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Abstract: This paper presents a novel approach for Voltage Stability Margin (VSM) estimation that
combines a Kernel Extreme Learning Machine (KELM) with a Mean-Variance Mapping Optimization
(MVMO) algorithm. Since the performance of a KELM depends on a proper parameter selection, the
MVMO is used to optimize such task. In the proposed MVMO-KELM model the inputs and output
are the magnitudes of voltage phasors and the VSM index, respectively. A Monte Carlo simulation
was implemented to build a data base for the training and validation of the model. The data base
considers different operative scenarios for three type of customers (residential commercial and
industrial) as well as N-1 contingencies. The proposed MVMO-KELM model was validated with the
IEEE 39 bus power system comparing its performance with a support vector machine (SVM) and an
Artificial Neural Network (ANN) approach. Results evidenced a better performance of the proposed
MVMO-KELM model when compared to such techniques. Furthermore, the higher robustness of the
MVMO-KELM was also evidenced when considering noise in the input data.

Keywords: kernel extreme learning machine algorithm; machine learning techniques; near real time;
voltage stability assessment; voltage stability index

1. Introduction

Currently, the competitive tendency of deregulated electricity markets, along with limitations
in network expansion planning due to several factors that include environmental constraints and
investment delays have caused electric power systems to often perform very close to their operative
and stability limits. One of these relates to voltage stability, which is violated when the power system
no longer has the capacity to maintain stable voltages in all or some of its buses after a disturbance
has taken place. Furthermore, voltage instability has been recognized as one of the main problems in
power systems around the world [1-3].

The ever-growing integration of intermittent renewable energies and the development of smart
grids have increased the complexity of power systems operation and planning. In this context,
conventional methods of voltage stability based on offline studies are not up to the challenges that are
facing current power systems [4]; therefore, system operators must adopt new methods to monitor
and evaluate voltage stability near real time. This necessity has motivated the development of robust
and sophisticated tools for the supervision and evaluation of power systems. Monitoring of these
systems is essential to guarantee a safe operation, and it must be carried out in real time to reach a high
accuracy [5-7].

For near real time stability assessment, estimation time must be short and calculation efforts
minimum. Stability performance indicators have traditionally been used to establish the distance
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between the current operating point and a point at the voltage instability boundary. The main
characteristic of these indices is that they can be estimated when the operating conditions change.
In addition, these indices must be predictable and quickly calculable [8,9]. The problem with most
stability indices is that their values vary in a highly nonlinear and discrete way, due to the non-linear
characteristics of the system and its operating limits [8-11]. Other indices require a highly intensive
calculation to determine their value for changing system conditions. Another important aspect to
reach near real time assessment is to improve measurement of key power system variables; this has
been recently achieved with Phasor Measurement Units (PMUs) that allow observing fast dynamic
behaviors due to their high sampling rate.

In the last decades, the use of Artificial Intelligence (AI) tools has arisen as a solution for the
evaluation of voltage stability near real time. The stability evaluation using Al drastically reduces the
calculation time, eliminating the need of computing the nonlinear equations of the system models.
Al techniques capture the relationships among the different states of the system and system stability
information, extracting knowledge from these data and determining the corresponding stability
status [4].

Voltage Stability evaluation using Al tools requires building a learning database in offline mode
with data of many operational conditions. This database must contain the electrical variables that
allow determining the actual condition of the power system in near real time. When the Al is trained,
new information is fed to the Al; being the output a voltage stability indicator [12,13]. The following Al
techniques using voltage stability assessment are reported in the scientific literature: Artificial Neural
Network (ANN), Support Vector Machine (SVM) and Extreme Learning Machine (ELM).

ANNSs have been widely used to estimate voltage stability indicators in both long and short
term voltage stability assessment, they derive their computer power through a parallel-distributed
structure that allows them to learn and generalize. One of the main features that an ANN provides for
power system applications is their ability to deal with complex non-linear mapping through a set of
input/output data. In the case of voltage stability studies the ANN identifies the existing relationships
between an input set as measurable parameters and the output that is the stability indicator [14-16].
System parameters such as nodal voltage magnitudes and angles are used as the ANN input variables.
These input variables present lower errors in the voltage stability indicator estimation [17]. Several
ANN approaches based on backpropagation [18,19], Kohonen [20], Radial Basis Function (RBF) [21]
and ANN with reduced input features have been reported in the specialized literature [22,23]. A large
number of operating conditions has to be generated for the training and testing when ANNSs are
used. Thus, the power system is simulated with distinct operating conditions, including sometimes
contingencies. These simulated conditions are used to obtain other system parameters such as branch
currents, line flows, real and reactive power and different voltage stability indicators such as line
voltage stability indices, bus voltage stability indices and Voltage Stability Margin (VSM) or Loading
Margin (LM) [24-26]. Although ANNs have been extensively used by researchers, they exhibit some
shortcomings, mainly related to the long time required in their training process, and the fact that its
learning is highly dependent on the number of training data.

