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Abstract: The voltage instabilities in the distribution lines are primarily related to the integration of
photovoltaic power plants with the local grids. Conventional tap-changers cannot compensate for
the rapid disparities between generated and consumed power because of sluggish dynamic response.
This article presents an effective method and control algorithm to improve the voltage instabilities of
distribution lines. Analytical calculation confirms that the application of capacitive reactive power on
load is beneficial to keep the voltage at the permissible level. Importantly, the severe concern about
the current increment with voltage enhancement is also addressed. The dynamic behavior during
capacitance switching is studied using simulation experiments. It is suggested that capacitance is
connected to the load for the only time of voltage drop until the transformation ratio changes to the
desired level. This article provides an explanation and solution for voltage deviations of electricity
distribution lines in steady-state and dynamic modes.
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1. Introduction

In recent days, photovoltaic (PV) power systems are becoming an important component to fulfill
energy demands. Several PV power systems are connected with the local grids, and the simultaneous
operation of these PV systems provokes voltage instabilities in the distribution lines [1,2]. These
voltage fluctuations can occur over the permissible limits and are not allowed for standard devices.
It is well-known that abrupt changes in electrical power generation are a distinctive feature of PV
solar plants [3]. At every substation, the transformers are installed to link the transmission line with a
distribution line. The transformers are equipped with a tap-changer, which regulates the output voltage
by exchanging the transformation ratio. These tap-changers, being electro-mechanical appliances, have
a sluggish response time of seven to ten seconds. This time is required to toggle only one section of the
transformer, which leads to discrete voltage step-up or step-down. Therefore, the rapid imbalance
between consumed and generated power cannot be corrected effectively. Moreover, it is difficult to
predict the deviations in power consumption.

Previously, several solutions have been proposed to prevent voltage instabilities in the distribution
lines [2,4–15]. These solutions have suggested to use reactive power in distribution lines during voltage
instabilities. The reactive power generation devices can be connected to the load in serial or shunt
arrangements [16,17]. Different types of technologies have been used to produce reactive power for
compensation such as static synchronous compensator (STATCOM), synchronous condenser, static var
compensator (SVC), and capacitors [14,18–22]. Electronic devices are effective for reactive power
compensation but significantly complicated, expensive, and not reliable enough [18,23]. In the case
of voltage disturbances, it is required to control the production of reactive power in the distribution
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lines. Several effective control algorithms have been proposed for this purpose [24–28]. These
algorithms include Takagi–Sugeno–Kang probabilistic fuzzy neural network control [24], instantaneous
active/reactive power control strategy for flicker mitigation [25], single-point reactive power control
method [26], decoupled active and reactive power predictive control [27], adaptive reactive power
control [28], etc. However, the response time of these algorithms is relatively slow.

One of the effective methods for the production of reactive power is to connect capacitors at the
load or the end of distribution lines. The response time can be significantly diminished using this
method. However, an open question remains unanswered that what magnitude of capacitance should
be connected to the load. Some of the early examples of reactive power applications using capacitors
are described by previous studies [29,30]. The capacitor can be serially connected to the load, but this
method is problematic for loads with substantial power and consuming currents [29]. Another method
can be applied only for autonomous wind turbine power plants [30]. More importantly, the dynamic
process of a current change during the capacitor’s connection to a load is not considered enough. The
significant enhancement of the current magnitude during the switching process is also an essential
issue for consideration.

In this study, we proposed an efficient method to prevent voltage stabilities in the distribution
line. In the proposed method, the bank of capacitors is connected at the loads or end of the distribution
line. The algorithm offers to select optimal capacitors needed to improve the voltage instabilities.
As well, the dynamic process of current alteration during capacitors connection analyzes and proposes
optimal switching.

