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Abstract: A fixed dual cylindrical oscillating water column (OWC) acting as a breakwater-type wave
energy converter (WEC) is proposed to harvest the wave energy effectively for shallow offshore sites.
An analytical model is developed to investigate the hydrodynamic characteristics and the energy
capture capacity of the cylindrical OWC device in severe waves. Based on the linear potential flow
theory, the analytical solutions of the velocity potential in diffraction mode are solved by matching the
Eigen-function expansion technique, and the continuous conditions of the velocity potential and fluid
velocity between the computational sub-domains are involved in solving the problem for determining
a solution. The proposed model is verified against the published data. The effects of the wave height,
the angle of chamber clapboard and the radius of the inner and outer cylindrical column on the energy
conversion efficiency are investigated in this paper. To improve the energy conversion performance
and obtain a faster prediction for structural optimization of the cylindrical OWC, the geometrical
parameters are further discussed in the analytical model. The results indicate that the geometrical
parameters of the chamber have significant effects on the wave energy absorption efficiency. It is
found that the effective frequency bandwidth of the dual cylindrical column can be broadened by
improving the angle of the chamber clapboard and the inner–outer cylinder diameter ratio.

Keywords: oscillating water column; wave energy; analytical study; dual cylindrical caisson;
air chamber

1. Introduction

Ocean renewable energy as one of the clean and low-carbon energies has drawn wide attention in
recent years of all circles. Because of the advantages gained due to the high energy density and the
wide distribution, a growing number of studies conducted by researchers and engineers focused on
energy extraction from ocean waves [1,2]. There has been a wide range of wave energy converters
proposed to improve the energy trapping performance, and some of them have been successfully
applied to commercialization. Owing to the capability of high energy conversion, adaptability to the
seabed bathymetry, structural simplicity and reliability of safety operation, the oscillating water column
(OWC) device is considered to be the most widely used and promising wave energy converters [3,4].
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However, the high construction expenses and generation cost still significantly impedes wave
energy utilization development and its industrial application. Accordingly, a large number of developers
and designers have focused on the construction-cost reduction. The idea of the integration of the
breakwater and the wave energy converters (WECs) was first proposed by Graw [5]. H. Ohneda et al.
integrated a 60KW OWC device with a shoreline breakwater, which deployed into the sea firstly in
1990 at the port of Sakata in Japan [6]. After that, a series of shoreline bottom-fixed OWCs have been
proposed and tested in prototype, such as LIMPET (500 KW) in England [7], the Picoplant (400 KW)
in Portugal [8], the Mutrikuplant (296 KW) in Spain [9], the shoreline OWC (100 KW) in China [10].
Due to the similar structural dimensions, material characteristics and geological conditions, combining
the OWCs to existing breakwater structures can simultaneously achieve wave energy utilization and
wave attenuation. The benefits obtained from the cost-sharing integrated system can also improve the
stability of the breakwater and naturally lead to cost reduction.

Recently, the theoretical and experimental studies focused on the integrations of OWCs,
and caisson-type breakwaters have been made. Boccotti [11–13] conducted the theoretical investigation
associated with the caisson breakwater integrating into an OWC device, and the related experimental
results showed very good agreement with the theoretical calculation. Shi et al. [14] proposed a new
structure of shore-type OWC integrated into the caisson breakwater and results showed that the
air motion in the caisson is related to the incident wave period. Boccotti [15] added an additional
vertical duct at the wave-beaten side based on the traditional OWC and found that this U-OWC
device can achieve higher conversion efficiency than before. Tanimoto et al. [16] compared the
stability of different structural types for caisson breakwaters in the numerical model and proved that
the cylinder-type caisson breakwater is more reliable, especially for severe wind-wave conditions.
Spyros A. Mavrakos et al. [17] investigated the hydrodynamic forces and motions on the concentric
vertical cylinders, a series of experiments concerning concentric cylinders arrangements were conducted
to study the first- and second-order exciting wave forces and wave elevations at specific locations
around the bodies. Thomas Mazarakos et al. [18] focused on the hydro-aero-elastic coupling analysis
of the multipurpose floating structures for offshore wind and wave energy exploitation, the problems
of diffraction and motion-dependent radiation problems around the floating structure have been
investigated. Deng et al. [19] numerically investigated an OWC with a V-shaped channel, and results
show that the wing walls can significantly increase the conversion efficiency of the OWC. Chen et al. [20]
experimentally investigated the effects of different wave conditions on the hydrodynamic performance
of an improved double cylinder caisson-OWC model. It is understood that the study of the mechanical
mechanism for complicated structures under wave actions are often limited by physical tests; thus,
it is necessary to conduct the theoretical study to improve the understanding of hydrodynamic
behavior of the OWC structures in waves and provide an optimal method to enhance the OWC wave
extraction performance.

