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Abstract: It is widely accepted that conventional boost algorithms are of low efficiency and accuracy
in dealing with big data collected from wind turbine operations. To address this issue, this paper is
devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this
end, the realization of feature selection for fault detection is firstly achieved by utilizing the maximum
information coefficient to analyze the correlation among features in supervisory control and data
acquisition (SCADA) of wind turbines. After that, a performance evaluation criterion is proposed
for the improved LightGBM model to support fault detections. In this scheme, by embedding the
confusion matrix as a performance indicator, an improved LightGBM fault detection approach is then
developed. Based on the adaptive LightGBM fault detection model, a fault detection strategy for
wind turbine gearboxes is investigated. To demonstrate the applications of the proposed algorithms
and methods, a case study with a three-year SCADA dataset obtained from a wind farm sited in
Southern China is conducted. Results indicate that the proposed approaches established a fault
detection framework of wind turbine systems with either lower false alarm rate or lower missing
detection rate.

Keywords: fault diagnosis; maximum information coefficient; Bayesian hyper-parameter
optimization; gradient boosting algorithm; LightGBM

1. Introduction

Wind turbines are usually operated in remote and harsh areas with extreme weather conditions,
which might cause their faults. The gearbox faults will affect the overall performance of the equipment
and even cause human injuries and economic loss [1]. Therefore, fault detection and rapid fault
identification of wind turbine gearbox components are of great importance to reduce the operation
and maintenance costs of wind turbines and improve the production of wind farms [2,3]. Over the
years, extensive research has been carried out contributing to the fault diagnosis of wind turbines.

At present, monitoring and fault diagnosis methods are mainly used in wind turbine gearboxes
and other major components, such as wavelet-based approaches, statistical analysis, machine learning,
as well as some other hybrid and modern techniques [4–8]. However, the need for transformation
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leads to extended detection time and the selection of mother wavelet remains a challenge for fault
feature extraction of wind turbines gearboxes. Moreover, the statistical analysis needs to establish an
accurate mathematical model and it requires in-depth professional knowledge. Machine learning has
been widely used in many industrial diagnosis fields. More and more attention has been paid to the
fault diagnosis methods based on machine learning [9,10]. In machine learning, the boost algorithm
combines weakly predictive models into a strongly predictive model, which is adjusted by increasing
the weight of the error samples to improve the accuracy of the algorithm [11–14]. However, the boost
algorithm needs to use the lower limit of the accuracy of the weak classifier in advance and has limited
application in industrial fault diagnosis. To address this concern, Y. Freund and RE Schapire proposed
an AdaBoost algorithm which using the strong classifier to improve the classification accuracy and
reduce the generalization error, however, most of the boost algorithms are sensitive to outliers and
has a negative effect on the weak classifier [15]. A further study conducted by Friedman combined
Gradient Boosting (GB) with Decision Tree (DT), proposing a GBDT algorithm, which has effectively
solved the problem of feature transformation complexity, however, it suffers to process big data for
fault diagnosis [16]; Tianqi Chen proposed an XGBoost algorithm, using parallel processing and adding
a tree model complexity to the regular term, which was found can effectively solve the overfitting
problems [17]. However, since the traditional boost algorithm is sensitive to outliers and that will
significantly affect the learning results of the base classifier especially in the abnormal data sample.
Since the traditional boost methods might fail to handle big data in actual wind farms, this has a
negative influence on the computational efficiency, real-time fault detection and the accuracy of the
learned model.

However, existing studies often suffer problems solving in high computational cost and poor
performance in real-time fault detection. Microsoft Research Asia has proposed the LightGBM
algorithm which is a new GBDT algorithm with Gradient-based One-Side Sampling (GOSS) and the
Exclusive Feature Bundling (EFB) to deal with big data and large number of features respectively [18].
The algorithm generates a decision tree by leaf node segmentation method, then finds feature a
segmentation point based on a Histogram algorithm, which supports parallel learning and can
efficiently process big data which also solves problems such as low computational efficiency and
poor real-time performance [19]. There remain several challenges in fault detection with LightGBM
algorithms, such as critical parameters in the LightGBM algorithm model need to be tuned to obtain the
ideal fault detection performance, hard to guarantee the balance between the local optimization and the
global optimization in the traditional optimization algorithm, and even cause premature convergence.