SVM is a machine learning technique based on statistical learning theory and structural risk
minimization. In recent years, support vector regression (SVR), the regression version of SVM has
been applied to voltage stability monitoring [27,28]. The proposed SVR method allows estimating
the loading margin of the system in normal operation conditions and considering different demand
growing scenarios. In [27] the contingencies that affect the LM estimation of the system are not
considered; also the input vectors for the SVR, such as the phasor voltage of the system nodes that are
delivered by the PMUs are not considered. On the other hand, in [28] the Power Transfer Stability
Index (PTSI) is considered as the output stability index that requires impedance information and
Thevenin voltage. In this case, dynamic voltage collapse prediction is determined based on the PTSI.
The data collected from a dynamic simulation is used as input to the SVR which is used as a predictor
to determine the dynamic voltage collapse indices of the power system.
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In [29] a SVR is proposed for online voltage stability evaluation with a reduced set of input
variables. The vector dimension is reduced using Principal Component Analysis (PCA) combined
with a feature selection technique called Mutual Information (MI). The VSM is used to complete the
voltage stability evaluation. In this case, only the most severe contingencies are considered in the
simulation scenarios, impacting negatively the VSM of the system. Voltage phasor system nodes are
not considered and the selected input variables are the active and reactive powers of load nodes.

An inconvenience that arises when working with SVR is the accurate selection of its internal
parameters in relation to any information of the problem. This allows ensuring a high accuracy and
good performance of the Al. An inadequate selection of the SVR parameters leads to overfitting or
under fitting. In [30], a metaheuristic known as Artificial Inmune Least Square is used for obtaining
the optimum parameters of the SVR, that executes the voltage stability index estimation. The index
named as Voltage Stability Condition Indicator (VSCI) is used as a tool to evaluate the stability at load
nodes, and the SVR is used to estimate the VSCI. For its estimation, both active and reactive powers
are needed; however, the measures of the voltage phasor are not considered. Other metaheuristic
optimization techniques used for the selection of the SVR parameters include Genetic Algorithms
(GA) [31], Particle Swarm Optimization (PSO) [32] and Dragonfly Optimization algorithm (DFO) [33].

In [31] a GA is used to improve the accuracy and performance of the SVR, that completes the
stability index estimation. Complex voltages of buses that are given by the PMUs are used as inputs
and the output corresponds to the VSM. In the generated scenarios, the occurrence of contingences
and their impact in the voltage stability are not taken into account. In [32], a PSO determines the
setting of the SVM parameters. The proposed alternative for the stability evaluation uses as input
vector for the SVR the voltage angles and the reactive power load; while the VSM index is used as an
output vector. Similarly, in [33] a voltage stability evaluation technique based on swarm intelligences is
proposed, as well as a DFO for the setting of the SVR parameters, aiming at completing the evaluation
of the online voltage stability. In this case, the PMUs voltage magnitudes are used as an input vector
for the hybrid DFO-SVR, and the output vector corresponds to the minimum values of the voltage
stability index.

Extreme Learning Machine (ELM) is a new machine learning tool that is being applied for online
stability evaluation. ELM has shown better performance and lower training times than ANN and
SVM facing regression problems [34]. In [35-37], ELM is used as a tool to evaluate the long-term
online voltage stability, considering different electric parameters as input vectors. These include
voltage magnitudes and angles, power flows, as well as active and reactive power injections. In [38],
an assembled ELM is proposed to estimate the voltage stability of a power system. The proposed
method improves the performance of the VSM estimation, but increases the training times for the
ELM set.

In this paper, a long-term online voltage stability evaluation is proposed through a VSM index
using a novel Al technique called Kernel Extreme Learning Machine (KELM). KELM is a combination
of ELM with an Al Kernel type, improving the performance and keeping a short training time.
To guarantee a good performance of the KELM, the Mean-Variance Mapping Optimization algorithm
(MVMO) is proposed for the selection of the internal KELM parameters. A comparison of the
performance of the hybrid MVMO-KELM model with SVM and an ANN is presented, and an analysis
of cases with the 39-node IEEE testing system is performed. Results evidenced the robustness and
effectiveness of the proposed MVMO-KELM model.