In this paper, the hydrodynamic performance and the energy extraction efficiency of the hybrid
OWC device are investigated in an analytical model by using the potential flow theory method.
The matching Eigen-function expansion method is applied to solve the radiation-diffraction problems.
The calculated hydrodynamics of the integrated caisson-OWC system are also compared and analyzed
with the published results. In addition, the effects of the regular wave incidence parameters, the angle
between the baffles in the chamber and the radius of the inner and outer cylinder are further discussed
for the optimization of the hybrid oscillating water column caisson. This paper is organized as
follows: Section 2 describes the mathematical formulas, including the boundary value problem and
the mathematical solutions. In Section 3, the analytical models are validated against corresponding
published data, followed by the discussion of the calculation results. Section 4 presents the conclusions.

2. Mathematical Model

As shown in Figure 1, a dual-cylindrical OWC-WEC structure (i.e., caisson type breakwater) with
two concentric cylindrical shells is fixed in the sea. The inner shell of the submerged model proposed
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in this paper can be considered as a solid cylinder. The hemi-toroidal outer wall, two rectangular
baffles between the cylindrical shells and the inner wall part jointly form an air chamber for water
column oscillation. The offshore side column of the dual-cylindrical structure is filled with sand,
and a fixed pedestal at the bottom is introduced for caisson stability. A semi-arc inlet is selected on
the onshore side of the outer wall, which can determine the height of the chamber for the proposed
OWC-WEC model. In this study, the water depth is constant 0.3 m, the height of the pedestal is 0.75 m,
the semi-arc inlet breadth is 0.15 m, the immersion depth of the structure is 0.3 m, the angle of the
semi-arc inlet between the baffles is 90◦. The inner and outer cylinder shell have the diameters D1

and D2, respectively. A three-dimensional Cartesian coordinate system (o-xyz) is defined with the
center of origin o locating at the cross-point of the undisturbed water plane, x-axis directing along the
propagation of the incident waves, and z-axis orientating vertical upwards as the positive direction.
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Figure 1. Concept of the dual-cylindrical oscillating water column (OWC) wave energy converter.

2.1. Power Take-off Model

The wave energy extraction efficiency ξ can be calculated as:

ξ =
EA
EI

(1)

Here, EA is the absorbed power of the OWC device, and EI is the flux of the incidence wave energy,
which can be theoretically calculated [21,22]

EI =
1
8
ρgH2

I DL · n (2)

With the flux coefficient n, which can be expressed as:

n =
1
2

[
1 +

2kd
sinh2kd

]
(3)

The absorbed power of the device EA can be obtained by the integration equation [21,22]

EA =

∫ T+t

t
Q(t)p0(t)dt (4)

The air is assumed to be incompressible in this paper, the air flow rate Q(t) can be considered as
the air volume variation rate in the chamber; thus, the calculation of EA can be written as [23]

Q(t)= Vϕ(t)Sϕ (5)

p0(t) =
Ba

Sϕ
ωAei π2 e−iωt (6)
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EA =

∫ T+t

t
Vϕ(t)BaωAei π2 e−iωtdt (7)

where Sϕ is the sectional area of the air chamber, Vϕ (t) is the vertical speed of the water surface in the
air chamber, Ba is the damping coefficient.

In order to calculate the wave energy extraction efficiency ξ in this power take-off model,
the velocity potential involved in the diffraction and radiation problems according to the potential-flow
theory should be solved first. The relative dimensional parameters, including the water depth d,
wave number k, gravitational acceleration g, incident wave amplitude A, water density ρ and the
device structure geometric parameters (details see Table 1), are fixed parameters in this analysis.

