which
the two agents interact. It defines the rules of this interaction, including the type of energy contract
that can be exchanged, and the different steps that each agent has to follow in the negotiation. The
automated negotiation framework consists of a Rubinstein alternating offers protocol [51] and the
issues (the quantity of electricity and the price for each considered period) that are negotiated are
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discrete and daily packaged. Agents have imperfect information, which means they do not know the
preferences or utility function of the opponent. This subsection presents the protocol that must be
followed by the agents during their negotiation.

First, the operator or facilitator of the local market determines the number of consumption
periods for the following day. In this paper, four (4) periods of electricity consumption are used in the
negotiation model: Morning, afternoon, evening, and night. For each of these periods, the operator
defines two issues: The quantity of electricity to be traded, noted QNi where Ni is one of the four
periods determined previously, and the price PNi at which the quantity is traded during this period.
The price per unit is taken as a constant throughout the whole day in this paper (PNi = PN), but the
negotiation model also applies in the case of variable price per periods. This is because the emphasis
in our negotiation model is on equitable and mutually beneficial exchange of electricity between peers,
not on the pricing mechanism. For each of these issues, the model includes some bounds on the
quantities that the energy exchanges in each period can take, based on the physical constraints of the
application setting. For example, in the first period (Ni = N1 = Morning), minimum and maximum
quantity of energy that can be traded are defined. The minimum quantity of electricity to be traded
(qmin

Ni
= minQNi) is usually 0, while the maximum quantity depends on the local constraints of the

distribution network and the duration of the period. As an example, in a very small market with small
consumption, the maximum quantity of electricity that could be traded in a period could be defined as
max QNi = 3.5 kWh, which means that the agents cannot trade more than 3.5 kWh within the period Ni.
The same applies to the issue of price PN where a minimum and a maximum price is also determined;
for example, PN = [0.1, 0.9] ($/kWh).

Hence, our automated negotiation framework is defined by the following set of five issues (in the
case of four periods and one price for the whole day):

I =
{
QN1 , . . . , QN4 , PN

}
(1)

In the case where price is variable over one day, the set of issues is defined as I ={
QN1 , . . . , QN4 , PN1 , . . . , PN4

}
. For simplicity, each of the five issues (QNi , PN) consists of discrete

values (quantities) that are predefined by the contract types. This means that negotiation can only result
in traded quantities that are already within the set of feasible quantities that are possible to be physically
traded in the local distribution network. Given the description above, the proposed negotiation
protocol consists of a bundled multi-discrete issue. Thus, for each round within a negotiation, an
agent A will determine one quantity for each issue (within the limits previously defined) in order to
constitute an offer, noted mA,B

k =
(
qN1 , . . . , qN4 , pN

)
(or

(
qN1 , . . . , qN4 , pN1 , . . . , pN4

)
in the case of variable

prices), proposed to agent B. The set of all possible offers MA
I , is the negotiation domain determined by

Equation (2):

MA
I =

{(
qN1 , . . . , qN4 , pN

) ∣∣∣∣ ∀i qNi ∈ QNi , pN ∈ PN
}

(2)

Hence, a negotiation consists of the following steps:

• (Pre-negotiation): First, the parties (agents) define the issues to be negotiated and the associated
possible (allowed) quantities for each of them.

• An agent A determines the offer he will propose during the first round mA→B
1 to agent B. The offer

consists in the quantities of electricity for each period (qN1 , . . . , qN4 ) and the price (pN).
• Agent B receives the offer; accepts it or discards it. In the first scenario, the negotiation is over. In

the second, he proposes a counteroffer mB→A
1 by determining its preferred quantities for each issue.

• Agent A can either accept it, propose a new offer mA→B
2 (in which case we go back two steps

above), or close the negotiation (no deal).
• Once the negotiation is done, the trade is validated against the physical constraints of the power

exchange network, verifying that the network can support the agreed energy transfer.
• The next day, the agents commit to their energy trade.
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In terms of the physics, the proposed model can be used in a number of physical settings. In
the case of communities in many developing countries, there is no central distribution network and
the exchange occurs over a privately-owned wire. In cases where prosumers have access to a local
distribution network, a distribution system operator could be used to verify and enforce physical
network constraints, but the contracts are agreed through P2P negotiation. Thus, given the negotiation
protocol description above, the next section will focus on the modelling of the agents in order to allow
automated negotiations by software agents.