Expected to address the preceding challenges, a novel method using improved LightGBM is
proposed in this research for the fault detection of wind turbine gearboxes. Within our method,
the improved LightGBM has a lower false alarm rate and lower missing detection rate compared
with the GBDT, XGBoost, LightGBM [20–22]. An improved LightGBM which combines Bayesian
hyper-parameter optimization and the LightGBM algorithm is proposed to diagnose faults and
to provide a novel method for monitoring and fault diagnosis of wind turbine gearboxes [23].
The maximum information coefficient is also used to select parameters in Supervisory Control and Data
Acquisition (SCADA) data for wind turbine gearboxes. A case study with a three-year SCADA dataset
collected from a wind farm sited in Southern China is conducted to validate the proposed approaches.

2. An Improved LightGBM Algorithm

In this section, an improved LightGBM approach is proposed for the fault detection of wind
turbine gearboxes. The method can be implemented with four steps: data preprocessing, feature
selection, model training, and LightGBM online fault detection. Firstly, the dataset is collected from
SCADA and data preprocessing is conducted. 0–1 scaling is used for data preprocessing. In machine
learning, D{X, Y} is the training dataset, where X = {x1, x1, . . . , xm} is the m-dimension feature space,
while Y ∈ [0, 1] represents the target variables [24]. Feature scaling is a method that consists of rescaling



Energies 2020, 13, 807 3 of 16

the range of features to scale the range in [0, 1] or [−1, 1], the 0–1 scaling of x can be computed
as follows:

xi =
x− xmin

xmax − xmin
(1)

where xi denotes the normalized value, x is the initial value, xmin is the minimum value of x, xmax is
the maximum value of x. Missing values also have effects on model estimation performance, while
handling missing values often includes deletion methods, and imputation methods [25]. LightGBM
was selected to deal with the possibility of missing values here as it has an amount of knowledge that
cannot be overlooked.

The second stage is for feature selection. By making feature selection, the reasonable parameters
of wind turbine gearboxes were selected and the model performance has been improved. In this part,
maximum information coefficients are proposed to measure of how much information between two
wind turbine features share. By inputting the original feature set, the maximum information coefficient
method was used for parameter selection and outputting the optimal feature subset.

The third stage is developed for Bayesian hyper-parameter optimization, as LightGBM is a
powerful gradient boosting algorithm which has numerous hyper-parameters. Therefore, here
Bayesian hyper-parameter optimization is proposed to tuning the hyper-parameters into LightGBM.
By dividing the processed data into two subsets—training dataset and testing dataset—and using the
training dataset to construct the improved LightGBM fault detection model. Then the training datasets
and the test datasets are inputted, by setting the LightGBM parameter search field and using Bayesian
hyperparameter optimization on LightGBM and then output the LightGBM optimal hyperparameters
and obtained the final model.

The final step comes to LightGBM online fault detection. By inputting the optimal LightGBM
hyperparameters to obtain the final model, followed by applying the final model on testing datasets,
and embedding the missing detection rate, finally the false alarm rate can be used to calculate the
performance evaluation criteria. The fault sample and the fault-free sample are distinguished according
to the improved LightGBM method.

This paper proposed a performance evaluation criterion for the improved LightGBM model to
support fault detection. By embedding the confusion matrix as a performance indicator, an improved
LightGBM fault detection approach is developed. Subsequently, the improved LightGBM method was
used to detect faults of wind turbines. The framework of this study can be shown as Figure 1.
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2.1. Maximum Information Coefficient

The theory of maximum information coefficients is used to measure the strength of the numerical
correlation between the two features [26]. Given X is a discrete variable, the information entropy [27]
of X can then be expressed as

H(X) = −
∑m

i=1
P(xi)log2P(xi) (2)
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Conditional entropy refers to the conditional probability distribution of X occurring when random
variable Y occurs.

H(X|Y) = −
∑

y∈Y
P(y)

∑
x∈X

P(x|y)log2P(x|y) (3)

Substituting information for Equation (2) minus Equation (3)

I(X; Y) =
∑

X,Y
P(x|y)log2

P(x, y)
P(x)P(y)

(4)

For the random variable X, the maximum information coefficient of Y is

MIC(X; Y) =
max

|X|·|Y| < B
I(X; Y)

log2
{
min(|X|, |Y|)

} (5)

where |X|·|Y| represents the number of grids. Parameter B represents the 0.6th power of the total
amount of data.

