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Abstract: Electrochemical impedance spectroscopy (EIS) is a powerful tool for investigating
electrochemical systems, such as lithium-ion batteries or fuel cells, given its high frequency resolution.
The distribution of relaxation times (DRT) method offers a model-free approach for a deeper
understanding of EIS data. However, in lithium-ion batteries, the differential capacity caused by
diffusion processes is non-negligible and cannot be decomposed by the DRT method, which limits the
applicability of the DRT method to lithium-ion batteries. In this study, a joint estimation method with
Tikhonov regularization is proposed to estimate the differential capacity and the DRT simultaneously.
Moreover, the equivalence of the differential capacity and the incremental capacity is proven. Different
types of commercial lithium-ion batteries are tested to validate the joint estimation method and
to verify the equivalence. The differential capacity is shown to be a promising approach to the
evaluation of the state-of-health (SOH) of lithium-ion batteries based on its equivalence with the
incremental capacity.

Keywords: lithium-ion battery; electrochemical impedance spectroscopy; distribution of relaxation
times; differential capacity; joint estimation; state-of-health evaluation

1. Introduction

Electrochemical impedance spectroscopy (EIS) has been proven to be a powerful tool for the
diagnosis of complex electrochemical systems, including lithium-ion batteries [1–6], fuel cells [7,8], and
supercapacitors [9,10]. Electrochemical impedance spectroscopy has been widely used to characterize
the polarization processes of lithium-ion batteries [11–14] and to investigate various prognostics
and health management (PHM) methods [15–19]. Electrochemical impedance spectrum is generally
analyzed by a carefully chosen equivalent-circuit model (ECM), which requires knowledge about the
electrochemical processes that take place at the individual electrodes within the cell [20–23]. Comparison
between EIS-based ECM and incremental capacity has been presented to identify and quantify the
effects of degradation modes [24]. However, some non-ideal processes and the overlapping effects
lead to a certain level of ambiguity of the ECM during the model identification [25–27]. This problem
needs to be settled by the deconvolution of the EIS data with respect to the distribution of relaxation
times (DRT) [28–32].
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Considering the DRT offers an approach that does not rely on any prior knowledge of the
investigated electrochemical system [33,34]. Therefore, the use of the DRT is regarded as a model-free
approach for system identifications. The DRT method attempts to decompose the impedance of a
capacitive electrochemical system into a continuous distribution of resistor-capacitor (RC) elements
in the domain of relaxation times [35]. Good practices were reported in the context of the analysis
of the impedance of solid oxide fuel cells (SOFCs) and high-frequency impedance of lithium-ion
batteries [7,31,32,36]. For low frequencies, however, the differential capacity caused by diffusion
processes is non-negligible, and thus, cannot be decomposed by DRT. Consequently, low frequencies
limit the application of the DRT method to lithium-ion batteries [5,37–39].

For lithium-ion batteries, the differential capacitive tail, as shown in Figure 1, has to be considered
at low frequencies. Consequently, the DRT method needs to be modified as it cannot characterize a
pure capacitive behavior. Some amending methods have been proposed to estimate the differential
capacity, such as the preprocessing method [12,28], the distribution function of differential capacity
(DDC) method [39], the distribution of diffusion times (DDT) method [40], and the differential
impedance analysis (DIA) method [41,42]. However, the differential capacity and the DRT are
estimated separately, resulting in accumulative errors, thereby limiting the applicability of the DRT
method to lithium-ion batteries.
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Figure 1. Electrochemical impedance spectrum of a lithium-ion battery with a differential capacitive
tail, measured from 5 kHz to 50 µHz.

In this paper:

(1) A joint estimation method with Tikhonov regularization is proposed to simultaneously estimate
the differential capacity and the DRT with the aim of minimizing the estimation errors and to
obtain more information about the diffusion processes by EIS.

(2) Moreover, the equivalence of the differential capacity CDC and the incremental capacity CIC is
proven in Section 2.

(3) Four types of commercial lithium-ion batteries are tested in Section 3 to validate the joint
estimation method and to verify the equivalence of the CDC and CIC.

(4) Subsequently, the estimation results of the DRT and the CDC are discussed in Section 4.
(5) In addition, an efficient state-of-health (SOH) evaluation method is demonstrated based on the

relationship between the CDC and the cell capacity in Section 4.
(6) The conclusions of the work are summarized in Section 5.
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2. Theoretical

2.1. The Relationship between EIS and ICA

This section derives the relationship between the differential capacity CDC identified by EIS and
the incremental capacity CIC obtained by ICA.