Table 1. Outline of dimensional variables.

Dimensional Variable Physical Unit

Wave amplitude, A m
Water depth, d m

Diameter of the outer cylinder, D1 mm
Diameter of the inner cylinder, D2 mm

Gravitational acceleration, g m·s−2

Height of the cylinder, h mm
Incident wave height, H m
Incident wave number, k –

Air pressure, P0 kPa
Height of the opening, s mm

Time, t s
Velocity potential, Φ m·s−1

Wave period, T s
Angular frequency, ω rad·s−1

Water density, ρ kg·m−3

The angle between partition walls, θ –
Power extraction efficiency, ξ %

2.2. Boundary Value Problem

The potential-flow theory is used to solve the diffraction-radiation problem, the dual-cylindrical
OWC structure can be simplified and is shown in Figure 2. According to the geometric characteristic
of the structure, the fluid domain can be divided into two subdomains. To be specific, the external
subdomain Ω1 is defined by r ≥ R2 and −d ≤ z ≤ 0, the internal subdomain Ω2 is by R1 ≤ r ≤ R2 and −d1

≤ z ≤ 0, respectively. Correspondingly, the Φ1 and Φ2 represent the velocity potentials in Ω1 and Ω2.
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To calculate the three-dimensional steady flow potential in this analytical model, the time-space
separation method is involved to assume that all the time-dependent variables are considered to be
harmonic in the problem. The velocity potential in the whole domain is expressed as:

φ(r,θ, z, t) = Re
[
Φ(r,θ, z)e−iωt

]
(8)

where t denotes time, i is the imaginary number, ω is the angular frequency, Φ(r,θ, z) is a spatial
velocity potential, and r, θ, z represents the coordinates in cylindrical coordinate system for radial,
azimuthal and vertical directions, respectively Re[ ] denotes taking the real part of a complex equation.

It is assumed that the fluid is inviscid, incompressible and flow-irrotational, the velocity potential
Φ(r,θ, z) in the linearized boundary value problem satisfies the governing Laplace equation and its
boundary conditions as follows:

∇
2Φ(r,θ, z) =

1
r
∂
∂r

(
r
∂Φ
∂r

)
+

1
r2
∂2Φ
∂θ2 +

∂2Φ
∂z2 = 0 (9)

∂Φ
∂n

= 0, on SB and SD (10)

∂Φ
∂z

=
ω2

g
Φ, on SF (11)

in which SD, SF, SB represent the seabed, external free surface and mean wet body surface, respectively.
In order to solve the above boundary value problem, the velocity potential Φ(r,θ, z) in two

divided subdomains Region 1 and Region 2 with corresponding Φ1 and Φ2 can be written as:

∇
2Φ1 = 0, in Ω1 (12)

∂Φ1

∂z
= 0, r ≥ R2 and z = −d (13)

∂Φ1

∂z
=
ω2

g
Φ1, r ≥ R2 and z = 0 (14)

∂Φ1

∂r
= 0, r = R2 and − s1 ≤ z ≤ 0 (15)

For Φ2, the corresponding boundary value problem can be written as follows:

∇
2Φ2 = 0, in Ω2 (16)

∂Φ2

∂z
= 0, R2 ≥ r ≥ R1 and z = −d1 (17)

∂Φ2

∂r
= 0, r = R1 and − d1 ≤ z ≤ 0 (18)

∂Φ2

∂r
= 0, r = R2 and − s1 ≤ z ≤ 0 (19)

∂Φ2

∂θ
= 0, on SB5 (20)

According to the matching continuous conditions of the flow fluid, the intensity of pressure
continuous condition and the velocity continuous condition on the interfaces can be described as:{

Φ1 = Φ2

∂Φ1/∂r = ∂Φ2/∂r
, r = R2 and − d1 ≤ z ≤ −s1 (21)
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where d1 is the height from free surface to the lower edge of the inlet, s is the submergence height of
the top edge of the inlet and ∂/∂r denotes the radial partial derivative of the variable.