The maximum information coefficient ranges from 0 to 1, and the closer the value is to 1, the
stronger the correlation between the two variables, and vice versa.

2.2. LightGBM

Light Gradient Boosting Machine (LightGBM) is a Gradient Boosting Decision Tree (GBDT)
framework based on the decision tree algorithm proposed using gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB). The continuous features can be discretized by the GBDT
algorithm, but it only uses the first-order derivative information when optimizing the loss function, the
decision tree in GBDT can only be a regression tree which is because each tree of the algorithm learns
the conclusions and residuals of all previous trees. Moreover, GBDT is challenged in accuracy and
efficiency with the growth of data volume. The XGBoost algorithm introduces the second derivative to
Taylor’s expansion of the loss function and the L2 regularization of the parameters to evaluate the
complexity of the model, and can automatically use the CPU for multi- threaded parallel computation,
after that, the efficiency and accuracy of diagnosis can be improved. However, the leaf growth mode
grows with the greedy training method of layer-by-layer. Then LightGBM adopted the histogram-based
decision tree algorithm. The leaf growth strategy with depth limitation and multi-thread optimization
in LightGBM contributes to solve the excessive XGBoost memory consumption, which can process big
data with have higher efficiency, lower false alarm rate and lower missing detection rate.

Given the supervised learning data set X = {(xi, yi)}
N
i=1, LightGBM was developed to minimize

the following regularized objective.

Obj =
∑

i

l(yi, ŷi) +
∑

k

Ω( fk) (6)

In this algorithm, logistic loss function is used to measure the difference between the prediction ŷi

and the target yi.
l
(
yi, ŷi

)
= yi ln (1 + e−ŷi) + (1− yi) ln (1 + eŷi) (7)

Regression tree was then used in LightGBM:

FT(X) =
T∑

t=1

fi(x) (8)
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The regression tree can be represented by another form, namely wq(x), q ∈ {1, 2, . . . , J}, where J is
the number of leaf nodes, q is the decision rule of the tree, w is the sample weight, and the objective
function can be expressed as:

Obj(t) =
n∑

i=1

l
(
yi, ft−1(xi) + ft(xi)

)
+

∑
k

Ω( fk) (9)

The traditional GBDT uses the steepest descent method, which only considers the gradient of the
loss function. In LightGBM, Newton’s method is used to quickly approximate the objective function.
After further simplification and deriving of Equation (9), the objective function can be expressed as
Equation (10):

Obj(t) �
n∑

i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] +

∑
k

Ω( fk) (10)

where gi, hi represents a first-order loss function and a second-order loss function, respectively.

gi = ∂Ft−1(xi)
Ψ(yi, Ft−1(xi))

hi = ∂2
Ft−1(xi)

Ψ(yi, Ft−1(xi))
(11)

Using Ij to represent the sample set of leaf j, Equation (11) can be transformed as follows:

Obj(t) =
J∑

j=1

[

∑
i=Ij

gi

wj +
1
2
(
∑
i=Ij

hi + λ)w2
j ] (12)

Given the structure of the tree q(x), the optimal weight of each leaf node and the limit of LT can be
obtained through quadratic programming:

w∗j = −

∑
i∈I j

gi∑
i∈I j

hi + λ
(13)

L∗T = −
1
2

J∑
j=1

(
∑

i∈I j
gi)

2∑
i∈I j

hi + λ
(14)

The gain calculation formula then is:

G =
1
2
[
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ
] (15)

LightGBM uses the maximum tree depth to trim trees and avoid overfitting, using multi-threaded
optimization to increase efficiency and save time.

2.3. Bayesian Hyper-Parameter Optimization

The main parameters which affect the performance of the LightGBM model are the number of
leaves, the learning rate, etc., instead of being obtained through training, these parameters need to be
manually adjusted. These parameters were defined as hyper-parameters [28]. Traditional methods of
hyper-parameter optimization include grid searching, random searching, and so on. Although grid
searching supports parallel computing, it is memory consuming [29]. The purpose of the random
searching is to obtain the optimal solution of the approximation of the function by random sampling
in the searched range, which is easier to jump out of the global optima and cannot guarantee an
optimal solution.
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The Bayesian optimization is based on the past evaluation results of the objective function,
using these results to form a probability model, and mapping the hyper-parameters to the objective
function’s scoring probability to find the optimal parameter θ, which can be expressed as P(Y|X) [30].
As to the selection of probability model, it can be divided into Gaussian process, random forest
regression, and Tree-structured Parzen Estimator (TPE). The TPE method was found can achieve
better performance. The Bayesian Tree-structured Parzen estimation method is used to optimize the
parameters of LightGBM.