A typical EIS involves sweeping the excitation frequency with a sinusoidal voltage or current.
In the EIS data, the complex impedance can be described by a frequency-dependent function:

Z(ω) =
U(ω)

I(ω)
= Rohm + Rpol(ω) +

1
jωCDC

(1)

where ω is the angular frequency, U(ω) is the excitation voltage, I(ω) is the current response, j is the
imaginary unit, Rohm is the ohmic resistance, and Rpol(ω) is the polarization resistance. The differential
capacity CDC can be extracted theoretically by processing the limit at extremely low frequencies:

CDC = lim
ω→0

1

jω
(

U(ω)
I(ω) −Rohm −Rpol(ω)

) ≈ lim
ω→0

Q(ω)

U(ω)
=

dQ
dU

= CIC (2)

where dQ
dU is the incremental capacity [43,44], denoted as CIC. The equivalence of the CDC and CIC

can be proved by Equation (2). The detailed derivation is given in Appendix A. Figure 2 gives a
graphical interpretation of the relationship between CDC and CIC for a better understanding of the
equivalence. This equivalence relationship expands the applicability of EIS to lithium-ion batteries,
given that CDC and CIC are equal. This is highly beneficial, since estimating CDC by EIS in certain cases
is more straightforward and time-efficient compared with the use of ICA to measure CIC.
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Figure 2. Relationship between CDC and CIC.

2.2. The Joint Estimation Method with Tikhonov Regularization

The value of the CDC cannot be directly calculated by Equation (2) because the sweeping frequencies
are discrete and have a lower limit. Therefore, the DRT method must be modified. The experimental
data Zexp measured at several sweeping frequencies were fitted by a model ZDRT as follows [12,28,29,32]:

ZDRT(ω) = Rohm +

∫
∞

0

g(τ)
1 + jωτ

dτ (3)

where τ represents the characteristic time constants and g(τ) represents the distribution of the
polarization resistance. Furthermore, the differential capacity is non-negligible for lithium-ion batteries
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as it contains information about the diffusion processes. Consequently, considering the differential
capacity of lithium-ion batteries, the model ZDRT was modified to obtain the following expression:

ZC
DRT(ω) = Rohm +

∫
∞

0

g(τ)
1 + jωτ

dτ+
1

jωCDC
(4)

where ZC
DRT represents the DRT model considering the differential capacity CDC. Subsequently, the

discretized DRT model derived for Equation (3) in Ref. [29] can be reformulated into:

ZC
DRT(ω) = Rohm +

(
A
′

x
)
n
+

(
A”x

)
n
+

1
jωCDC

(5)

where ω is a column vector with n entries equal to the sweeping frequencies, A
′

represents the
approximation matrix of the DRT of the real part of the EIS data, A” represents the approximation
matrix of the DRT of the imaginary part of the EIS, and x represents the parameter vector for the
DRT approximation. Then, the joint estimation function can be obtained by fitting the data with the
improved discretized DRT model ZC

DRT(ω), which implies the minimization of the following sum of
squares:

J(x) = ‖Ω
′
(
Rohm · 1 + A

′

x−ZRe
exp

)
‖

2
+ ‖Ω”

(
1

ωCDC
+ A”x−ZIm

exp

)
‖

2

(6)

where Ω′ and Ω′′ represent the frequency matrices of the DRT, 1 is a column vector with n entries
all equal to 1, ZRe

exp is the real part of the experimental data, and ZIm
exp is the imaginary part of

the experimental data. Implementation of the traditional DRT method is well established in the
literature [7,12,28,29,38]. Hence, in the present work, we extend the traditional DRT to cover the CDC

part of the curve and perform a joint estimation. So, we only provide the modified optimization
function to account for the CDC based on Equation (6) as follows:

min

J(x) = ‖Ω′
(
Rohm · 1 + A′x−ZRe

exp

)
‖

2
+ ‖Ω′′

(
1

ωCDC
+ A′′x−ZIm

exp

)
‖

2

+ λxTMx

 (7)

where λ is the regularization coefficient and M is the regularization matrix, which is derived in
Ref. [29]. The problem stated in Equation (7) is the well-known Tikhonov regularization problem whose
solution can be obtained by various numeric algorithms [29,38,45,46]. Then, the ohmic resistance Rohm,
the differential capacity CDC, and the parameter x of the DRT can be simultaneously estimated by
minimizing J(x) in Equation (7).