2.2. Agent Models

Having described the negotiation process in Section 2.1 above, this section presents the modelling
of the software agents representing the different market traders. The agent modelling consists mainly
in determining an agent’s utility function. The utility function is defined for each offer and represents
the agent’s preference or value for an offer. Thus, a buyer will have a high utility for an offer that
consists of its desired quantities of electricity at a low price, whereas a seller will have the highest
utility for offers with high prices. Hence, it is necessary to distinguish seller and buyer agents, as
explained below.

2.2.1. Buyer Agent Model

The utility that an agent A will give to an offer mA
k noted UmA

k
, is defined as a function of the total

cost and quantity of electricity supply for the day. Thus, the utility function of an agent A for an offer
mA

k is defined as proposed in Equation (3):

UmA
k
= wcCmA

k
+ wQFmA

k
(3)

where wc and wQ are weight-coefficients such that wc + wQ = 1. wc represents the importance of the
electricity cost for the agent, while wQ represents the importance the agent gives to the quantity of
electricity he will obtain in an offer. CmA

k
represents the total cost of the offer mA

k through the whole
period (day) and is given by Equation (4), which includes the case where the prices can be different for
every period:

CmA
k
=

∑4
i = 1 qrequired

Ni
Ci

g −
∑4

i = 1 qNipNi∑4
i = 1 qrequired

Ni
Ci

g −
∑4

i = 1 minPNiminQNi

(4)

where qNi and pNi are the quantity of electricity and price at period Ni that constitute the current offer,

mA
k and qrequired

Ni
is the quantity of electricity required by the agent for period Ni. While Ci

g is defined
for every period Ni, as the minimum between the price of electricity on the grid and the cost of the
generation of one unit of energy from a generator that would be owned by the buyer and used in case
there is no deal. This is relevant especially for remote places or countries in India and sub-Sahara
Africa where households use small fossil fuel-based generators to generate electricity when there is a
long outage on the grid. Where there is no grid and no generator, Ci

g is equal to pmax
Ni

= max
{
PNi

}
—the

highest possible price for period Ni. Additionally, minQNi and minPNi are the minimum quantities of
electricity and price that can be traded in period Ni, respectively. This expression of the cost ensures
the utility of an offer with a low cost will be higher than the utility of an offer trading the same quantity
of electricity at a higher cost. It will also prevent the agent from negotiating electricity at a higher cost
than the grid’s price or the cost of a self-owned generator.

Finally, FmA
k

in Equation (3) is defined as the agent’s utility for the quantities of electricity that
constitutes the offer. Indeed, an agent has a need for specific quantities of electricity at specific times. If
an offer meets its needs, the offer will have a high utility. However, if the offer surpasses its needs, the
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utility is 0 for an agent who is not flexible (unable to increase its consumption). Thus, FmA
k

is defined as
shown in Equation (5):

FmA
k
=

N∑
i=1

FqNi
wNi (5)

where FqNi
represents the matching between the electricity quantity corresponding to the offer for

period Ni and the required electricity quantity for the same period. FqNi
is given by Equation (6):

FqNi
=


min

(
qNi ,q

required
Ni

)
+ε

qrequired
Ni

+ε
i f qNi ≤ qrequired

Ni
+ ϕi

0 i f qNi > qrequired
Ni

+ ϕi

(6)

where ϕi is the flexibility the consumer has (in kWh) for overconsumption in period Ni, and ε is a
number such that ε� 1 allows FqNi

to be defined even for a period where qrequired
Ni

= 0. It can be seen
that FqNi

is equal to 1 only when the agent receives an offer that exactly meets its needs.
wNi are the period’s weight coefficients (

∑
i

wNi = 1), directly representing the importance of a

period Ni to the buyer in comparison with other periods. It is given by Equation (7):

wNi =

qrequired
Ni

max
j

qrequired
Nj

+ γNi∑
j wN j

(7)

where max
j

qrequired
N j

is the maximum quantity of electricity per period the agent requires, and γNi is a

coefficient given by the agent to state if the period is important or not. For example, an agent might not
need a large quantity of electricity for period Ni but might be in dire need of this quantity for a different
period. In this case, the agent can specify it by allocating a large value to γNi (γNi = 1 for example).