2. Voltage Stability Assessment

Voltage stability is concerned with the ability of the power system to maintain acceptable voltages
both under normal conditions and under disturbances [7]. Voltage stability assessment deals with
finding the voltage levels of the system under different loading conditions to ascertain the stability limit.
Voltage stability is analyzed by employing two practices, namely time-domain (dynamic) simulation
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and steady state analysis. Depending on the stability phenomenon or phenomena under investigation,
one or both of these techniques may be applied.

In the long-term voltage stability, the system dynamics are usually slow. So, many aspects of the
problem can be effectively analyzed by using static methods, which allow examinations of a wide
range of system conditions and provide insight into the nature of the problem and identifies the key
contributing factors. For static voltage stability analysis, the loading of the system is slowly increased
(in certain direction) to the point of voltage instability frontier.

Several indexes have been proposed to evaluate long-term voltage stability in power systems [8-11].
The general idea of a voltage stability index is to define a scalar magnitude that determines the distance
from the current operation point to the voltage instability limit. It is important that voltage stability
indexes are sensitive to loading changes and present a predictable behavior in relation to its own
increases. The latter allows extrapolating the additional power that might be supplied by the power
system before getting into the instability voltage point. It is also relevant that the stability indexes can
be monitored when the system parameters change, and that their calculation is fast enough so that
online system supervision is feasible.

Among the most used and accepted indexes for long-term voltage stability assessment, there are
the deviation indexes category. These indexes require an increment of the system demand; from its
current state, the load is increased following a previously defined pattern to reach the instability point.
In general, theses indexes provide a distance to the instability point in MW/MVAR. An example is the
LM which is the most basic and widely accepted to estimate the distance to the instability frontier.
The LM is defined as the distance in terms of power (loading parameter, A) between a current operation
point (base case, A0) to the instability voltage point (see Figure 1). This indicator takes into account the
nonlinear behavior that occurs between the base case and the instability boundary.

Stability
Boundary

Base Case

|A- Aol

Loading Margin

Voltage

Loading (Power)

Figure 1. Definition of loading margin.

The advantages of LM as a voltage stability index are: (a) The static model of the power system is
required, it can be used with dynamic systems, but it does not depend on dynamic details; (b) it is an
accurate index that takes into account the nonlinear characteristics of the system and its limits, such as
the reactive power limits that increase as the demand increases; (c) limits do not directly reflect sudden
changes on the LM; and (d) the LM considers the demand increase patterns, that is, increasing load
directions in the parametric demand space [8].

Among the disadvantages of the LM as a voltage stability index, the following should be
considered: (a) Evaluations in operating conditions away from the current operation point are required,
that is why the computational demands are higher than in the calculations of indexes that are based
on using only the information of the current operation point. This computational cost would be the
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most serious disadvantage of the LM. (b) A demand increase direction is required; nevertheless, this
information is usually easily acquired.

Some specific methods to increase the speed and reliability of the calculations of the voltage
stability limits have been elaborated. These are the Continuation Power Flow (CPF) method [39], and
the collapse point method [8].

3. Artificial Intelligence (AI) Systems

The advantages that make Al a promising alternative for the estimation of a voltage stability
margin index include [4]:

(a) Fastness: using a trained Al, it is possible to obtain a value of the stability system margin in the
current operation point. The AI determines the margin in a fraction of a second after receiving
the input data, which allows an appropriate response to prevent instability.

(b) Knowledge extraction: the Al can extract stability system information; this provides an
understanding of the system operation.

(c) Less data capacity: for the conventional evaluation methods, accurate information is required as
well as a complete description of the system. In contrast, the Al evaluates the stability only with
the available and significant parameters.

(d) Generalization capacity: the Al simultaneously handles a wide spectrum of scenarios or system
conditions in the stability evaluation; these conditions can be previously assumed and not foreseen.

In the following section, a brief description of the Al techniques that have been used in the
evaluation of voltage stability is presented.

3.1. Artificial Neural Network (ANN)

An ANN is an Al technique composed of a great number of processing elements highly
interconnected (artificial neurons) working at the same time to solve a specific problem. The artificial
neuron is a processing information unity that finds nonlinear relations among sets of data. They are
called ANN because they learn by experience; this is given by system training with experimental data
so the network acquires the knowledge related to the problem being studied. An ANN is composed
of many simple elements that work in parallel. The network design is mostly determined by the
connections among its elements [40]. A neural system imitates the brain in two aspects; (a) knowledge
is acquired by the system through a learning process, (b) connections among the neurons, and known
as synaptic weighs, are used to store knowledge.