Suppose θ = {θ1 ,θ2 . . . θn} represents hyperparameters in machine learning algorithm A (such
as LightGBM), Dtrain data set is used for training, and Dvalid data set is used for verification (i.e.,
hyperparameter optimization), and the two are independently distributed. L (A, θ, Dvalid, Dtrain) is
used to represent the verification loss of algorithm A. K-fold cross-validation is generally used to
address the optimization requirement:

f (θ) =
1
k

k∑
i=1

L(A,θ, Dvalid, Dtrain) (16)

The interval range for parameters are needed to set in LightGBM algorithm. In the process of
parameter optimization, the model is continuously trained, and the classification result obtained by
each parameter combination is evaluated by the evaluation function. Finally, the optimal parameter
combination is obtained. The combination is substituted into the LightGBM algorithm, and the
classification performance is improved.

Implementation of the proposed LightGBM hyper-parameters optimization can be detailed as
follows [31]:

Algorithm 1: LightGBM via hyper-parameters optimization model

Input: LightGBM hyper-parameters θ = {θ1,θ2, . . . θn}, LightGBM Model M, P to record the settings and the
corresponding loss

1: Initialize M0; P={}
2: For n = 1, 2, . . . do
3: find the local optimal hyper-parameter θ∗ by minimizing the current model Mn−1: θ∗ = argminMn−1(θ)

4: Calculate the loss ∂ under the settings θ∗ of loss function L: ∂ = L(θ∗)
5: Store θ∗ and the corresponding loss ∂ in P
6: Fit a new model Mb = M∪ (θ∗, ∂)
End for

Output: optimal hyper-parameters of LightGBM θ with minimum loss ∂ in P

Algorithm 2: Off-line implementation of improved LightGBM fault detection method

Input: LightGBM Model Mb, wind turbines gearboxes SCADA dataset D = {(x1y1), (x2, y2), . . . (xn, yn)}

1: Collecting normal wind turbines gearboxes operating dataset D
2: Handing missing data and apply data normalization for D by Equation (5), to have D, dividing dataset as
Dtest and Dtrain
3: Establish LightGBM model Mb based on Dtrain, θ from Algorithm 1
3: Establish LightGBM model Mb based on Dtrain, θ from Algorithm 1
4: Make a fault decision according to Equation (1)
5: Calculate the performance according to Equations (15) and (16)

Output: False Alarm Rate and Missing Detection Rate
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Algorithm 3: Online implementation of improved LightGBM fault detection method

Input: LightGBM Model Mb, online data Dtest

1: Obtain Dtest from Algorithm 2
2: Establish LightGBM model Mb based on Dtest and optimal hyper-parameters of LightGBM θ from
Algorithm 1
3: Make a fault decision according to Equation (1)
4: If the data is in fault, calculate the error between the model prediction yp and the online test data y0

5: Calculate the performance according to Equations (15) and (16)

Output: False Alarm Rate and Missing Detection Rate

Algorithm 1, 2, 3 indicates the process of LightGBM via hyper-parameters optimization model,
Off-line implementation of improved LightGBM fault detection method, online implementation
of improved LightGBM fault detection method, respectively. LightGBM is a powerful machine
learning method that has numerous hyper-parameters. In this paper, TPE is proposed to tune the
hyper-parameters in LightGBM.

3. Application Verification and Analysis

3.1. Experimental Setup

To validate the effectiveness of the proposed gearbox fault detection model, a 1.5MW wind turbine
located in a wind farm in China was selected for case studies, with three years’ gearboxes data extracted
from the SCADA dataset. By analyzing the wind turbine gearbox mechanism and expert experience,
the data within the period time from 30 min before the start of fault to 30 min after the fault was
selected. The selected raw data can be found in Table 1.

Table 1. Part of the raw data of wind turbines on May 12, 2017.