2.2.2. Seller Agent Model

The seller agent represents a prosumer with a microgeneration asset. This asset consists of either
a fossil fuel engine, a solar panel with or without a battery, etc. The seller agent’s utility UmA

k
for an

offer mA
k is determined by the revenue the seller will get from it. Thus, UmA

k
is given as shown in

Equation (8):

UmA
k
=

RmA
k

i f mA
k is f easible

−1 i f mA
k is not f easible

(8)

where an offer mA
k is said to be feasible if the agent has enough energy in each period to supply its own

needs and the electricity quantities proposed in the offer. Algorithm 1 presents the steps followed in
order to remove unfeasible offers from the negotiation domain. RmA

k
is the seller’s expected revenue

from an offer mA
k =

(
qN1 , . . . , qN4 , pN

)
, and is given by Equation (9) where there are variable prices

per period:

RmA
k
=

∑n
i=1 qNipNi −

∑n
i=1 qNiMCNi

max CI
(9)

where maxCI = max
mA

k

∑N
j=1 qavailable

N j
pN j −min

mA
k

∑N
j=1 qN jMCN j is the maximum revenue a seller could

expect from the space of possible offers and qavailable
Ni

is the maximum quantity of energy the prosumer
could sell in time period Ni. The seller’s marginal cost of production for one unit of electricity in period
Ni—private to the seller only—is denoted as MCNi .
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Algorithm 1: Remove impossible offers mA
k from MA

I

Inputs:
S =

{
mA

k

}
Set of offers to be considered.

SoCmax = Maximum battery capacity (∞ if no battery).
SoCinit = Initial battery capacity at the start of the day (0 if no battery).
DER = {DERNi} Set of forecasted renewable energy production at each time period Ni.
Gmax = The maximum power of the conventional fossil fuel powered asset (0 if no conventional supply).

Q =
{
qrequired

Ni

}
Set of four electricity quantities that need to be self-supplied by the seller at each period Ni.

Initialize:

U =
{
UmA

k
← RmA

k

}
the space of outcomes (utility) for the considered set of offers S.

For mA
k = (qN1 , . . . , qNN , . . .) ∈ S do.

SoC = SoCinit.
For i = 1 to 4 do.

SoC = min
(
SoC + DERNi + Gmax

− qrequired
Ni

, SoCmax

)
.

if SoC < qNi then.
UmA

k
= −1.

Return U.

Now that the utility function of the seller has also been defined, the next subsection presents the
different steps followed by the agents during a negotiation.

3. Agents’ Electricity Negotiation

Having defined the buyer and seller agents’ respective utilities, this section presents the different
steps followed by the agents during the negotiation.

1. The agent first determines its required self-consumption (qrequired
Ni

) for each of the four periods, as

well as the different marginal costs for electricity supply (MCNi , Ci
g).

2. The seller agent also determines the forecast for its distributed energy resource (DER) production,
while the buyer agent determines the γNi values, as well as the weights wc and wQ.

3. The agents compute the utility function for each of the possible offers from the sets of discrete
quantities Qd

Ni
and Pd

N determined by the market facilitator. Thus, each agent generates the set of

possible outcomes Ud
I .

4. The agents sort the set of possible outcomes Ud
I and each determine the threshold UThreshold below

which it will not accept any offer. UThreshold is the utility of the reserved or least package an agent
can concede. Thus, any package with a utility below UThreshold will be discarded.

5. Negotiations begin with an agent (say agent A) initiating and sending the first offer/bid mA→B
1 to

the opponent (agent B).
6. Upon receiving the offer, agent B evaluates the utility of the offer and determines if the offer is

first suitable or not; that’s above UThreshold or not. Depending on its strategy, agent B will either
accept the offer; or refuse the offer by proposing a new offer/bid mB→A

1 , etc. within the specified
deadline, until a bargain is either reached or the negotiation is closed without a deal.

Finally, for each agent, the threshold UThreshold defined above corresponds to the package mThreshold
which contains no electricity quantities as each agent is in the market to negotiate electricity quantities.
mThreshold is defined by Equation (10):

mBuyer
Threshold = min

U

({
0, . . . , 0, pT

}
,
{
qrequired

N1
, . . . , qrequired

N4
, pT

} )
mSeller

Threshold =
{
0, . . . , 0, pT

} (10)
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With pT the maximum/minimum price acceptable for the buyer/seller respectively, and
min

U

({
0, . . . , 0, pT

}
,
{
qrequired

N1
, . . . , qrequired

N4
, pT

} )
corresponding to one of the two packages (

{
0, . . . , 0, pT

}
or

{
qrequired

N1
, . . . , qrequired

N4
, pT

}
) that gives the lowest utility. Now that the negotiation protocol and the

agents modelling have been defined, the next section describes the different negotiation strategies that
have been considered in this study.