3.2. SVM

SVM is a type of machine learning technique used in solving problems of classification, regression,
and pattern recognition [41]. SVM is a promising method for solving problems of linear and nonlinear
classification. A SVM is an algorithm that uses a nonlinear mapping to transform original training
data to a larger dimension. In this new dimension the SVM searches the hyperplane of optimal linear
separation (decision limit) splitting one type from another. With an appropriate nonlinear mapping to
a highly enough dimension, data of both types are always possible to be separated by a hyperplane.
The SVM finds this hyperplane using support vectors and margins (defined by the support vectors); this
is achieved through solving an optimization problem [42]. SVM belongs to a set of algorithms named
Kernel-based methods and the structural risk minimization is used as the optimization principle [43];
also, SVM has statistical robustness and ability to overcome over adjustment problems [44].

SVR is an extension of the SVM with a good generalization capacity created to solve time series
prediction problems and function approximation (regression). The function approximation consists on
determining the relation between the inputs and outputs using data pairs corresponding to inputs
and outputs (x;,z;) where i = 1,...,1[; x; is the input vector row 7 of n dimension, z; is the output scalar
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row i, and [ is the number of training data [45,46]. The SVR assigns the input space to a space of
multidimensional characteristics to determine an optimal hyperplane defined as:

f(x) =w"b(x) +b )

where w is a pondered n-dimensional vector, ¢ (x) corresponds to the mapping functions from space x
to the feature space, and b is the threshold term [46].

This work uses the support vector machine for regression problems called e-SVR with a radial
base function (RBF) as kernel. For a set of training points (x;,z;) where x; € R" is a feature vector and
z; € R! is an objective output vector, with given parameters C > 0 and ¢ > 0; the standard form of
e-SVR is given by (2)-(5) [47]:

min : %wTw+c§gi+c;5; )
sa: wd(y) +b-z<e+ &, 3)
zi—d(x) -b< e+ &, 4)
& &20,i=1,...,L (5)

where C is the margin parameter that determines compensation between the margin magnitude and
the estimation error of the training data, &; and & are slack variables associated to x; [45]. The mapping
function ¢(x) is called kernel function, and the RBF is used for the SVR like kernel that is defined as:

K(Xi, X]) = ¢(xi)T¢(xj) = e—V||xi—Xj||2, y>0 (6)

where v is the kernel parameter, this must be determinate. On the other hand, a small positive
parameter ¢ is used to reduce residual errors in the regression, that is why an interval linear function is
proposed rather than a squared error function [45]. In (3) and (4) the parameter ¢ > 0 corresponds
to the radio of a zone that is named the ¢ insensibility zone or tube; the ideal estimation is achieved
when the training data are in this zone. Equations (3) to (5) allow the existence of data outside the tube,
hanging non-negative variables &; and &; are used. A more detailed explanation regarding the ¢-SVR
can be consulted in [45]. The C and ¢ parameters in (2) and y in (6) must be defined before the SVM,
other parameters are determined in the optimization process defined in (2) to (5).

3.3. KELM

One of the inconveniences of ANNS relates to their low training speed, which has been the
main obstacle for applications in which speed is of paramount importance. This is because most
ANN training algorithms are based on descending gradient methods and all network parameters are
synchronized iteratively in the training.

A new learning algorithm called Extreme Learning Machine (ELM) was proposed by Huang et al.
in 2006, which is used both in classification and regression problems. The main advantage of ELMs is
the absence of iterative adjustment in the hidden layer of the network; therefore, its training time is
lower than those of traditional ANNSs [48].

For ELMs, it is proved that the input weighs and the hidden layer threshold of a Single Layer
Feedforward Network (SLEN) can be randomly assigned. If these activation functions in the hidden
layer are infinitively differentiable, the SLFN can simply be considered as a linear system and the output
weighs (hidden layer connections to the output layer) of the SLFN can be analytically determined
through a simple opposite generalized operation of the output matrices of the hidden layer output [34].

The ELM training algorithm follows the following steps: (1) randomly assign hidden node
parameters: input weights w; and threshold b;; (2) calculate the hidden layer output matrix H, and (3)
obtain an output weight vector 8. Given a set of N input vectors samples (xj, t]-), and standard
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SLFNs with n hidden nodes whose weights are randomly initialized, and activation functions g(x) are
modeled as:

n
Zﬁig(wix]- + bi) = f]', j=1,...,N (7)

where w; is the weight vector connecting the ith hidden node and input nodes; g; is the weight vector
connecting the ith hidden nodes and the output nodes, b; is threshold of ith hidden node while ¢; and
x; are jth target vector and input vectors, respectively. Equation (7) can be expressed in a matrix form
as indicated in (8):

HR=T (8)

where H is the output matrix (N X 1) of the hidden layer with respect to the input x;,  is the output
weight matrix (n xm), T is the target matrix (1 X m) and m is the number of distinct arbitrary targets.
ELM training consists of a minimum norm least-squares solution of a general linear system, obtaining

-1
optimal weights 3 = H'T, where H' = (HTH) HT is the Moore-Penrose generalized inverse [48].
The final expression for Equation (8) is:

5:H%%+Mﬂf? ©

According to the ridge regression theory a positive value 1/A is added to the diagonal of
HHT [34,49]. The corresponding output function of ELM is given by (10), where h(x) is the hidden
layer feature mapping function.