2. Description of the Problem

Let us try to understand and analyze the origin of the problem. Figure 1 demonstrates the single
line diagram of the electric power grid and related infrastructure located at Jordan Valley, Israel.
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Figure 1. Single line diagram of the grid connected with renewable energy sources, e.g., solar plants. 
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voltage line, 𝑍ு௏ି௅ : Impedance of high voltage line, PCC: point of common coupling, DER: 
distributed energy sources). Points 1 and 2 are designated for measurements at PCC and substation 
respectively. 

Figure 2 represents the voltage measured at the PCC and substation of the abovementioned 
distribution line during the year 2019. The measurements and data acquisition were performed using 
the 6-analog input module MOSCAD-L RTU (Motorola, Inc.) [31]. The device measures the rms 
voltage value of each 5 minutes sampling period based on 15,000 points. The length of distribution 
line is 22.5 km, and this line is connected with the substation of 161/33 kV, 30 MVA. The impedance 
of a single phase is 4.93 + j14.01 Ω, and the phasor is 14.85∠70.6°. The PV power plants with a total 
nominal power of 6.1 MW is installed with this line.  

Figure 1. Single line diagram of the grid connected with renewable energy sources, e.g., solar plants.
(ZC: Consumer impedance, ZLV−L: Impedance of low voltage line, ZMV−L: Impedance of medium
voltage line, ZHV−L: Impedance of high voltage line, PCC: point of common coupling, DER: distributed
energy sources). Points 1 and 2 are designated for measurements at PCC and substation respectively.

Figure 2 represents the voltage measured at the PCC and substation of the abovementioned
distribution line during the year 2019. The measurements and data acquisition were performed using
the 6-analog input module MOSCAD-L RTU (Motorola, Inc.) [31]. The device measures the rms voltage
value of each 5 minutes sampling period based on 15,000 points. The length of distribution line is
22.5 km, and this line is connected with the substation of 161/33 kV, 30 MVA. The impedance of a single
phase is 4.93 + j14.01 Ω, and the phasor is 14.85∠70.6◦. The PV power plants with a total nominal
power of 6.1 MW is installed with this line.
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Figure 2. Voltage fluctuations in the typical 33 kV distribution line during the year (2019) . The data 
is measured at both substation and PCC. 

During voltage instabilities, the functionality of tap-changers installed with transformers is 
demonstrated in Figure 3. The measurements were performed at PCC using a handheld power 
quality analyzer [32]. It can be seen from the figure that the sluggish response of tap-changers (40–60 
sec) takes a long time to achieve the nominal voltage. As a result, the voltage magnitude overcomes 
both maximum and minimum permissible levels (Figure 2). Such voltage fluctuations are forbidden 
for the standard devices and also crucial for specific equipment. These circumstances motivate us to 
find the appropriate solution and reflect the importance of the presented study. 
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Figure 3. Functionality of the tap-changer in case of (a) voltage drop, and (b) voltage rise. 

3. Methodology 

The proposed method is based on the analysis of steady-state operation mode. Let us consider 
that the active-inductive load and capacitance are connected with the distribution line. The equivalent 
circuit diagram of such an arrangement is shown in Figure 4. The distribution line and a load are 
considered using lumped elements. 

Figure 2. Voltage fluctuations in the typical 33 kV distribution line during the year (2019). The data is
measured at both substation and PCC.

During voltage instabilities, the functionality of tap-changers installed with transformers is
demonstrated in Figure 3. The measurements were performed at PCC using a handheld power quality
analyzer [32]. It can be seen from the figure that the sluggish response of tap-changers (40–60 sec)
takes a long time to achieve the nominal voltage. As a result, the voltage magnitude overcomes both
maximum and minimum permissible levels (Figure 2). Such voltage fluctuations are forbidden for the
standard devices and also crucial for specific equipment. These circumstances motivate us to find the
appropriate solution and reflect the importance of the presented study.
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3. Methodology

The proposed method is based on the analysis of steady-state operation mode. Let us consider
that the active-inductive load and capacitance are connected with the distribution line. The equivalent
circuit diagram of such an arrangement is shown in Figure 4. The distribution line and a load are
considered using lumped elements.
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The relationship between output and input voltages is determined using the nodal theorem-based
equivalent circuit analysis:

.
VO −

.
VS

R1 + jX1
+

.
VO
R2

+

.
VO
jX2

+

.
VO
− jXC

= 0, (1)

where
.