3.1. Negotiation Strategies

A negotiation strategy determines how an agent generates a bid, as well as accepts an offer.
Several negotiation concession strategies have been proposed in negotiation literature. For this paper,
we have selected and adapted on three strategies that show the best performance, which will be used
in the next section in order to validate the negotiation protocol and model defined above.

3.1.1. “Zero Intelligence” (ZI) Strategy

The first agent’s strategy to be considered is the zero intelligence (ZI) strategy. This strategy
consists of generating a random bid from the agent’s set of feasible packages determined previously
(UmA

k
> UThreshold). In conceding to a received offer, the agent will accept it if the utility of the

received offer is greater than that of its previous randomly generated bid. This strategy serves as a
baseline strategy to determine the feasibility of automated negotiations as a trading mechanism in P2P
electricity markets.

3.1.2. Linear Heuristic Strategy

The linear heuristic (LH) agent strategy consists in choosing an offer among a reduced set of
feasible packages. During the first round of a negotiation, the LH agent (called agent A) starts by
defining the minimal utility U1

min (called reservation value) such that the set of feasible packages for

this round is given by SA
1 =

{
mA

1,i

}
with UA

mA
1,i
> U1

min. For the first round, U1
min is chosen close to the

maximum utility computed, as explained in Section 2. If an offer from the opponent is within the set
SA

1 computed for the considered round, the offer is accepted. Otherwise, the agent proposes a second

round for which he determines a new minimal utility U2
min and a corresponding set SA

2 =
{
mA

2,i

}
such

that UA
mA

2,i
> U2

min. The specificity of the LH agent is that the minimum utility Uk
min used to determine

the set of possible packages SA
k for round k is determined as a linear function of the round number, as

shown in Equation (11):

Uk
min = UA

max −
k
M

(
UA

max −UA
Threshold

)
(11)

where M is a coefficient that corresponds to the speed at which the agent concedes in a negotiation. As
explained above, once the LH agent receives an offer for round k, it will either accept it if the utility of
this offer is above Uk

min, or propose a new bid. The new bid corresponds to the package from the set
of SA

k that is closest to the received offer from the opponent, where the dimensions for the distance

computation are the issues considered
{
qN1 , . . . , qN4 , p

}
.

3.1.3. Expert Agent Strategy

The expert agent strategy uses a heuristic strategy similar to the LH strategy, as well as the
Boulware strategy [52]. Similar to the LH agent, the expert agent also defines a new set of feasible
packages SA

k for each round k, determined as the set of all packages mA
k,i such that UA

mA
k,i
> Uk

min where

the minimal utility Uk
min is defined by Equation (12):

Uk
min = UA

max −

(
k
M

) 1
β (

UA
max −UA

Threshold

)
with β < 1 (12)
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It is against this feasible package set SA
k , the expert agent evaluates a received offer with a view to

accepting it; or it proposes a counteroffer from this set choosing the bid closest to the received offer
in terms of quantities. Now that the different agents’ strategies have been presented, the following
section will present a case study in which these strategies will be evaluated.

3.2. Case Study

The case study used to test and validate our model focuses on developing countries where rural
or semi-urban areas often have unreliable or no connectivity to a central power grid (i.e., “weak
grid” environments), such as those present in several parts of sub-Saharan Africa, southern Asia, or
in India. Until the development of solar PV technology, consumers faced either the choice to have
no electricity during the whole period of the outage (sometimes up to several days), or to use small
fossil fuel-based generators. Recently, some households have invested in solar home systems (SHSs)
integrating battery storage. However, due to lack of incentive or possibility to share the excess energy
inherent in such systems, large amounts of electricity that could serve others in the community are
often unutilized/wasted. The case study proposed in this paper addresses this issue by implementing
the negotiation protocol described in previous sections to a rural community consisting of a prosumer
with a solar home system and a battery; and different consumers with different preferences for energy
and prices. For comparison purposes, the consumers are defined as having the same consumption
needs. The prosumer acts as the seller, and the consumers are the buyers. In our model, peer-to-peer
(P2P) bilateral (one-to-one) negotiations are considered; hence, negotiations are between the seller and
one buyer at a time.