I -1
f&y:mmszm@HTX+HHﬂ T (10)

In the KELM algorithm, the hidden layer feature mapping function /(x) is known, but can define
a kernel function K(u, v) to find the value of the output function. The kernel function directly adopts
the form of an inner product. Additionally, it is not necessary to set the number of hidden layer nodes
when solving the output function, so that the initial weight and threshold of the hidden layer do not
need to be set [50,51]. A kernel function is introduced in KELM to obtain better regression accuracy, as:

] . K (x,x1) T ! .
f(x) = h(x)HT(X + HHT) T= (X + QELM) T (11)
K (x,xN)
QELM(ir ]) = h(xl)h(x]) =K (Xi,x]‘) (12)

where Qpyp is the kernel function matrix, K(u, v) is the kernel function, as a kernel, the Gaussian
function is usually chosen (see Equation (6)); finally, N is the input layer dimension.

4. Proposed Methodology

A long-term online voltage stability evaluation is proposed in this paper through the VSM index
using KELM. The steps of the methodology are detailed in this section.

4.1. Building of Al Learning Database Using Monte Carlo Method

A Monte Carlo (MC) simulation is proposed to build different pre and post contingency operative
conditions close to real life operation. The operative conditions consist of different scenarios or hourly
demand curves (with a 24-h horizon) that are transferred to the nodal demands of the PQ buses.
The scenarios are built from the demand of the base case, taken from the original information of
the system. Then, the demand is changed in every node using hourly demand according to every
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type of user as indicated in Figure 2 (residential, industrial or commercial) [43]. Every PQ node
is randomly assigned a type of user, guaranteeing the same number of PQ users for each type of
user. The uncertainty in the demand is considered using a probability density function (PDF) of a
normal distribution.
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Figure 2. Daily hourly demand curves according to the type of user [43].

Every outage (N-1contingency) is considered as an independent and randomly generated event.
The selection of contingencies depends on the probability of forced outage of the system components.
The probability of a contingency can be estimated using the Poisson distribution with a constant
occurrence rate [52]. Using the Poisson distribution formula, the probability of occurrence of a N-1
contingency in a given period of time is given by the following equation:

Pp=1—e¢ Mot (13)

where: A is the average occurrence rate of a contingency related to an element of the system, and f is
the duration considered; in this case, it lasts one hour.

Equation (13) is applied to all components that are considered in the eligible set of N-1 contingencies.

In this case, contingencies caused by the output of transmission lines, transformers and generation

units are considered. For probabilistic contingency selection using the MC Method, it is assumed

that each component of the system has two operating states: normal and failure status. In the MC

simulation, a uniformly distributed random number, R, is generated for each component or group of
components, the Markovian model is handled as follows [53]:

L= { 1 R;>DP No?’mal status (14)

0 R; <Py Failure status

where [; is the operating state of the ith component of the system, R; is a random number distributed
for the ith component. For the elements in a failure state, the contingency analysis is performed, which
corresponds to executing a power flow to determine the post-contingency conditions of the system.
The proposed MC process flowchart to build the database for the Al training stage is presented in
Figure 3.

The MC method starts with the generation of a random sample from the PDFs of the input
variables considered in the process, for example, the demand in each node, and the random selection
of the contingency in an element. Then, an Optimal Power Flow (OPF) is executed for each sample of
the input variables in order to define a stable pre-contingency state scenario. A static N-1 contingency
analysis and a Continuation Power Flow (CPF) are run to determine the VSM using the UWPFLOW
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program [54]. Finally, pre and post contingency power flow outcomes and the VSM corresponding to
each evaluation carried out in the MC process are obtained.

Inputs variables
(PDFs)

)

Contingency Selection
(Random)

v

Demand Selection
(Random)

!

OPF

o I

Contingencies Analysis
(N-1)

!

CPF
(Uwpflow)

Stopping Criterion

Yes

‘

Figure 3. Flowchart of the Monte Carlo (MC) process to build database.