Feature
Time

16:05:38 16:05:40 16:05:42 16:35:04 16:35:06 17:00:02 17:00:04

Gearbox shaft 1
temperature (◦C) 79.1 79.2 79.2 72.8 72.7 75.4 75.5

30 s average wind
speed (m/s) 7.37 7.38 7.38 7.47 7.61 7.96 8.03

Gearbox inlet oil
temperature (◦C) 68.4 68.5 68.5 68.1 68 68.4 68.4

Gearbox oil
temperature (◦C) 76.1 76.1 76.1 72.1 72 75.2 75.3

Generator winding
temperature U (◦C) 73.3 73.3 73.3 68.3 68.3 67.8 68

Generator winding
temperature V (◦C) 73.1 73.1 73.1 68 67.9 66.9 67

Generator winding
temperature W (◦C) 73 73 73 67.8 67.8 67.4 67.6

Generator bearing
temperature A (◦C) 48.5 48.5 48.5 50.8 50.8 49.8 49.8

Main bearing gearbox
side temperature (◦C) 42.6 42.6 42.6 43.7 43.7 42.7 42.7

Nacelle temperature
(◦C) 30.5 30.5 30.5 34.3 34.2 35 34.9

Nacelle outdoor
temperature (◦C) 43.2 43.2 43.2 43 43 42.6 42.6

A schematic diagram of wind turbines including the wind rotor, gearbox, etc. It is illustrated
in Figure 2. 18 state parameters have been selected according to expert experience and the method
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about feature extraction of wind turbine gearboxes. A set of data from China is provided in Table 1 to
illustrate the magnitudes of the attributes.Energies 2020, 13, x FOR PEER REVIEW 8 of 16 
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Figure 2. The main structure of a typical wind turbine.

As shown in Table 2, this dataset contains three different datasets including dataset 1, dataset 2,
and dataset 3. with each dataset has two types of sample including fault-free and faulty. Dataset 1
includes the gearbox oil over temperature data and the fault-free data, dataset 2 includes the gearbox
oil level fault data and the fault-free data, while dataset 3 includes the gearbox lubrication oil pressure
fault data and fault-free data respectively.

Table 2. Dataset description.

Dataset Total Number of Samples Total Number of Features Fault-Free Faulty

Dataset 1 3427 216 1714 1713
Dataset 2 3015 216 1513 1502
Dataset 3 5376 216 2655 2721

3.2. Feature Selection

The gearbox bearing temperature information is used to evaluate the health of the gearbox.
Parameters that have a great influence on the parameters was chosen. Based on the expert experience
method and the method about feature extraction of wind turbines gearboxes, 18 parameters that
the most relevant features to the feature of gearbox oil temperature are obtained. The maximum
information correlation between these datasets is shown in Figures 3–5.
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As illustrated in Figures 3–5, the correlation between each feature is quite different. To avoid weak
and redundant features influences, the correlation between the 18 state features was further explored.
According to the maximum information coefficient correlation analysis method, the correlation
coefficient between each feature and the gearbox oil temperature are calculated (shown in Table 3).

Table 3. Gearbox features correlation analysis results.

Feature Maximal Information Coefficient
Correlation Analysis

Dataset Tag 1 2 3

30 s average wind speed W 0.492636 0.657059 0.360000
Gearbox shaft 1 temperature AL 0.908571 0.975694 0.938000
Gearbox shaft 2 temperature AM 0.941731 0.980562 0.910000
Gearbox inlet oil temperature AN 0.811943 0.984740 0.870000

Gearbox oil temperature AO 0.999999 0.999620 1.000000
Generator winding temperature U AT 0.991900 0.780605 0.535000
Generator winding temperature V AV 0.994146 0.783849 0.537000
Generator winding temperature W AX 0.993907 0.762062 0.535000
Generator bearing temperature A AZ 0.805075 0.739747 0.526000
Generator bearing temperature B BA 0.895229 0.837027 0.489000

Nacelle outdoor temperature BD 0.523965 0.971577 0.485000
Nacelle temperature BE 0.803906 0.478290 0.685000

Main bearing rotor side temperature BS 0.734504 0.721562 0.214000
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Table 3. Cont.