In more detail, the settings used in our model (such as the two solar generation availability scenarios
described below, and the values used to model our utility functions for exporting/consuming electricity)
are inspired from a large UK-India research project the authors are involved in: Community-scale Energy
Demand Reduction in India (CEDRI–www.cedri.hw.ac.uk/). CEDRI uses a combination of data-driven
analytics, user surveys, and computational modelling to study the energy demand/consumption
behaviour in a number of local communities in India, such as the Auroville community and surrounding
villages in Tamil Nadu.

3.2.1. Buyers’ Profiles

Three buyers reflecting three different energy consumption behaviours but similar electricity
consumption needs, typical of a rural community setting are modelled. The World Bank has
proposed to categorize consumers based on their electricity need [53]. As shown in Table 1, a “Tier
1” consumer corresponds to a consumer with a daily need of 12 Wh of electricity for lighting,
whereas “Tier 5” consumers typify households that have an electricity consumption above 8.2
kWh. In our scenario, we focus on rural India and SSA communities, so we consider that buyers
belong to the “Tier 2–3” category, with a daily consumption only for lighting, air circulation (fans),
television, and phone charging. Thus, the buyers’ daily electricity consumption is estimated as

Qbuyer
required =

{
qrequired

night , qrequired
morning, qrequired

a f ternoon, qrequired
evening

}
= { 0.25, 0.25, 0, 1 } kWh. This means that in this

scenario, the buyers require 0.25 kWh of electricity at night, 0.25 kWh in the morning, and 1 kWh
during the evening. The buyers’ different energy consumption patterns are also represented in their
different preferences in terms of price wc or need for electricity wQ.

www.cedri.hw.ac.uk/
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Table 1. The World Bank electricity end-user classification.

Multi-Tier Matrix for Measuring Access to Household Electricity Supply
Consumption Description Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Peak
Capacity

Power capacity ratings (W) Min 3 W Min 50 W Min 200 W Min 800 W Min 2 kW
Daily Energy consumption

(Wh) Min 12 Wh Min 200 Wh Min 1 kWh Min 3.43
kWh Min 8.2 kWh

Or
Services

Lighting of 1000
lumen-h/day

Electric lights, air circulation,
TV, and phone charging are

possible

Duration
Hours per day Min 4 h Min 4 h Min 8 h Min 16 h Min 23 h

Hours per evening Min 1 h Min 2 h Min 3 h Min 4 h Min 4 h

Adapted from [53] (pp. 6).

1. Buyer 1 is a consumer with equal preference for the cost of electricity, as well as the quantity of

electricity he receives, provided it is close to its electricity need Qbuyer
required. Hence, wc = wQ = 1

2 .

2. Buyer 2 is a consumer who prefers having the amounts of electricity given by Qbuyer
required, irrespective

of price. Hence, wc =
1
8 and wQ = 1−wc.

3. Buyer 3 is a consumer who is most concerned with price and will adjust consumption based on
the price as this buyer does not want to pay much money for its electricity consumption. Hence,
wc =

2
3 .

We also consider a “Tier 1” consumer household with maximal electricity consumption of less than 0.2
kWh daily (often as a result of low household income); to determine if such a consumer can participate
and benefit from the LEM using automated negotiating agents. We modelled this consumer as a type
of buyer 3 as this consumer is mostly concerned about its cost of electricity.

3.2.2. Seller Profile

The seller owns a small solar PV system of 1.5 kW with a battery of 2.8 kWh of available
capacity. The seller also has a need for electricity that will self-supply in the first place, and then
sell any extra energy to others. Its daily consumption (also known demand) is assumed to be

Qseller
required =

{
qrequired

night , qrequired
morning, qrequired

a f ternoon, qrequired
evening

}
= { 0.65, 0.86, 0.43, 1.4 } kWh. His battery is assumed

to be completely full (2.8 kWh) at the start of the day and two cases of solar microgeneration are
considered with a derating factor of 65% pre-applied to the forecasted solar PV generation to generate
DERPV:

1. Cloudy day case where the solar PV installation produces a power given by DERPV ={
DERPV

night, DERPV
morning, DERPV

a f ternoon, DERPV
evening

}
= { 0, 1, 0.5, 0 } kWh, respectively.