2.3. Mathematical Solutions

Based on the method of variable separation approach, the expression of the velocity potential
for Region 1 Ω1 (−∞ < x < −R2, −d < z < 0) and Region 2 Ω2 (−R2 < x < −R1, −d1 < z < 0) can be
constructed in a cylindrical coordinate system as follows:

Φ1 = −E
∞∑

m=0

εmim cos mθ
∞∑

n=0

[
Jm(k0r)Z0(z) + AmnP(1)

mn(knr)Zn(z)
]

(22)

Φ2 =
∞∑

m=0

cos mθ
∞∑

n=0

[
BmnP(2)

mn(knr) + CmnQ(2)
mn(knr)

]
Zn(z) (23)

where Amn, Bmn and Cmn are the constant coefficients, εm is the Neumann symbol as εm = {1, m = 0;
2, m ≥ 0}, E = −igA/ω with A as the wave amplitude, g the gravitational acceleration, ω the angular
frequency, Jm the Primal Bessel function, Km the modified Bessel function of the second kind, Hm the
Hankel function, Hm

(1) the Primal Hankel function, Hm
(2) the Hankel function of the second-kind

and Im the Primal modified Bessel function, all of order m. Expressions of Pmn and Qmn are shown
as follows:

P(1)
mn =

{
Hm(k0r), n = 0; Km(knr), n ≥ 1

}
(24)

P(2)
mn =

{
H(1)

m (k0r), n = 0; Km(knr), n ≥ 1
}

(25)

Q(2)
mn =

{
H(2)

m (k0r), n = 0; Im(knr), n ≥ 1
}

(26)

Here, kn is the positive real root of Equation (27), the vertical Eigen-function Zn (z) can be obtained
according to the boundary conditions and expressed as

ω2/g =

{
kntanhknd, n = 0
−kn tan knd, n ≥ 1

(27)

Zn(z) =
{

cosh kn(z + d)/ cosh knd, n = 0
cos kn(z + d)/ cos knd, n ≥ 1

(28)

The continuous matching conditions of Region Ω1 and Ω2 applied on the adjacent subdomains
interfaces and body surface boundary conditions can be rewritten as:

Φ1 = Φ2, r = R2 and − d1 ≤ z ≤ −s1 (29)

∂Φ1/∂r = ∂Φ2/∂r, r = R2 and − d1 ≤ z ≤ −s1 (30)

∂Φ1/∂r = 0, r = R2 and − s1 ≤ z ≤ 0 (31)

∂Φ2/∂r = 0, r = R2 and − s1 ≤ z ≤ 0 (32)

∂Φ2/∂r = 0, r = R1 and − d1 ≤ z ≤ 0 (33)

By using the orthogonality condition of the vertical Eigen-functions, after substituting the velocity
potential Φ1 and Φ2 into the continuous matching conditions (Equations (29)–(33)), the following
equations containing the coefficients of the unknown terms can be rewritten as:

∞∑
m=0

cos mθ
∞∑

n=0

Bmn
∂P(2)

mn(knR1)

∂r
+ Cmn

Q(2)
mn(knR1)

∂r

Zn(z) = 0 (34)
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− EAmnP(1)
mn(knr)ann −

∞∑
n=0

[
BmnP(2)

mn(knr) + CmnQ(2)
mn(knr)

]
ann = Eεmim Jm(k0r)a0n (35)

− EAmn
∂P(1)

mn(knr)
∂r

ann −

∞∑
n=0

Bmn
∂P(2)

mn(knr)
∂r

+ Cmn
∂Q(2)

mn(knr)
∂r

ann = Eεmim
∂Jm(k0r)
∂r

a0n (36)

in which the coefficients a0n and ann can be expressed as:

ann =

∫ ς(x,t)

−d1

Z2
0(k0z)dz =

1

cosh2 k0d1

{
d1

2
+
ς(x, t)

2
+

sinh2k0[d1 + ς(x, t)]
4k0

}
, n = 0 (37)

ann =

∫ ς(x,t)

−d1

Z2
n(knz)dz =

1
cos2 knd1

{
d1

2
+
ς(x, t)

2
+

sin 2kn[d1 + ς(x, t)]
4kn

}
, n ≥ 1 (38)

a0n =

∫ ς(x,t)

−d1

Z0(k0z)Zn(knz)dz = 0, n ≥ 1 (39)

where ς(x, t) = H
2 cos(kx−ωt).