VO and
.

VS are output voltage and source voltage, respectively. All solutions of Equation (1) are
transformed into a dimensionless representation for ease of analysis. After the rearrangement and
simplification, the coefficient of output voltage amplification (λ) is expressed as:

λ =

∣∣∣∣∣∣
.

VO
.

VS

∣∣∣∣∣∣ =
1√(

1 + R1
R2

+ X1
X2
−

X1
XC

)2
+

( R1
XC

+ X1
R2
−

R1
X2

)2
, (2)

Figure 5 shows the relationship between λ and XC for defined parameters of R1 = 1 Ω, X1 = 3 Ω,
R2 = 100 Ω, X2 = 276 Ω, cos(R2||X2) = 0.94.
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The optimal value of XC corresponds to the maximum voltage amplification (λ) can be calculated
using preliminary transformations in Equation (2):

λ2 = 1(
1 +

R1
R2

+
X1
X2
−

X1
XC

)2
+

(
R1
XC

+
X1
R2
−

R1
X2

)2

=
X2

C(
(1+

R1
R2

+
X1
X2

)XC−X1

)2
+

(
(

X1
R2
−

R1
X2

)XC + R1

)2

(3a)

λ2 =
X2

C

(αXC −X1)
2 + (βXC + R1)

2 ⇒ max, (3b)

where α =
(
1 + R1

R2
+ X1

X2

)
, and β =

(X1
R2
−

R1
X2

)
. The optimal value of XC can be determined by the

following condition:
d
(
λ2

)
dXC

= 0, (4a)

2XC
(
−αX1XC + βR1XC + X2

1 + R2
1

)
[((

1 + R1
R2

+ X1
X2

)
XC −X1

)2
+

((X1
R2
−

R1
X2

)
XC + R1

)2
]2 = 0, (4b)

We arrive at,
− αX1XC + βR1XC + X2

1 + R2
1 = 0, (5)

The optimal value of XC is expressed as:

(XC)opt =
X2

1 + R2
1

αX1 − βR1
=

ZLine

α X1
ZLine
− β R1

ZLine

=
ZLine

αsin(ZLine) − βcos(ZLine)
, (6)

where ZLine =
√

R2
1 + X2

1, sin(ZLine) = X1
ZLine

, cos(ZLine) = R1
ZLine

are the line impedance and the sine
of the line impedance, respectively. The optimum value of capacitance (Copt) is calculated as:

Copt =
αsin(ZLine) − βcos(ZLine)

ωZLine
, (7)

Combination of Equations (6) and (2) gives us the maximum amplification of output voltage (λm):

λm =

√
X2

1 + R2
1

αR1 + βX1
=

1
αcos(ZLine) + βsin(ZLine)

, (8)

For fixed parameters of distribution line and possible loads as α = 1.02–1.03, β = 0.026–0.028,
cos(ZLine)~0.32, sin(ZLine)~0.95, the maximum amplification of voltage (λm) is ~2.8–2.9. Hence, the
selection of optical capacitance provides the required voltage magnification (λr). The λr is represented
as an independent variable in Equation (2); hence the solution of this equation should provide the
optimal value of capacitance. Equation (2) can be simplified as:

(
1 +

R1

R2
+

X1

X2
− χ

)2
+

(
χ·

R1

X1
+

X1

R2
−

R1

X2

)2

=
1
λ2

r
(9)

The dimensionless variable (χ) and other coefficients are defined as:

X1

XC
= χ,

R1

R2
= µ1,

X1

X2
= µ2,

R1

X1
= µ3,

R2

X2
= µ4, (10)
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Therefore, Equation (9) becomes a quadratic equation of unknown dimensionless variable χ and
four dimensionless parameters (µ1, µ2, µ3, and µ4). Simplification and reduction of corresponding
members provide us:

χ2(1 + µ3) − 2χ
[
1 + µ1 + µ2 + µ3

(
µ1µ4 −

µ2
µ4

)]
+ (1 + µ1 + µ2)

2 +(
µ1µ4 −

µ2
µ4

)2
−

1
λ2

r
= 0,

(11)

Equation (11) consists of two positive roots, and the smallest one (χ*) is preferable to ensure the
lowest magnitude of capacitance. The capacitance is inversely proportional to reactance:

χ∗ =

(
1+µ1+µ2+µ3

(
µ1·µ4−

µ2
µ4

))
(1+µ3)

−√(
1+µ1+µ2+µ3

(
µ1·µ4−

µ2
µ4

))
2−(1+µ1+µ2)2−

(
µ1·µ4−

µ2
µ4

)
2+ 1

λ2
r

(1+µ3)
,

(12)

Let us consider a real situation:

R1

R2
= µ1 << 1,

X1

X2
= µ2 << 1,

X1

R2
=

µ2

µ4
<< 1,

R1

X2
= µ1µ4 << 1, (13)

As a result, Equation (12) is transformed as:

χ∗ '

(
1−

√
1
λ2

r

)
1 + µ3

=
(λr − 1)

λr(1 + µ3)
⇒ C∗ =

(λr − 1)
ωX1λr(1 + µ3)

, (14)

It is important to note here that output voltage enhancement is accompanied by the increase of
source current, which is the inevitable compliment for voltage improvement. The source current (IS) is
expressed as:

IS =

∣∣∣∣ .
VS −

.
Vo

∣∣∣∣∣∣∣R1 + jX1
∣∣∣ =

VS√
R2

1 + X2
1

√√√√√∣∣∣∣∣∣∣∣1− 1

(1 + µ1 + µ2 − χ) + j
(
χ·µ3 +

µ2
µ4
− µ2µ3

)
∣∣∣∣∣∣∣∣, (15a)

IS =
VS√

R2
1 + X2

1

√√√√√√√ (µ1 + µ2 − χ)
2 +

(
χ·µ3 +

µ2
µ4
− µ2µ3

)2

(1 + µ1 + µ2 − χ)
2 +

(
χ·µ3 +

µ2
µ4
− µ2µ3

)2 , (15b)

The nominal current (In) is defined as the load current before the capacitance connection, and it
can be calculated using Equation (15) for χ = 0. The amplification coefficient (η) is equal to the ratio of
source current and nominal current:

η =
IS
In

=

√√√√√√√√√[
(µ1 + µ2 − χ)

2 +
(
χ·µ3 +

µ2
µ4
− µ2µ3

)2
][
(1 + µ1 + µ2)

2 +
(µ2
µ4
− µ2µ3

)2
]

[
(1 + µ1 + µ2 − χ)

2 +
(
χ·µ3 +

µ2
µ4
− µ2µ3

)2
][
(µ1 + µ2)

2 +
(µ2
µ4
− µ2µ3

)2
] , (16)

Let us define the resistance and reactance values of both grid and load, respectively. The output
voltage and source current characteristics as a function of capacitance are shown in Figure 6. It can
be seen from the figure that the current increase rapidly with the output voltage enhancement. The
source current can enhance 6-8 times the nominal current in the distribution line. This phenomenon
suggests the strict and careful measures for the selection of capacitance magnitude. Last but not least,
it is concluded that the proposed method works fruitfully for the prevention of voltage instabilities in
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the distribution lines. However, simultaneous current amplification restricts both maximum voltage
upsurge and time duration for the application of this method. Therefore, the proposed method can be
applied together with the control of tap-changers.
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4. Dynamic Process