2. Sunny day case with a PV production given by: DERPV = { 0, 2, 2.5, 0 } kWh.

This derating factor caters for system losses, as well as variability in solar irradiation. It also
aids to ensure that a seller agent can only negotiate energy quantities it can generate and deliver. The
next section will focus on the obtained results from the negotiations between all these buyers and the
seller in the two solar production cases, implementing the different negotiation strategies described in
Section 3.1.

4. Experimental Results

The proposed agents modelling utilizing the proposed strategies and negotiations protocol were
applied to the case study described in Section 3.2 and for the two solar availability scenarios to
demonstrate the benefits of automated negotiations in local energy markets. The results are presented
in this section in two parts. In the first part, the agreed negotiation bargains/outcomes are presented in
order to evaluate the negotiation protocol proposed, while the second part compares the outcomes
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of the different strategies proposed. All simulations were run on the MATLAB software with an i5
processor at 1.7 GHz, and the different Central Processing Unit (CPU) requirements are displayed in
Table 2.

Table 2. CPU processing time and memory requirements for the simulations (in average).

Computation of Utility Matrix Negotiation

CPU Time (s) 4.1 0.7
Memory (MB) 18 12

4.1. Negotiation Framework Implementation

The two cases proposed to evaluate the negotiation framework allows us to explore two scenarios.
In the first scenario, the seller (prosumer) does not have a lot of energy to sell, as the day is a cloudy
day. While each buyer will try to find the maximum amount of energy it can obtain, at the lowest
price, and at its most preferred period. Implementing γNi = 0 in (7) for all periods Ni and for all the
buyers, each buyer will try to maximize its quantity of energy at the period where it has the greatest
demand—in our case, the evening period as the required demand is {0.25, 0.25, 0, 1} kWh. The left
graph of Figure 1 presents the results from negotiation between the three buyers and the seller when
the day is cloudy. Since there is not enough energy to supply the needs from the seller and the buyer,
the buyer focuses on the evening period. Figure 1 shows that the only package feasible is 0.75 kWh
electricity exchange in the evening. As shown, buyer 3, who has a clear preference for having a low
cost for its energy consumption negotiates the lowest price. From the seller’s perspective, provided
the offered price is above its marginal cost of energy production, the deal is still profitable.
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Figure 1. Outcomes of negotiations for the three different types of buyer agents implementing expert
strategy against the seller, also implementing expert strategy; for the case of a cloudy day (a) and of a
sunny day (b).

The right graph of Figure 1 presents the results of negotiations when the day is sunny. In this
case, the seller has enough energy to supply his demand and the demand of the buyer. Buyer 1 (no
preference) and buyer 3 (preference for a low cost) negotiate the same quantities of energy to meet their
need. Buyer 3 obtains the best price but stands the risk of not reaching a deal. If its utility weight for
low cost had been higher, he might not have proposed any offer suitable to the seller at prices above
the seller’s marginal cost of its PV and battery installation. Finally, buyer 2 is a buyer who aims to
obtain at least the required quantity of energy or more, by attaching very low importance to the cost of
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its electricity supply. In a real-life scenario, if the obtained contract/deal does not suit the buyer, it can
adjust its weight for cost in future negotiations in order to either reduce the obtained price or increase
its energy access.

Hence, an important outcome from these simulations is that the agreed bargain meets the buyers’
needs, while providing additional revenue to the seller. It specifically allows buyers with preference
such as the buyer 2 profile, to increase their energy access, which is an important feature in developing
countries, as economic development requires increasing energy access. For low revenue community
members, it also allows them to negotiate better prices for their energy supply, while still giving
satisfaction to the prosumers/sellers. As discussed, P2P negotiations are mostly specific to settings
with poor access to a central power grid, where there is no direct interaction or competition with a
central power supplier or utility company.