3. Results and Discussion

3.1. Validation

First, in order to validate the present analytical model, two cases with R2/d =1.0 and 2.0 were
considered to compare the hydrodynamic force between the analytical solution and the numerical
results [24]. In the present analytical model, the height of the semi-arc inlet and the angle between
the two baffles were set to zero, the wave height H is 0.06 m and the water depth d is 0.3 m. Figure 3
shows the comparison results of the horizontal wave force and wave moment with different kd. It can
be seen that results calculated by the present analytical solution model have a good agreement with
the results obtained by MacCamy and Fuchs [24]. The maximum differences of the wave force and the
wave moment between the two methods are 1.4% and 3.3%, respectively.

Then, in order to investigate the improvement of the proposed OWC on the wave energy capture
ability, a case study on the comparison of the conversion efficiency ξ between the hollow cylinder
type and the dual-cylindrical OWC with the relative diameter ratio D1/D2 = 0.3 and the baffle wall
angle θ = 200◦ was carried out, the results are shown in Figure 4. It can be found that the proposed
dual-cylinder OWC device (with the normal case of D1/D2 = 0.3 and θ = 200◦) can obviously improve
the efficiency of wave energy conversion. And for further study of the improvement of the power
extraction efficiency, the impact of the OWC geometrical properties will be discussed in Section 3.

Furthermore, the wave energy conversion efficiency ξ is verified against the experimental results
obtained by previous work in our group [20]. The tank tests were performed in the basin of the State
Key Laboratory of Coastal and Offshore Engineering in Dalian, China. The basin was 40 m long, 24 m
wide, and 1 m in depth. The water depths were 0.3 m, the incident wave heights were 0.03–0.06 m,
and wave periods were from 0.7 to 1.1s. The details about the scaled model properties were given
in Ref. [20]. The geometrical parameters s = 0.15, d1 = 0.225 m, R1/R2 = 0.5, θ = 180◦ are fixed in the
validation. Two different wave heights of H = 0.03 m and H = 0.06 m are considered in the analytical
model. The wave energy conversion efficiency of the device with different wave height ratios Ha/H
was calculated in the range of T = 0.791–1.107s, allowing the wave conditions to keep consistent with
the experimental tests [20]. Comparisons between the analytical solution and the experimental results
are presented in Figure 5. Black and red diamond markers indicate the results of the energy conversion
efficiency (the left axis), and the blue and red circle markers represent the Ha/H values (the right axis).
The analytical model shows a good agreement with the measured data, with the mean relative error of
ξ, and Ha/H between the measured and calculated values are 3.68% and 4.8% for H = 0.06 m, and 8.45%
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and 7.92% for H = 0.03 m, respectively. The larger difference at small wave periods (see Figure 5) could
be due to the ignorance of the air pressure force in the air nozzle area in the analytical model.Energies 2020, 13, x FOR PEER REVIEW 8 of 16 
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3.2. Hydrodynamic Characteristics Inside the OWC Chamber

In this section, the wave elevation of the free surface in the semi-arc air chamber is studied.
The parameters in the analytical model are set as d/h = 0.6, R1/h = 0.38, h = 0.5 m and H = 0.06 m.
The incident wave angle is 0◦ between the x-axis and the wave propagation direction. Figure 6 shows the
time series of the wave surface oscillating at four positions A (−D2/4 − D1/4, 0), B (−

