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Abstract: To perform the fault protection for the microgrid in grid-connected mode, the wavelet
energy fuzzy neural network-based technique (WEFNNBT) is proposed in this paper. Through the
accurate activation of protective relay, the microgrid can be effectively isolated from the utility
power system to prevent serious voltage fluctuation when the power quality of power system is
disturbed. The proposed WEFNNBT can be divided into three stages—feature extraction (FE), feature
condensation (FC), and disturbance identification (DI). In the FE stage, the feature of power signal
at the point of common coupling (PCC) between microgrid and utility power system would be
extracted with discrete wavelet transform (DWT). Then, the wavelet energy and variation of singular
power signal can be obtained according to Parseval Theorem. To determine the dominant wavelet
energy and enhance the robustness to the noise, the feature information is integrated in the FC stage.
The feature information then would be processed in the DI stage to perform the fault identification
and activate the protective relay if necessary. From the experimental results, it is realized that the
proposed WEFNNBT can effectively perform the fault protection of microgrid.

Keywords: fault protection; power quality; wavelet energy fuzzy neural network-based technique;
microgrid; voltage fluctuation

1. Introduction

Due to advantages of reducing the investment of new energy costs in power systems, providing
the compensation of reactive power, regulating the frequency of power system, increasing the system
backup capacity, and improving the stability of power system, the distributed generation has become
popular in recent years [1,2]. In this way, the traditional unidirectional transmission of the passive
distribution network has translated into the intelligent active network with bidirectional power
transmission, which is called the microgrid. The structure of the microgrid is similar to that of a
traditional large power grid. The only difference is that the sizes of the power supply and the load in
the microgrid are relatively small. For a place where the traditional utility power system is difficult to
provide power supply, the microgrid can resolve this problem for these remote areas or the systems
with special requirements.

The microgrid is usually connected to the utility power system through the protective relay [3–5].
Under normal circumstances, the microgrid is operated in parallel with the utility power system, which is in
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the grid-connected mode. However, when a fault occurs in the utility power system or inside the microgrid,
the protective relay switches off and the microgrid is turned into the island operation mode. When the
fault is removed, the microgrid can be reconnected to the utility power system. With the estimation of the
voltages, phase angles, and frequencies, on both sides of the point of common coupling, the microgrid is
considered to be synchronized with and reconnected to the utility power system if the measured values
on both sides are the same or if the difference is within the specification. If the microgrid and the utility
power system are not synchronized, the direct reconnection will lead to current surge, overvoltage, system
instability, etc., and even equipment damage. Therefore, the accurate fault protection system is necessary to
isolate the microgrid from the utility power system to prevent serious voltage fluctuation when the power
quality of power system is disturbed [6].

In order to detect power disturbances, many wavelet transform-based techniques have been proposed
in the literature due to their advantage of feature extraction for the singular signals. The multiresolution
characteristics of wavelet analysis and traditional neural network have been applied to the fault detection
and localization in the microgrid, where the high-level wavelet coefficients are required [7]. The wavelet
neural network-based detection method has been proposed in [8], which can accurately estimate the
dominant lower-order harmonics in the presence of interference with only half-cycle data. In reference [9],
many power disturbances, such as instantaneous interruptions, capacitor switching, voltage sags, swells,
harmonic distortion, and flickers, can be detected and effectively classified by feeding the results of
wavelet transform into the neural network. The wavelet-based deep neural network is used to perform
the fault detection in the microgrid system, where many features are required to help the training
of neural network [10]. In addition to the neural networks, the fuzzy systems can also be applied
to power quality analysis and identification systems to improve the drawbacks of traditional power
quality analysis and evaluation methods [11]. In reference [12], the power quality disturbances can
also be identified by a deep learning neural network. From the above techniques, it is found that the
accuracy of power disturbance identification is dependent on the structures of classifiers. In this way,
the complexity of classifier has been dramatically increased and then the hardware requirements for
the implementation have been critical. To resolve this problem, the feature condensation based on
the wavelet energy and variation of singular power signal is proposed in this paper to integrate the
feature information. Then, the dominant features can be enhanced for the identification of power
disturbance and reduce the required complexity of classifier. This is because all the minor features
from the noise interference can be removed or merged in the fuzzy inference. The proposed wavelet
energy fuzzy neural network-based technique (WEFNNBT) can be divided into three stages, including
feature extraction (FE), feature condensation (FC), and disturbance identification (DI). According to
the above-mentioned analysis mechanism, the main contributions of proposed fault protection system
are as follows:

(1) The required features for the identification can be reduced. In this way, the complexity of
neural network-based classifier can be simplified and then the hardware requirements for the
implementation will also be mitigated.

(2) The noise interference can be effectively removed due to the fuzzy inference.
(3) The dominant features for the identification of power disturbance can be enhanced and the

recognition accuracy will be increased.
(4) According to the revisions of IEEE Std. 1159-2019 [13], the identification mechanism of proposed

fault protection system can be easily and flexibly adjusted without taking hardware requirements
into account.