Similarly, Figure 2 displays the averaged outcomes over 100 negotiations in the case of zero
intelligence agents (buyers and seller). Hence, the agents do not have any intelligence in their strategy,
such that they end the negotiation anytime a negotiation round’s outcome gives a better utility than
the previous round. Still, each outcome follows the buyer’s characteristics (preference for the energy
cost or for the quantity of energy), which tends to validate the model proposed in this paper.
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During a negotiation, different packages are proposed between the buyer and the seller. Figures 3
and 4 show the space of all possible Sunny-Day negotiaton outcomes between seller expert agent and
buyers 1 and 2 expert agents, respectively; while Figure 5 shows the negotiation domain-space for a
buyer 3 (Tier 1 household) expert agent negotiating with a seller expert agent on a sunny day. Figure 3
shows that the obtained bargain for this particular scenario is efficient and provides a good utility to
the buyer but quite low utility to the seller. This is due to the fact that the seller’s utility is proportional
to the price, whereas the buyer’s utility is the sum between a term proportional to the price, and a term
independent of the price (relative to the quantity of energy). This also explains the distance between the
obtained bargain and the Nash (which maximizes the product of the two negotiating agents’ utilities)
or Kalai–Smorodinsky (KS) (which maximizes the minimum) bargaining solutions [54]. The distance to
these points (computed for each negotiation domain) is used in the negotiation literature as a measure
of fairness of the agreed negotiation outcome. As explained above, given the difference in the way
utilities are computed for the buyer and the seller, the Nash bargain corresponds to packages with the
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highest price. Such packages provide large utility for the seller, and not too small utility for the buyer
as the quantities of energy are still fulfilling its needs. For buyer 2, its utility function is impacted
more by the quantities of energy, and less by the price. Thus, the negotiation outcome in Figure 4
is mutually satisfying to both agents and also efficient with a shorter proximity to the Nash and KS
bargaining solutions. More so, the concave outline of Figure 4 negotiation domain showcases the
agents asymmetric preferences with buyer 2 having a higher preference for energy over price and the
seller agent having a higher preference for price. Figure 5 also shows that a Tier 1 household with low
energy demand and mainly concerned with the cost of electricity can benefit from such a local energy
market. Unlike Figures 3 and 4, the Pareto frontier in Figure 5 closely resembles a zero-sum game.
Likewise, the sparsity of the space of possible outcomes shows the very limited agreeable outcomes
available to both agents. This is because both negotiating agents are mainly concerned about the same
issue—price; with the seller expert agent focused on maximizing its revenue and the buyer 3 expert
agent interested in minimizing cost. Both agents reached an outcome more satisfactory to the buyer
and less so to the seller; because of the small quantity of electricity agreed upon, relative to the total
electricity available for sale by the seller. In all the negotiations, the obtained bargains are pareto
efficient (as seen on the Pareto-Front), provided the flexibility for overconsumption (given by ϕi) is
close to 0.
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4.2. Negotiation Strategies Comparison

Now that the negotiation protocol and agents modelling have been successfully implemented, the
different negotiation strategies for the buyers and the sellers are hereby compared. To carry out this
study, only the case with enough energy to meet the seller and buyer’s demands was considered. Each
negotiation strategy was implemented for the seller. For each implementation (strategy), the seller
bilaterally negotiated with each of the three buyers (that is, one at a time), where all three buyers also
implemented the three strategies alternatively. Outcomes from all the negotiations were averaged in
order to compare the different strategies. For negotiations with a zero intelligence agent (based on
random selection of packages), 100 negotiations were simulated, and the utility averaged over the
100 outcomes in order to obtain statistically reliable results. Figure 6 shows the average value of all
obtained outcomes for the seller as a function of its strategy. When utilizing the expert agent strategy
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by the seller, the average outcome from its negotiations with the three buyers implementing each one
of the three proposed strategies was 57%, while utilizing the linear heuristic strategy by the seller
yielded 54%. The average outcomes a buyer can expect when negotiating with a seller are also shown.
It was computed by averaging the outcomes from the three buyers implementing each one of the
proposed strategies while negotiating with the seller who also implemented each one of the strategies.
LH agents were observed to be more suitable for buyers, but this trend is mostly due to the negotiation
outcomes from negotiations with zero intelligence (ZI) agents. When excluding the negotiations with
ZI agents, LH and expert agents strategies give similar results.
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Thus, linear heuristics and expert agents provide similar results in terms of utility outcomes, even
if LH seem more efficient for sellers than buyers in the proposed context. Moreover, the number of
iterations (rounds) to reach a deal is of high interest, in order to reduce the computational cost of the
automated negotiation. As seen in Figure 6, the computational cost to reach an agreement is higher for
an expert agent in general than for a linear heuristic strategy. This is due to the lower speed at which
the expert agent increases the size of SA

k between two consecutive negotiation rounds, where SA
k is the

set of feasible outcomes for round k.