As stated above, the source current also increases with voltage amplification during capacitance’s
connection with the load. It is suggested that the capacitance should be connected to the load for a
duration of voltage drop and be disconnected as the transformation ratio changes to the desired level.
The abrupt connection of capacitance to the load can cause a transient process. The transient process
should be investigated and evaluated since it can decrease the quality of voltage supply and produce
technical problems. The Laplace transform is applied to investigate the transient process, and it gives
the following equation for VO(s):

VO(s)
[

1
R1 + sL1

+
1

R2
+

1
sL2

+ sC
]
=

VS(s) + L1IS(0)
R1 + sL1

−
IL2(0)

s
+ CVO(0), (17)

where s is Laplace operator. Transformation and reduction of similar members in Equation (17) give us:

VO(s) =
s2VO(0)CR2

2L1L2 + sR2L2
[
VS(s) + L1IS(0) − L1IL2(0) + CR1VO(0)

]
−R1R2L2IL2(0)

s3CR2L1L2 + s2(CR1R2L2 + L1L2) + s(R2L2 + R1L2 + R2L1) + R1R2
, (18)

Vs(t) = Vm sin(ωt)⇒ Vs(s) =
Vmω

s2 + ω2 (19)

Equation (18) is the third-order characteristic Laplace equation as a function of s. The positiveness
of all coefficient at denominators of Equation (18) determines only two possible variants. In the first
variant, one is negative and two are complex numbers with negative real parts. The second variant
has only three negative real numbers. Only the second situation is desirable (three negative roots)
since the dynamic process will not have high-frequency oscillations diminishing the quality of voltage
regulation. There are three negative roots if the determinant of a denominator in (18) is positive. The
expression of a determinant for a cubic equation having coefficients a, b, c, and d correspondingly for
s3, s2, s1, and s0 [33] is:

∆ = −4b3d + b2c2
− 4ac3 + 18abcd− 27a2d2 > 0, (20)
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Substitution expressions of a, b, c, and d from (18) to (20) and following simplification yields a
condition for three negative roots:

R2L1L3
2 + 18CR1R2

2L1L2 − 4R1L1L2 − 4CR3
2L2

2 − 27C2R2
1R3

2 > 0, (21)

It is possible to show that three negative roots exist in real situations almost always except very
high capacitance or very low reactance (X2). Considering the real values of R1 = 1 Ω, R2 = 100 Ω, L1

= 9 mH, L2 = 899 mH (cosϕ of a load equal to 0.94), maximum capacitance magnitude must be less
than 5000 F for an oscillation-free solution. Such a conclusion guarantees smooth dynamic processes
for most possible situations of using a method of capacitance connection to a load. Nevertheless, the
actual behavior of voltage and current should be obtained in the development stage. Such a task is
preferable to be done by a numeric approach considering the complication of the expression. Figure 7
shows the current and voltage modulations as a function of time during the transient process. It is
observed that the source current increases with voltage enhancement.Energies 2020, 13, 875 8 of 12 
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5. Control Algorithm 
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5. Control Algorithm

The control algorithm is required to connect/disconnect the capacitor during voltage instabilities
in the grid. The model of distribution line connected with load and the proposed control algorithm
was developed by PSIM software [34]. The schematic diagram of the model is represented in Figure 8.
The simulation experiments were performed to verify the feasibility of the control algorithm for
voltage stabilization.