3. Experimental

3.1. The Test Conditions

Table 1 lists the specifications of the four types of commercial lithium-ion batteries that were
tested. The batteries will be henceforth referred to by the capitals A, B, C, and D for convenience.
Two batteries had LiNixCoyMnzO2 (NCM) cathodes, one had a LiFePO4 (LFP) cathode, and one had a
mixed cathode consisting of NCM and LiMn2O4 (LMO). Each battery had graphite anodes, marked as
G in Table 1.

Table 1. Specifications of the tested lithium-ion batteries.

Battery Cathode Anode Capacity (Ah) Voltage Range (V)

A NCM G 3.2 2.5–4.2
B NCM G 4.8 2.5–4.2
C LFP G 20 2.0–3.65
D NCM + LMO G 24 2.5–4.2
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The battery test platform is shown in Figure 3. The test platform consisted of a
CT-4008-5V100A-NTFA tester (Neware, Shenzhen, China) a BTH-150C thermal chamber (DGBELL,
Dongguan, China) an Autolab PGSTAT302N electrochemical workstation (Metrohm AG, Herisau,
Switzerland) and a host computer. The Neware tester was used to charge and discharge the tested cells.
The sampling frequency of the Neware tester was 1 Hz and its measurement accuracy was ±0.05% of
its full scale. The thermal chamber provided the required ambient temperature with an accuracy of
±0.5 ◦C. The electrochemical workstation was used for EIS tests with a sampling frequency of 10 MHz.
The host computer was used to control the tests and for data storage.
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3.2. The Test Profiles

Two test profiles were designed to verify the equivalence of the CDC and CIC. The profile for the
EIS is described in Table 2 and the profile for the ICA is described in Table 3. EIS tests were conducted
at 10% SOC intervals ranging from 100% to 0% SOC. The amplitude of the applied voltage in the EIS
tests was 5 mV, and the frequency range is 2 kHz–2 mHz (60 points). For the ICA, the charging data of
1/20 C was adopted and processed by the probability density function (PDF) method [44].

Table 2. Test profile 1 for the EIS measurements.

Step No. Step Name Duration Current Cycle No.

1 Rest 180 min
2 EIS test

3 Discharge 18 min 1/3
C

4 Cycle, step 1–3 10
5 Rest 180 min
6 EIS test
7 End
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Table 3. Test profile 2 for the ICA measurements.

Step No. Step Name Duration Current Condition

1 Rest 180 min
2 Discharge I = 1/20 C V = upper limit
3 Rest 180 min
4 Charge I = 1/20 C V = lower limit
5 End

3.3. Aging Characterization of the Cells

Several D-type cells (denoted as D1–D7) were subject to cycling at 45 ◦C with a charge/discharge
rate of 1 ◦C. D1 was a fresh cell, while D2 to D7 have been exposed to varying cycling, and hence,
possessed varying SOH. In this paper, SOH is defined by assessing the actual capacity divided by the
nominal capacity as follows [47–51]:

SOH =
Qact

Qnom
(8)

where Qact is the actual capacity in the cell’s present condition and Qnom represents the nominal
capacity of the cell.

Detailed information about the aging cells and their testing procedures are listed in Tables 4 and 5,
respectively. The SOH of the batteries ranged from 100% to 63.9% (Table 4), which covers the whole
life cycle of commercially available lithium-ion batteries. The characterization procedures given in
Table 5 mainly consist of EIS tests at a certain open-circuit voltage (OCV).

Table 4. Capacity and SOH of aging D-type cells.

Cell Number D1 D2 D3 D4 D5 D6 D7

Capacity (Ah) 24.2 22.6 22.0 21.1 20.1 19.3 15.5
SOH (%) 100 93.4 90.6 87.2 82.8 79.5 63.9

Table 5. Characterization procedures of the aging D-type cells.

Step No. Step Name Duration Current

1 Rest 180 min
2 Discharge I = 1/3 C
3 Rest 180 min
4 Charge to 3.68 V I = 1/20 C
5 Rest 180 min
6 EIS test
7 End

4. Results and Discussion

In this section, the test results are given, the estimation results using the joint estimation method
are provided, and a comparison of the CDC and the CIC is conducted. CDC values of the cells with
different capacities were estimated, and their relationship with the SOH of the cells was evaluated.