√
2D2/8 −

√
2D1/8,

√
2D2/8 +

√
2D1/8), C (0, −D2/4 − D1/4) and D (−D2/2, 0) inside the chamber. Three non-dimensional

wave number kd with different geometric characteristics for typical cases of C1 (D1/D2 = 0.7, kd = 0.8756),
C2 (D1/D2 = 0.7, kd = 1.9641) and C3 (D1/D2 = 0.5, kd = 1.9641) are calculated to investigate the wave
height variation in the chamber of the device.
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It can be seen from Figure 7 that the water surface oscillating at different positions in the chamber
varies in the same period with slight differences of the oscillating phase for points A–D, whilst the
variation of the oscillating amplitudes between each point is great. In the air chamber of the OWC
device, among the selected four points A, B, C and D, the water elevation amplitude at points B and
C are larger than that at points A and D, which are located near the inlet section along the wave
incidence direction. The surface amplitude at B is slightly larger than that at C (point on the baffle
wall), which is because of the superposition of the reflected wave and incident wave at position B in
the chamber. The water surface elevation at D (point on the interface of inlet) is the lowest, and the
surface amplitude at point A inside the chamber is comparatively larger than that at D. The oscillation
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amplitude is relatively large at C2 and C3 compared with condition C1 due to the larger dimensionless
wave number kd; the water motions at points A–D are mostly in phase in the air chamber. When the
inside chamber volume is smaller (D1/D2 = 0.7), the water elevation amplitude at point D is close to
that at point A for shorter waves, as shown in Figure 7b.
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and (c) C3 conditions.

For further investigation of the water motion inside the OWC air chamber, the wave height of the
free-surface Ha inside the chamber is normalized by the incidence wave height H. The analytical results
of the dimensionless parameter Ha/H with different wave periods are shown in Figure 8. Four different
incident wave heights, H/d = 0.1, 0.13, 0.17, and 0.2, are considered in the analytical model. It can
be seen from the figure that the wave height of the free-surface inside the chamber increases with
the increasing wave period until reaching a local maximum at T = 0.85 s, and then starts to decrease.
This is because the conversion wave energy increases with the increment of the wave period for shorter
waves, which results in a higher wave elevation inside the air chamber. However, when the water
surface elevation increases to a certain extent, the air volume of the upper part in the chamber reduces
evidently, resulting in stronger compression of the air and increased the pressure above the water
surface, which leads to a restriction for the growing wave elevation inside the chamber. This illustrates
that the cylindrical OWC device has the optimum conversion efficiency at a certain incident wave
period. Meanwhile, for a fixed wave period condition, the relative wave height Ha/H increases with
the decrease of the incident wave height. Again, an explanation can be made that the larger wave
height increases the pressure intensity inside the chamber, and then the compression of the air will
perform a reaction formation on the water surface. It can also be observed in the experimental results
obtained in our previous work [20].
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3.3. Effects of Relative Diameter on Conversion Efficiency and Hydrodynamic Loads

The extraction efficiency and the caisson stability are the critical factors for the integrated OWC
optimization. The volume of the air chamber of the OWC device is mainly determined by the inner
and outer cylinder diameters. To be specific, in this section, the main structural parameters: the angle
between the baffle wall, the outer cylinder diameter and the submergence height of the inlet top edge
are set as constant θ = 180◦, D2 = 380 mm and s/h = 0.3, respectively. The incident wave height is
H = 0.06 m in the analytical model. Four cylinder diameters D1/D2 = 0.1, 0.2, 0.4, and 0.7 are considered
as the typical conditions to calculate the conversion efficiency of the OWC device for the considered
range of kd.

Figure 9 shows the effect of different inner and outer diameters on the conversion efficiency of the
OWC. The conversion efficiency ξ increases with the increasing kd until reaching a local maximum
peak and then decreases. The results illustrate that for each condition of the fixed cylinder diameters
D1/D2, the optimal conversion efficiency of the OWC has its unique corresponding kd. As shown in the
Figure, this particular wave excitation period is related to the geometry parameter D1/D2. Additionally,
it also can be found that the corresponding kd for the maximal efficiency increases with the increase of
the ratio D1/D2 (the chamber volume decrease). In other words, with the increase of the ratio D1/D2,
the peak value caused by the resonance mode shifts towards the shorter period region.
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Meanwhile, with the increasing of the diameter ratio of the inner and outer cylinder,
the corresponding maximal conversion efficiency ξ of the device increases first and then decreases,
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as is shown in Figure 9. The maximum wave energy conversion efficiency occurs at the condition of
D1/D2 = 0.4. The results of the calculated conversion efficiency against different wave number kd for
D1/D2 = 0.1 and 0.2 are similar, and the peak value of the conversion efficiency ξ at D1/D2 = 0.2 is
relatively close to that at D1/D2 = 0.7. This is due to the fact that when the area of the air inlet S0 at
the top of the chamber is fixed, the larger air chamber volume between the two cylinders could be
regarded as an approximately enclosed space; in this case, most of the absorbed wave energy is used
for the air compression in the air chamber. When D1/D2 is comparatively large (for a small chamber),
the efficiency of the wave extraction is low and only 22% wave energy could be converted for power
generation. Therefore, in order to possess a better power capacity of the proposed OWC, the theoretical
optimal geometry parameter with D1/D2 = 0.4 is recommended within this considered range of D1/D2