Feature Maximal Information Coefficient
Correlation Analysis

Dataset Tag 1 2 3

Main bearing gearbox side temperature BT 0.895784 0.822257 0.489000
Pitch position target BU 0.644983 0.477987 0.262000

Converter motor speed FD 0.647048 0.000000 0.345000
Converter power FF 0.645016 0.000000 0.324000

Main loop rotor speed FJ 0.662941 0.000000 0.287000

From the correlation analysis results in Table 3, it can be concluded that the correlation between
the various state parameters and the gearbox bearing temperature is different. To avoid the impacts of
uncorrelated and weakly correlated state parameters on the gearbox fault detection, the correlation
coefficient was set as 0.50 to 0.95 (shown as bold parts in Table 3). The characteristics between them are
also included in Table 3.

3.3. Hyper-Parameter Optimization in LightGBM

The selection of hyper-parameters is of great importance in modelling. There are a great deal
of hyper-parameters to choose from in LightGBM. To improve the real-time performance in fault
detection, only the parameters that have significant influence on model performance were selected for
hyper-parameter optimization. The main parameters of LightGBM in the experiment are shown in
Table 4 [32].

Table 4. Searching domain of hyper-parameters in LightGBM.

Parameters Description Defaults Domain

learning_rate Learning rate 0.1 [0.01, 1]
num_leaves Number of leaves per tree 31 [8, 40]
max_depth Maximum learning depth −1 [3, 20]

Feature_fraction The proportion of the selected feature to the
total number of features 1.0 [0.5, 1]

Bagging_fraction The ratio of the selected data to the total data 1.0 [0.5, 1]

3.4. Gearbox Fault Detection Performance Evaluation Criteria

There are four states corresponding to the normal state, the gearbox total failure, gearbox oil
temperature overrun, gearbox oil pressure failure, respectively, recorded as P = [0, 1, 2, 3], which was
divided into four sections. The three faults with the normal state are combined and fault diagnosis have
been performed through the LightGBM algorithm to obtain four sets of classification types. The fault
diagnosis problem studied in this paper can be regarded as a binary classification. The false alarm
rate (FAR) and the missing detection rate (MDR) are adopted as the performance evaluation criteria
which is a commonly used confusion metric to measure the performance of a classification method.
The mixed matrix of the binary classification problem is shown in Table 5:

Table 5. Confusion matrix of binary classification problems.

Actual Class Predictive Class

Faulty Fault free
Faulty TP FP

Fault free FN TN

In this study, True Positive (TP) is the number of cases correctly identified as faulty; False Positive
(FP) is the number of cases wrongly identified as fault-free; True Negative (TN) is the number of cases



Energies 2020, 13, 807 11 of 16

correctly identified as fault-free; False Negative (FN) is the number of cases wrongly identified as
faulty. The False Alarm Rate (FAR) and Missing Detection Rate (MDR) are proposed to evaluate the
probabilities of false alarms and detection alarms, respectively.

False Alarm Rate (FAR) FAR =
FP

FP + TN
(17)

Missing Detection Rate (MDR) MDR =
FN

TP + FN
(18)

As shown in the following figure, there are box plots of FAR and MDR under four different
algorithms: GBDT, XGBoost, LightGBM, and LightGBM_TPE.

4. Results and Discussion

In this section, case studies were conducted with a three-year SCADA dataset collected from a
wind farm sited in Southern China. The effectiveness of the proposed improved LightGBM framework
fault detection was then validated. To further demonstrate the superiority of the proposed framework,
comparative studies were implemented between three mainstream fault diagnosis methods, namely
GBDT, XGBoost, LightGBM.

By using different evaluation criteria in the three different datasets, the FAR and MDR under
different algorithms are depicted shown in Figures 6–11. To avoid over-fitting in the model, this paper
employed the 10-fold cross-validation method to evaluate the model. The smaller the FAR and MDR
the better the performance.