4.1. The Estimation Results of the DRT and the CDC

Figure 4 shows the EIS results of Cells A, B, C and D. The EIS results are shifted in the y-direction
for better visualization.
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The CDC and the DRT were simultaneously estimated by the joint estimation method based on
the shown EIS results. A comparison of the traditional DRT method and the proposed joint estimation
method is shown in Figure 5, where the blue line shows the results obtained by the traditional DRT
method, and the red one shows the results obtained by the proposed joint estimation method. The solid
and dotted lines are the EIS results in different frequency bands. The frequency range of the solid lines
was 2 kHz–2 mHz while the frequency range of the dotted lines was 2 kHz–20 mHz, which means
that the solid line contains the low frequency (LF) and the dotted line does not. The CDC cannot be
accurately determined by the traditional DRT method, which can be seen from the highest peak in
Figure 5. This peak is caused by the CDC, and its height and position are affected by the frequency range
of the EIS. The results of the proposed joint estimation method are hardly affected by the frequency
range of the EIS. Therefore, the proposed joint estimation method can effectively solve the problem of
determining the CDC compared with the traditional DRT method.
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Figure 6 shows the results of the CDC estimated by the joint estimation method (red crosses)
and the ICA curves (blue lines). Here, the CDC values estimated by the joint estimation method are
compared with CIC values obtained by ICA at the corresponding voltage according to Equation (2), as
the traditional DRT method cannot provide the CDC. The estimation CDC values are close to the CIC

values at the corresponding voltage, indicating that the joint estimation method exhibits adequate
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accuracy. The relative errors of the CDC and CIC values are shown in Figure 7. The relative errors are
below 10% except for the individual points, indicating the method’s sufficient accuracy.
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4.2. SOH Evaluation Based on the Relationship between the CDC and the Cell Capacity

The CDC values of the aging D-type cells were estimated (Table 6). The red crosses shown in
Figure 8 are the estimated CDC values at different cell capacities. The relationship between CDC and
the cell capacity can be described by Equation (9):

Q = a1 exp(b1 ·CDC) + a2 exp(b2 ·CDC) (9)
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where Q is the capacity of the cell; a1, a2, b1, and b2 are fitting coefficients. In this paper, cftool provided
by MATLAB is utilized for the fast parameter identification of Equation (9) as it can realize many
types of linear and nonlinear curve fitting. The nonlinear least square (NLR) method is set, and the
Levenberg-Marquardt algorithm is adopted to identify the fitting coefficients. The values of the fitting
coefficients are listed in Table 7 for the D-type cells. The blue line shown in Figure 8 is the fitting curve
of the CDC values described by Equation (9), which provides an accurate fit. Subsequently, the SOH
can be evaluated by combining Equations (8) and (9):

SOH =
Qact

Qnom
=

a1

Qnom
exp(b1 ·CDC) +

a2

Qnom
exp(b2 ·CDC) (10)

Table 6. Differential capacity CDC of the aging D-type cells.

Cell Number D1 D2 D3 D4 D5 D6 D7

CDC (105 F) 1.80 1.33 1.12 0.928 0.857 0.785 0.673
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Table 7. Fitting coefficients of the aging D-type cells.

Fitting Coefficient a1 a2 b1 b2

Value 18.86 −2550 1.386 × 10−6
−9.197 × 10−5

The estimated SOH of the aging D-type cells given by Equation (10) and the relative errors between
the real SOH and the estimated SOH are given in Table 8. These results show that the demonstrated
SOH evaluation method exhibits adequate accuracy along the whole life cycle of the cells.

Table 8. SOH evaluation results of the aging D-type cells.

Cell Number D1 D2 D3 D4 D5 D6 D7

Real SOH (%) 100 93.4 90.6 87.2 82.8 79.5 63.9
Estimated SOH (%) 100 93.6 90.7 86.5 83.8 79.1 64.0
Relative error (%) 0 0.23 0.02 0.80 −1.13 −0.51 0.05

Hence, the SOH of batteries of the same type can be evaluated only by EIS at a specific potential
when a1, a2, b1 and b2 are obtained. It is worth noting that this study chose 3.68 V as the measured
equilibrium potential for EIS, simply because the highest peak of the ICA is located at approximately
3.68 V. One can select this equilibrium potential arbitrarily as long as its corresponding ICA value
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changes with the aging of the battery. If the measured equilibrium potential for EIS changes, the fitting
coefficients of Equation (9) will change, but the structure of Equation (9) will not.