5. Discussion

The implementation of the proposed agent modelling and framework to a rural area case of India
demonstrated the benefits it could provide to a community, by allowing community members to
access cheaper electricity and increase their energy consumption while providing extra-revenues to
local prosumers. Indeed, consumers with price constraints were able to negotiate low prices for their
electricity supply, whereas consumers attaching more importance to their electricity consumption than
the cost of their energy supply were able to increase their energy access. Within a community, it is most
likely that several profiles of consumers will be represented. Thus, utilizing automated one-to-one
negotiations, prosumers will be able to make their energy surplus available to the community; where
some consumers will mostly negotiate the price in order to meet their required consumption need;
while others will be able to take advantage of the negotiations to increase their energy consumption
until all the energy available has been used. Three negotiation strategies were also proposed and
assessed within this study. The Boulware and linear heuristic based negotiation strategies obtained
similar outcomes, although the linear heuristic strategy seems to be more suitable to buyer agents,
in our analysis. Furthermore, linear heuristic strategies provide similar outcomes in a shorter time,
which makes it an interesting strategy to be implemented in real life applications.

Hence, automated negotiations using such framework would also allow end users to take an
active role in the electricity of retail markets in developed countries, as it is recommended by European
policies. Indeed, [55] specifies the evolution of future European electricity markets, which should
give citizens ownership of their electricity supply by providing them the possibility to trade their
flexibility. It also specifies the principles of citizen energy communities that would be strongly enabled
by automated negotiations, as it would allow community members to automatically access local
electricity supply/demand at better costs. Indeed, automated negotiations at the peer-to-peer level is
mostly applicable either in developing countries, especially where the grid is unreliable, or within a
community in countries with a strong grid, as peers do not currently have the required power to enter
the wholesale market [56]. At a community level, collective self-consumption and the emergence of
the sharing economy for smart grids [57–59] provides a way for citizens to promote investment in DER
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while reducing their electricity bill [60], especially in Europe where P2P trading is likely to be supported
by European policies [59]. Hence, automated negotiations as presented in this paper would provide a
replicable framework that would allow citizen communities to maximize the quantity of self-consumed
renewable energy at a low cost. Similarly, in other regions of the world, as the United States of America
or the United Kingdom, Electricity Markets Authorities as OFGEM are drawing the principles of future
supply markets [61] and discussing the possibility of a supplier hub [62] which could allow automated
negotiations between producers and consumers. Hence, regulations are currently breaking down the
barriers to flexibility, allowing flexible loads owners to contribute to the electricity markets [63]. In this
context, automated negotiations would allow actors unfamiliar with the market context to easily agree
on prices and quantities of electricity. However, several obstacles still exist to local energy markets, as
the recent network charging evolution in the UK with the Targeted Charging Review [64] or with the
trend towards half-hourly (or quarter-hourly in Belgium for example) settlement that would require
negotiations to be done at the aggregator level instead of the end user level, as such short settlement
time would require a very accurate forecast which is only achievable with aggregated loads.

6. Conclusions

This paper proposed a new automated negotiation framework for energy, including agents
modelling, which demonstrated interesting benefits for rural areas in developing countries. The
novelty of this framework mainly lies in the modelling of the negotiating agents and their strategies
(buyers and sellers) in the energy domain. It allows these agents to configure their own preferences for
energy or price and agree on a price and quantities of electricity for every considered period. This paper
also presented the use of different negotiation strategies in the context of P2P energy markets. Using
a case study specific to rural areas of India as an example, the experimental analysis demonstrated
the benefits that the agents modelling and the negotiation protocol could provide to a community by
increasing the access to low-cost electricity, while increasing local producers’ benefits. Hence, our
work shows that P2P local energy markets using automated negotiations can be an important vector to
support the economic development of these rural areas by improving access to electricity to consumers
who would be cut off otherwise when the central power grid experiences power cuts. Future research
will include many-to-many negotiations, where multiple buyers negotiate with multiple sellers in
order to converge towards an equilibrium for the whole community, which will be representative of
real-life scenario. Future research will also focus on the impacts of automated negotiations on voltage
fluctuation and frequency regulation by implementing the proposed model into a community with an
islanded constrained grid.
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