Gradient boosting decision tree (GBDT) is a powerful boosting framework, which is widely used
in machine learning models and has been successful applied in fault diagnosis [33]. Thus, GBDT was
applied to predict the faults and classify the type of faults of wind turbines gearboxes. In this paper,
as shown in Figures 6–10, all the fault detection results by using GBDT have a relatively higher FAR
and MDR than other boost algorithms. From Figure 6, the average of FAR using GBDT is 0.107. The
boxplot shows that the classification of the GBDT method is better. Compared with the MDR using the
GBDT method in Figures 6 and 7, the figure shows that the model has not been fitted.
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XGBoost, as a strong classification model in machine learning, has been widely applied in fault
diagnosis [34]. Moreover, it has been reported that this approach can successfully detect faults in
industrial fields [35]. Therefore, XGBoost was also applied to detect faults for comparison. The results
in Figures 8 and 9 indicate that the performance of the fault diagnosis is slightly worse than that of the
LightGBM. The average of FAR and MDR using XGBoost was 0.165 and 0.178, respectively. The general
performance of XGBoost is better than GBDT, this may be because XGBoost uses a second-order Taylor
expansion to approximate the optimal solution of the objective function.

LightGBM is of two novel techniques: gradient-based one-side sampling (GOSS) and exclusive
feature bundling (EFB) which can deal with a large number of data instances and large numbers
of features in wind turbines, respectively [36]. In this research, the GOSS is adopted to split the
optimal node using variance gain and EFB. The GOSS has no impact on the training accuracy and will
outperform random sampling. The results using the LightGBM method are illustrated in Figures 6–11.
The average of FAR and MDR in Figures 10 and 11 indicates that it has better performance than
existing methods.

To reduce the FAR and MDR, the Maximum Information Coefficient (MIC) is proposed for feature
selection and Tree-structured Parzen Estimator (TPE) for hyper-parameter optimization to using the
improved LightGBM methods to detect the wind turbine gearbox faults including the gearbox total
failure, gearbox oil temperature overrun, and gearbox oil pressure failure. Experimental results indicate
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that the proposed method can also achieve good performance for real-time fault detecting. Figures 8
and 9 show that the average FAR and the average MDR of LightGBM via the TPE method are 0.10 and
0.16, respectively, which are lower than the FAR of GBDT and XGBoost and lower than the MDR of
GBDT and XGBoost. Similarly, as shown in Figures 10 and 11, it can be known that LightGBM via
the TPE method has stronger generalization capability than GBDT and XGBoost. It can be known
from the experiments that the hyper-parameter optimization of LightGBM successfully solves the
fault detection problems and improves the model performance, and the TPE method is superior to the
grid search method. Consequently, the improved LightGBM method in wind turbines gearboxes fault
detection is effective and advanced.

The preceding comprehensive comparison studies demonstrate that the improved LightGBM has
superior performance over GBDT, XGBoost, and LightGBM for wind turbine gearbox fault diagnosis.
Experimental results demonstrated that the proposed improved LightGBM fault diagnosis significantly
outperformed the traditional boosting algorithm in terms of feature learning, model training, and
classification performance.

5. Conclusions

Over the years, machine learning methods for fault diagnosis were well studied by experts
and scholars. The effort was devoted to formulating boost-based fault diagnosis methodology and
developing corresponding fault diagnosis systems. However, challenges are still existing. This paper
provided a novel method for fault detection. The main contributions including:

A feature selection approach based on MIC is constructed to select state parameters, remove
irrelevant, redundant, or useless variables, and it can improve fault detection performance.

By using the TPE hyper-parameter optimization and a novel LightGBM algorithm, an intelligent
fault detection method is finally developed in this research. The improved LightGBM classification
performance evaluation criteria are better than other algorithms, with high-efficiency parallelization,
fast speed, high model accuracy, and low occupancy rate. In addition, the accuracy of fault detection
is up to 98.67%, thus the presented approach for wind turbine gearboxes is feasible in practical
engineering not only in wind turbines fault detection but also in large-scale industrial fault detection.

Experimental results show that the method is not only suitable for fault diagnosis of wind turbine
gearboxes but can also applied in industrial system fault diagnosis with multiple feature vectors and
low diagnostic accuracy. Based on the improved LightGBM wind turbines gearboxes fault detection
presented in this paper, suggestions for future studies might include:

1. In the case of few imbalanced data distributions in fault diagnosis field, further investigation can
be implemented on the imbalanced dataset based on boost algorithm methods to mitigate the
influence on skewed data distribution between faulty samples and fault-free samples.

2. In addition, real-time fault prediction is of great importance in industrial applications.
3. Combined applications of the improved LightGBM algorithm with other techniques might offer

the potential to overcome the drawbacks of each method.
4. To improve fault diagnosis performance, hybrid fault diagnosis approaches might be a desired

solution which worth to be investigated in upcoming studies.
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