The EIS based SOH evaluation method is more efficient compared with the ICA based SOH
evaluation method, which only needs impedance spectra rather than charging/discharging data of
the battery.

5. Conclusions

The present work proposed a joint estimation method to estimate the differential capacity CDC

and the DRT simultaneously based on the EIS of lithium-ion batteries. Four types of commercially
available lithium-ion batteries were tested to evaluate the joint estimation method and to verify the
equivalence. Experimental data showed that the proposed joint estimation method outperforms the
traditional method in the estimation of the CDC. Moreover, the estimated CDC values are consistent
with the CIC values obtained by ICA. Key points of this study are summarized as follows:

(1) A joint estimation method with Tikhonov regularization is proposed to simultaneously estimate
the differential capacity CDC and the DRT with the aim of minimizing the estimation errors and
to obtain more information about the diffusion processes by EIS.

(2) The equivalence of the differential capacity CDC and the incremental capacity CIC was shown.
(3) An efficient state-of-health (SOH) evaluation method is demonstrated based on the relationship

between the CDC and the cell capacity.

The proposed joint estimation method can provide an intuitive understanding of the capacitive
characteristics of lithium-ion batteries and can be used for SOH evaluation. Further research is being
conducted to estimate the differential capacity CDC from time-domain data for online applications.
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Nomenclature

A′ approximation matrix of the DRT for the real part of the EIS
A” approximation matrix of the DRT for the imaginary part of the EIS
a, b fitting coefficient of CDC and Q
CDC differential capacity
CIC incremental capacity
g distribution of the polarization resistance
j imaginary unit
J modified Tikhonov regularization function
I current response
M regularization matrix
Q capacity of the cell
Qact actual capacity of the present condition
Qnom nominal capacity of the cell
Rohm ohmic resistance
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Rpol polarization resistance
U voltage excitation
x vector of the parameter for DRT approximation
ZDRT impedance model of the DRT
ZC

DRT DRT model considering differential capacity
Zexp experimental data of the EIS
ZRe

exp real part of the experimental data
ZIm

exp imaginary part of the experimental data
1 column vector with n entries all equal to 1
λ regularization coefficient
τ characteristic time constants
ω angular frequency
Ω′, Ω′′ frequency matrix of the DRT

Abbreviations

DDC distribution function of the differential capacity
DDT distribution of the diffusion times
DIA differential impedance analysis
DRT distribution of the relaxation times
ECM equivalent-circuit model
EIS electrochemical impedance spectroscopy
FS full-scale
ICA incremental capacity analysis
LFP LiFePO4
LMO LiMn2O4
NCM LiNixCoyMnzO2
OCV open-circuit voltage
PDF probability density function
PHM prognostics and health management
RC resistor-capacitor
SOC state of charge
SOFC solid oxide fuel cell
SOH state-of-health

Appendix A

The theoretical solution of the CDC is:

CDC = lim
ω→0

1

jω
(

U(ω)
I(ω) −Rohm −Rpol(ω)

) (A1)

Equation (A1) can be written as Equation (A2) applying certain mathematical transformations:

CDC = lim
ω→0

1

jωU(ω)
I(ω) − jωRohm − jωRpol(ω)

(A2)

Then, the limit of the first term in Equation (A2) can be found as:

lim
ω→0

jω
U(ω)

I(ω)
= lim

ω→0

U(ω)
1
jω I(ω)

(A3)

Equation (A3) can be simplified to Equation (A4) by substituting s = 1
jω , which is the Laplace Transformation

of the Unit Step Function 1(t):

lim
ω→0

jω
U(ω)

I(ω)
= lim

ω→0

U(ω)

Q(ω)
=

dU
dQ

(A4)



Energies 2020, 13, 915 12 of 14

The limits of the second and third terms in Equation (A2) are zero:

lim
ω→0

jωRohm = 0 (A5)

lim
ω→0

jωRpol(ω) = 0 (A6)

In conclusion, Equation (A2) can be approximated as:

CDC ≈
1

dU
dQ − 0

=
dQ
dU

= CIC (A7)

which is equivalent to the incremental capacity CIC.
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