With the CPF tool, the VSM is calculated as global index. In this case, that corresponds to the
maximum point of transfer in the PV curve [55]. The distance from the system operating point to the
voltage instability frontier depends on the load increase trajectory and the initial operating point of
the system. In addition, the occurrence of N-1 contingencies affects the stability frontier, that is, the
distance from the operation point to the instability frontier or VSM is reduced. In the MC process,
different load increase directions are considered. This is achieved by varying the operating points and
retaining a constant power factor for that operating point when the demand is increased.

Figure 4 shows different operating points as a function of the real and reactive power demand,
and how load increase directions and contingencies affect the VSM.

4.2. Al Training

The database for Al training and validation is formed by two matrixes Xnxn which are composed
of the features and Ynx target values. The feature matrix is formed by N observations that correspond
to the voltage phasor magnitudes of the n buses of the test power system; and target values that
correspond to the VSM of the N different system conditions that are represented by voltage phasor
magnitudes, that is, N snapshots of the power system dynamics.

The Al training stage is done in an offline mode, in which the common strategy is to separate a
set of training data and other set of testing data (unknown data). These unknown data are used to
evaluate the estimation accuracy (validation process). The objective of the training stage is to build an
Al model (SVM and KELM) based on the immerse information of the training set [42].
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Before executing the training of the type kernel learning machine techniques, the optimal
parameters of the Al must be found in order to improve the adaptation of the training data and the
accuracy of the Al response facing unknown data [46].

A
Pre-disturbance Voltage
Stability Frontier
<
5 J N-1 Post-distubance
g Y ,/ Voltage Stability Frontier
o /
/
0>J / // 7
= / Vi /
8 // // // 4
[0} 7 4
4 // // 7 il
A 4 z
VA 4 ’
/7 / s -
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, 7/ e s
S S 7
;0 S s pd P
e/ /. 5 7
6, 7 7 -
Py ® e - )
° ‘/ - Load increase
Qo - - -9 ° o directions
|

A 4

Real Power (P)

Figure 4. Voltage Stability Margin (VSM) variation due to different operation points, load increase
directions and N-1 contingencies.

Generally, SVR with kernel type RBF has three parameters to optimize: C, y and ¢. For these
SVR parameters selection, two methods have been combined: (i) a k-folks cross-validation based on k
repetitions [42,46], that allows preventing an overfitting problem, and (ii) the grid search method, that
allows obtaining the Al parameters.

In the k-folk cross-validation, the data set is randomly divided into k subsets, which are mutually
exclusive and have the same size. Both training and testing are performed k times, where a testing subset
is kept and the remaining k — 1 subsets are the training data. According to [42,46] it is recommended is
to use the grid search algorithm using cross-validation, where several sets of (C,y, ¢) are tested and
those with the lowest error prediction in the cross-validation are chosen. The grid search algorithm is a
procedure of high computational burden that takes more calculation time according to the number of
pairs considered; furthermore, this procedure does not guarantee getting the optimal Al parameters.

4.3. Determination of AI Optimal Parameters

Asasolution to the optimal parameter setting, different metaheuristic optimization techniques have
been proposed, such as Particle Swarm Optimization [56], Genetic Algorithms [31] and Mean-Variance
Mapping Optimization (MVMO), where an objective function (OF) is minimized and corresponded to
the Mean Squared Error (MSE) [43]. MVMO has successfully been applied for the solution of different
power system optimization problems. Furthermore, Numerical comparisons between MVMO and
evolutionary algorithms have shown that MVMO exhibits a better performance, especially in terms of
convergence speed [57-59]. In this case, the MVMO tool is used and the OF is defined as:

k _ 2
OF =) @ (15)
i=1 i

Subject to:
Xmin < X < Xmax
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where t is the desired output vector, y is the Al prediction vector, || corresponds to the Euclidian
distance and # corresponds to the y vector dimension. The sub-index i refers to the ith-iteration of the
k-folks cross-validation process, and the vector x comprises the Al parameters that solve the problem.

The flowchart of the proposed methodology for the identification of the Al parameters using
MVMO is presented in Figure 5. First, the Al training intelligence is organized; then, each Al parameter
is initialized; the MVMO proposes the parameters to optimize, executes the optimization process
and delivers the optimum parameters found, with which the MSE is calculated. For each k-folk
cross-validation run, the MVMO minimizes the prediction error (PEi), being i the ith run for the
validation run. At the end of the process, the MVMO delivers the optimum parameters of the Al that
minimize the total error of all the runs executed in the cross validation.

[ ]

v

Starting Al parameters

v
MVMO

v

k-folks cross-validation

v

Artificial Intelligence
Systems

No *
| PEi |

< T

Yes
A 4

| OF = 5 PEi |
v

New set of best
parameters

Stopping criterion?