= 0.1–0.7 in the analytical model.
Figure 10 shows the variation of horizontal wave force fx and wave moment my of the outer

cylinder with four relative diameters D1/D2. In Figure 10, the results indicate that both the wave force
and the wave moment have a similar trend with the increasing kd. The wave loads go up with the
increase of the wave number in the low-frequency region and then show a decreasing trend. In the
high-frequency zone, compared with the condition D1/D2 = 0.1, the decrease of the wave loads for
the case D1/D2 = 0.2 and 0.7 drop faster with the increasing kd, but for D1/D2 = 0.4, there occurs
an increasing trend yet again in the range of kd = 4–6, which may be due to the large wave extraction
caused by the resonant mode.
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3.4. Effect of the Angle between the Baffle Wall

The baffle wall angle θ determines the shape and the volume of the air chamber. The larger the
baffle wall angle, the larger the volume of air chamber, and the bigger span of the ring frames between
the baffles (the frontal width of the chamber). In order to investigate the effect of the baffle angle
on the power extraction efficiency of the OWC device, the relative diameter of the inner and outer
cylinders D1/D2, the height of the inlet s/h and the incident wave height H are set constant. Figure 11
shows the conversion efficiency of the device against different kd with four baffle angles, i.e., θ = 240◦,
θ = 180◦, θ = 120◦, and θ = 90◦. It can be observed that the conversion efficiency ξ increases with the
increasing baffle angle for θ = 90–180◦ and reaches a maximum value at θ = 180◦. This is because
with the increase of the baffle wall angle, the frontal width of the chamber and the volume size are
getting larger, which results in a large number of waves flow into the air chamber for power extraction.
Compared with the condition of baffle angle θ = 240◦, the corresponding kd for the peak value of the
conversion efficiency with θ = 90–180◦ are relatively large and increases with the decreasing baffle
angle θ. However, when the angle θ is greater than 180◦, the maximal conversion efficiency ξ decreases,
which may be the cause of the reflection of the waves acting on the baffle wall of the chamber. For the
baffle angle θ less than 180◦, the direction of wave reflections point into the inside of the chamber,
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which can drive up the wave surface in the air chamber, whilst for the baffle angle larger than 180◦,
the propagation of the reflected waves diffuse to the outside of the chamber so that the water heave
motions in the chamber weakened and the conversion efficiency of the wave energy decreased.
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Further, the effect of the baffle angle θ on the hydrodynamic loads of the outer and inner cylinders
against different kd are plotted in Figures 12 and 13, respectively. It also can be observed in Figure 12
that the horizontal wave force fx and the bending moment my increase with the increment of the
baffle wall angle, and the hydrodynamic loads of the device have a similar trend with the increasing
wave number kd. The largest difference of the wave force and the bending moment with four baffle
angle θ = 240◦, θ = 180◦, θ = 120◦, and θ = 90◦ occur at kd = 1.77 and kd = 1.61, respectively. In the
high-frequency zone, the hydrodynamic load difference among the considered four cases decreased
with the increasing kd. Finally, the values of wave force fx and the bending moment my with different
baffle angles are getting close to each other for larger wave number kd. In Figure 13, both the wave
force and the wave moment have an increasing trend with the increase of kd. The results of the force
and the moment against different wave number kd for θ = 240◦ and 120◦ are similar. And the force
and moment for θ = 180◦ are the largest, which may be due to the resonant mode in the air chamber.
On the other hand, for the inner cylinder, there is a different trend of the wave force and the bending
moment acting on the outer cylinder. This may be the cause of the seriously oscillatory heave motion
of the waves in the inner air chamber, which increases the power extraction but decrease the horizontal
wave force and the bending moment on the inner cylinder.
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3.5. Comparison of the Geometry Parameters