The circuit of the model includes a control system, inductive load (Rload, Lload) with power factor
0.94, voltage supply, current sensor, power sensor, and bank of five capacitors (C1-C5) connected to
the load through TRIACs. The voltage supply contains two sources one of with simulates nominal
and another one a reduced under permissible level voltages. Voltage sources, modeling sub-station
with tap-changer are connected to the load through the distribution line (Rline, Lline). Capacitors are
arranged in a binary order of capacitance, the first one has a minimum required capacitance and
each subsequent is two times higher than the previous one. In such an arrangement, the set of five
capacitors provides a relative accuracy of 1/25 (~3.1%), which is enough for the control purpose in
most of the practical events. The control system permanently measures the load voltage. In the case of
voltage instabilities, the control system works in two steps. Firstly, the system calculates the required
capacitance using Equation (14) to be added with the load. Further, the system determines which
capacitors should be connected to the load by the following procedure. The required capacitance (Creq)
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is divided by the capacitance C5, and is rounded to the nearest integer number lower than Creq/C5.
The residual number after the rounding is denoted as R5. In other words:

S5 = f loor
Creq

C5
; R5 = Creq −C5·S5, (22)

where f loor is the function that takes as input a real number and gives as output the greatest integer
less than or equal to an initial number. This procedure is repeated five times. However, the Creq is
substituted by R5 in Equation (22) and further from R4 to R2:

Creq = R5, (23)

S4 = f loor
Creq

C4
; R4 = Creq −C4·S4, (24)

S1 = f loor
Creq

C4
, (25)
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Values of S4 − S1 obtain only two possible integer numbers: one or zero. For each Sk equal to one
the corresponding switches of matching capacitors should be closed. This way the required capacitance
will be connected to the load for improving its voltage to the nominal magnitude.

Figure 9 demonstrates the functionality of the control system to improve the voltage instabilities
in the distribution line. The simulation results represent the load voltage at the end of distribution
line before medium voltage transformer. It can be seen from the figure that the voltage decreases up
to ~19% of the nominal level after the 0.2 sec during the load supply. At this moment, the control
system recognizes a significant voltage drop and decides to connect a total capacitance of 225 µF. For
this purpose, the capacitors C1, C2, and C4 are connected to the load and provided a total capacitance
of 220 µF. As a result, the load voltage again increases up to the nominal magnitude within a short
duration of time.

This study proves the possibilities to improve the voltage disturbances and maintain nominal
load voltage using the connection of optimal capacitance in the distribution lines. It is important to
note here that the load resistance should be higher than the resistance of a distribution line for voltage
amplification effect, as a rule, hundreds of times more. More importantly, the voltage enhancement
should remain in the maximum range of 15%–20% so that the source current stays in the allowable
range. Higher voltage amplification can also be achieved, but only for a short period during which a
tap-changer will be able to change the transformation ratio to the required value.
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6. Conclusions

In summary, this article presents an efficient solution to the problem of voltage instabilities in
power distribution lines. The application of capacitive reactive power to the load can efficiently prevent
the voltage drop. The required voltage amplification is achieved by connecting appropriate capacitors
at the load, and the capacitance values should be selected according to the impedance of a distribution
line. The set of capacitors should be chosen in a binary manner of capacitance values for the simplicity
of the control system. In such an arrangement, each sequential capacitance magnitude is two times
larger than the previous one.

The substantial current enhancement in the distribution line during the capacitive power
application should be taken into account. Therefore, the capacitive reactive power is applied for a
short time such that the tap-changer is able to correct the transformation ratio. The dynamic process of
voltage changes during the application of capacitive reactive power is also studied in this work. It is
found that the dynamic process of voltage changes can be smoothed significantly if the capacitors are
connected at the end or beginning of a voltage period.
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Abbreviations and Nomenclatures

The following abbreviations and nomenclature are used in this manuscript:

PCC Point of Common Coupling
DER Distributed energy sources
PV Photovoltaic
ZC Consumer impedance
ZLV−L Impedance of low voltage line
ZMV−L Impedance of medium voltage line
ZHV−L Impedance of high voltage line
R1 Resistance of distribution line
X1 Reactance of distribution line
R2 Resistance of load
X2 Reactance of load
VS Source voltage
VO Output voltage
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IS Distribution line current
IR2 Load active current
IX2 Load reactive current
IC Capacitor current
In Nominal current
λ Output voltage amplification
η Amplification coefficient
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