Yes
Identified

A

Y

optimal
parameters

Figure 5. Methodology for identification of Artificial Intelligence Al parameters based on Mean-Variance
Mapping Optimization (MVMO).

Before training both SVR and KELM, the optimum parameters that allow getting a better accuracy
in the Al response must be determined [34,46]. As mentioned before, k-folk Cross-Validation is used
with the “grid search” method to prevent overfitting problems. This procedure is computationally
intensive given that the number of the parameters combination is huge. Additionally, it is a process of
local search whose search range is hard to establish. As a solution to the above mentioned problems,
an alternative presented in [43] was developed, there an optimization heuristic algorithm known as
MVMO is used to determine the best parameters of the Al with kernel. The optimum parameters that
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must be identified for SVR are ¢, C and y according to equation (2); while the optimum parameters to
identify for KELM are C and .

5. Test and Results

5.1. Database for Al Training

In order to evaluate the performance of the different Al techniques under study, the database for
the IEEE 39-bus test system (also known as the New England IEEE test system) is built [60]. The test
system (depicted in Figure 6) comprises 10 generators with active and reactive power limits; 29 load or
PQ buses, 12 transformers, and 34 transmission lines. The data of the transmission lines, transformers,
nodal demand, active and reactive power limits were taken from [61].

o
= G10 5 T 26 T rﬂ 29

18 24

- 21
@ tl——l ¢ ! =
39 l 4 14
5
: :fu LJ 19 23
- A 13 oy .

.
& 11 L
8 20 36
33
- /‘V‘IY\ 31 10 G7
- ol »
32

G3)

Figure 6. Single-line diagram of New England 39 bus test system [60].

The MC process was implemented with the following parameters. For each nodal demand of the
PQ buses, the means are taken as the active and reactive power of the original information (provided
in [61]) and deviations of 8% are considered for the nodal demand in each PQ bus. Furthermore, the
N-1 contingencies are generated, assuming an average outage occurrence rate equal to 0.04, both for
transmission lines and generation units.

The static CPF tool is run for every contingency of the system. This is done for the whole system
or with contingencies in agreement to the respective case. The VSM is determined for both pre and
post-contingency conditions in the test system. An input matrix Xyx;, is formed by 20000 operative
conditions (normal and under contingency), where N corresponds to the number of simulated operative
conditions (snapshots) and 7 corresponds to the voltage phasors of buses taken for each simulated
operative condition. In this case, the voltage phasors are 39 values that correspond to the number of
system buses. Additionally, an output Yy matrix is built in order to store the calculated VSM for
each simulated condition that is evaluated.
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In this case, 70% of the data was used for training and 30% was used in the Al validation.
An important aspect prior to the training of intelligent systems, especially the AI with kernel, was the
need to identify the optimum kernel parameters that present better results for the data handled by
each Al [46]. The parameters identification method of the Al is presented in the next section.

5.2. Al Optimal Parameters Selection

The proposed methodology for the identification of Al parameters, using MVMO, is presented
in Section 4.3. In this case, 10 repetitions are used in the k-folk cross-validation to ensure a robust
regression. Based on [43], the search space of the Al parameters are defined in an exponential scale in
the following way: C € [2_5,215], y € [2‘15,25], €€ [2‘5,20] [42,46].

A library for support vector machine (LIBSVM) was used to execute the SVR for the design,
training and testing model of the SVR [46]. For a more detailed description, the computational
code adapted in this work and used to execute the KELM, can be consulted in [62]. The neuronal
network package from Matlab [63] was used to execute the ANN (backpropagation type). The number
of neurons in the hidden layer was chosen empirically; this one was varied to guarantee a good
performance and reduce the time in the training process.

The parameters identification is applied to the generated data of voltage phasor and VSM using
the 39-bus test system. Figure 7 illustrates the convergence of the MVMO, which was implemented to
identify the optimum parameters for both SVR and KELM training. Note that the convergence process
of the MVMO to find the KELM optimum parameters is faster than the one for the SVR, requiring only
a few number of objective function evaluations.

o
w

o
N
3]

o
o

o
o
3

Objective function

o
N

0.05ff My -~

0 50 100 150
No. of objective function evaluations

Figure 7. Convergence of the MVMO in the process of identifying optimal parameters of the AL

Table 1 presents the optimal parameters for each Al considered. The approximation of functions
(Al-regressors) were obtained for 15,000 samples performed using the MC process for the test system.