In order to improve the power extraction capacity of the OWC device, the geometry properties of
the structure are compared for the optimization in this section. Six typical cases are chosen to calculate
the wave conversion efficiency of the device in the analytical model covering the range of θ = 90–240◦

and D1/D2 = 0.2–0.75. The chamber inlet height and the incident wave height are set as constant
s/h = 0.3 and H/d = 0.2, respectively. Figure 14 presents the energy conversion efficiency of the OWC
device with six typical cases, i.e., T1(θ = 180◦, D1/D2 = 0.4), T2(θ = 160◦, D1/D2 = 0.45), T3(θ = 200◦,
D1/D2 = 0.35), T4(θ = 240◦, D1/D2 = 0.2), T5(θ = 90◦, D1/D2 = 0.7) and T6(θ = 90◦, D1/D2 = 0.75).
It can be seen that the maximum conversion efficiency occurs at the geometric parameter condition of
D1/D2 = 0.4 and θ = 180◦ (Case T1), and conversely, the lowest conversion efficiency is Case T6, and for
Cases T2-T5, the wave energy conversion efficiency of the OWC decreased in order. This illustrates
that compared with the factor of baffle angle θ, the relative diameter ratio of the dual cylinders plays
a dominant role in improving the power extraction capacity of the OWC. It also can be observed that
the corresponding kd with the optimal conversion efficiency ξ for Case T6 is the largest, followed by
the Cases of T5, T2, T1, T3 and T4, which rank with the same increasing sequence of the baffle angle.
It demonstrates that the proposed OWC device has better absorbability for longer waves with larger
baffle angle, and better absorption and conversion efficiency for shorter waves under smaller baffle
angle conditions. In other words, the angle of the baffle wall in the chamber has a significant role to
play in possessing better efficiency for the specific wave excitation periods. Therefore, the condition
of Case T1 is recommended as the optimal geometry parameters for this proposed OWC device to
possess a better capacity of the wave power extraction.
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4. Conclusions

In this paper, a dual-cylindrical OWC wave energy converter integrated into a fixed caisson
breakwater was investigated using analytical solutions based on the linear potential flow theory.
The hydrodynamic performance and the conversion efficiency of the OWC were evaluated in the
analytical model, and the effects of the OWC geometry characteristics and the wave motion inside the
chamber were discussed for different wave conditions. Based on the analytical results, the following
conclusions were drawn.

1. The water surface elevation inside the chamber increases with the increasing wave period until it
reaches a local maximum at a certain period (i.e., T = 0.85 s in the current study) and then starts
to decrease.

2. The conversion efficiency of the OWC device for different relative diameters and the baffle
wall angles increased with the increasing wave number kd in the low-frequency zone.
The corresponding kd for the optimal conversion efficiency of the OWC shifts towards the
shorter period region with the increase of the relative diameter D1/D2.

3. Given the same wave and geometry condition, the optimal conversion efficiency occurs when the
relative cylindrical diameter D1/D2 is 0.4 and the baffle wall angle is 180◦. It is hence concluded
that the theoretical optimal geometry parameters as D1/D2 = 0.4 and θ = 180◦ are recommended
for a better capacity of wave power extraction.

4. The wave loads of the whole OWC go up with the increase of the wave number and then shows
a fast decreasing trend in high-frequency regions.

5. Compared with baffle-wall angleθ, the diameter ratio D1/D2 of the dual cylinders plays a dominant
role in increasing the wave energy conversion efficiency. While for a specific incident wave period,
the power extraction capacity of the OWC mainly determined by the angle of the baffle wall in
the chamber.

Overall, the analytical results presented in this paper provided comprehensive and fast direct
insight into the engineering aspects of the proposed OWC-WEC device for structure design and
its geometry parameter optimization during operation on site. In the next stage, further studies
on dual-chamber OWC models are recommended to improve the power extraction capacity of the
device, and a series of experiments and numerical modeling will be conducted based on the present
analytical solutions.
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