Table 1. Optimal identified parameters for each Al

Identified Parameters

Al-Regressor

Log,C Log,y Log,¢
SVR 12.888 0.675 —4.778
KELM 7.840 —-5.237 e

5.3. Comparison Performance of Machine Learning Techniques in VSM Estimation

Several tests were considered to evaluate the performance of the VSM estimation for each Al
technique under study. The general test cases consist in that for each simulated operating condition,
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the information of the voltage phasors of all buses and their respective VSM are generated. The Al
system is trained with the optimal parameters obtained in the previous section. For the performance
test of the Al, the following conditions are considered [64]:

- Case 1: Voltage phasors measurements without noise.

- Case 2: Voltage phasors measurements with noise in the phasor magnitude. The noise is added
randomly following a normal distribution with zero mean and deviation equal to 0.01 p.u.

- Case 3: Voltage phasors measurements with noise in the phasor magnitude, and with zero mean
and deviation equal to 0.04 p.u.

Table 2 shows the results performance of the Al considering several conditions of the test system
that includes measurements with noise in the phasor magnitude. The Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE) are defined as the performance indices for the estimates made by
the Al-regressor. In this case, 5000 randomly samples were considered on the database for calculating
MSE and RMSE.

Table 2. Obtained Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) in the AI test.

MSE RMSE
Al-Regressor
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
ANN 0.0008 19.3113 69.5482 0.0291 4.3945 8.3396
SVR 0.0015 0.2909 1.7169 0.0389 0.5394 1.3103
KELM 0.0005 0.0417 0.0460 0.0242 0.2043 0.2144

The MSE and RMSE are calculated considering all the test samples. The training time corresponds
to the training of 15,000 samples (different from the ones of the testing stage) while the testing time
corresponds to the execution of the remaining 5000 samples. For the ANN, an optimal number of
twenty neurons was identified for the hidden layer, and the optimal parameters of SVR and KELM are
shown in Table 1.

In Table 2, it is observed that KELM has a more accurate prediction in normal conditions (see
Case 1) than in conditions with high level of noise; situation that occurs in Case 2 and Case 3. It can
also be noted in Table 2 that the second most accurate approach is ANN, followed by SVR.

Table 3 presents the training and testing time for each Al execution process. In this regard, it
can be observed that KELM presents significantly lower training time than the other Als (see second
column of Table 3). The average execution time of KELM for 5000 test samples was 1.258 s, which is
still adequate for the long-term voltage stability evaluation in near real time. CPF average execution
time for a single run was 0.3216 s. Note that the KELM execution time is much shorter than the one of
the CPE.

Table 3. Training and testing time for Al execution process.

Training Time (s) Testing Time (s)
Al-Regressor
Case 1 Case 1 Case 2 Case 3
ANN 430.8661 0.0401 0.0187 0.0173
SVR 116.8658 1.3095 1.2880 1.3120
KELM 13.0696 1.2661 1.2774 1.2330

The predicted values of VSM by each Al model in the testing phase are plotted in Figures 8-10,
the VSM is scaled between 0 to 1, and a small test set (about 55 samples) was selected to present in
the figures.
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Figure 8 displays the most accurate results. Note that the MVMO-KELM model provides results
that are much more in correspondence with actual values of VSM for Case 1. The second most accurate
results can be seen in Figure 9, which are obtained by using ANN model. Lastly, Figure 10 presents the
results obtained by using MVMO-SVR model.
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Figure 8. Comparison between actual and predicted values of VSM with MVMO-Kernel Extreme
Learning Machine (KELM).
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Figure 10. Comparison between actual and predicted values of VSM with MVMO-Support Vector
Regression (SVR).

Case 1

6. Conclusions

This paper presented a hybrid Al model for the online estimation of VSM. The proposed hybrid
model combines the strengths of KELM and MVMO. In this case, the MVMO is used to optimize the
parameter settings of the KELM for the online estimation of voltage stability. The model was trained
considering several operative conditions including different generation-demand scenarios with three
types of consumers (commercial, residential and industrial) as well as N-1contingencies.

The MVMO-KELM model was successfully implemented to estimate the VSM in a benchmark
power system, demonstrating that the MVMO optimization technique guarantees an appropriate
selection of the KELM parameters that improves the accuracy of the prediction. The performance of
the MVMO-KELM model was compared, with the MVMO-SVR and an ANN. Different test cases were
taken into account corresponding to the inclusion of several noise levels in the magnitudes of nodal
voltages (inputs of the model). It was confirmed that the proposed MVMO-KELM model has a more
robust performance against noise in the input data that that of the MVMO-SVR and ANN.

The proposed MVMO-KELM model can also be incorporated within a long-term voltage stability
monitoring method. The MVMO-KELM model combined with other monitoring techniques, might
constitute a powerful tool for the evaluation of voltage able to withstand several conditions in real-scale
power systems.
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