The organization of this paper is as follows. In Section 2, the identification mechanism of
proposed WEFNNBT for the microgrid fault protection is introduced. Some comprehensive case
studies are designed and analyzed with implementation on the microcontroller to verify the recognition
performance of proposed WEFNNBT fault protection strategy in the field experiments of Section 3.
The performance discussion will be displayed in Section 4.
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2. Proposed Wavelet Energy Fuzzy Neural Network-Based Microgrid Fault Protection Strategy

Figure 1 depicts the architecture of microgrid fault protection system, where the power signal at
PCC between microgrid and utility power system is extracted via voltage/current sensors. The proposed
WEFNNBT implemented on the microprocessor is used to perform the identification of power
disturbances. Once the fault is recognized, the microprocessor triggers the driver to switch off the
protective relay and the microgrid is be turned onto the island operation mode. The solution procedure
of proposed WEFNNBT is shown in Figure 2 and the details of fault identification are then addressed.
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Figure 2. Solution procedure of proposed wavelet energy fuzzy neural network-based technique (WEFNNBT).

2.1. Feature Extraction (FE)

Due to the multiresolution analysis of DWT, the singular features of power signal s(t) can be easily
extracted with Equation (1), where Φ(t) and Ψ(t) are called scaling function and wavelet function, cj0
and dj are scaling coefficient and wavelet coefficient, j is the index for the wavelet analysis level and j0
is the fundamental level, and t and k are the time indices, respectively.
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s(t) =
∑

k

c j0(k)2
− j0/2Φ(2− j0 t− k) +

∑
k

∑
j= j0

d j(k)2− j/2Ψ(2− jt− k) (1)

In general, the singular features of fault signal can be observed in the wavelet coefficients.
For example, a power signal suffered from the 1.2-pu voltage swell during 0.01 s and 0.07 s, the 0.75-pu
voltage sag during 0.0332 s and 0.06 s, and the voltage interruption at 0.083 s, as shown in Figure 3.
It is found that the singular features of power events defined in IEEE Std. 1159-2019 can be detected in
the signals of wavelet coefficients d1, d2, and d3 [13]. According to the experimentation in this paper,
the Daubechies Wavelet (DB4) is used for the feature extraction. However, the extracted features
could not be used to identify the power disturbances directly. As a result, the obtained features were
processed in the stages shown in Figure 3.
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2.2. Feature Condensation (FC)

To realize the severity of power events, the energy of wavelet coefficients is evaluated. According to
Parseval Theorem, the energy of power signal in the time domain would be the same with that in the
frequency domain, as represented in Equation (2) [13].∫ ∣∣∣s(t)∣∣∣2dt =

∑
k

∣∣∣c j0(t)
∣∣∣2 +∑

k

∑
j=1

∣∣∣d j(t)
∣∣∣2 (2)
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Through the definition of wavelet coefficient energy Ej in Equation (3), the energy in different
wavelet analysis levels can be compared and used to activate the protective relay.

E j =
∑

k

∣∣∣d j(t)
∣∣∣2 (3)

In this paper, each 0.25-cycle voltage and current signals are analyzed with DWT and the
energy of wavelet coefficients are calculated. After testing numerous power signals, four indices in
Equations (4)–(7) are selected as the important features for the fault identification of proposed fuzzy
neural network-based technique.

E = E1 + E2 (4)

P =
E1

E1 + E2
(5)

Max =
max(d2)√∑
‖E2‖

2
(6)

Min =
min(d2)√∑
‖E2‖

2
(7)

where E is the total energy of two high-frequency wavelet analysis levels, P is the ratio between E1 and
E, and Max and Min determine the variation of power signal. Since E contains the event features and
noises, five classes are defined to distinguish the fault signal from the interference. If P is larger than 1,
it means that the main event feature is significant. The ratios between the maximum or minimum of d2

and E2 can be used to realize the intensity of power signal variation. The membership functions of E, P,
Max, and Min are displayed in Figure 4 and Table 1, according to the experimentation. The membership
function of fuzzy output is shown in Figure 5 and Table 2.
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Table 1. Membership functions of E, P, Min, and Max.

Membership Function Name Range

E-MF1 Zero (−1000, 0.001, 0.1)

E-MF2 Decimal (0, 0.1, 1)

E-MF3 Digit (0.1, 30, 200)

E-MF4 Hundred (100, 500, 2000)

E-MF5 Thousand (1499, 2999, 10,000)

P-MF1 Low (−0.8, 0, 0.8)

P-MF2 Band (0.4, 1, 1.6)

P-MF3 High (1.2, 2, 2.8)

Min-MF1 Big (−1.48, −1, −0.6)

Min-MF2 Mid (−0.8, −0.4, 0)

Min-MF3 Small (−0.3, 0.2, 0.68)

Max-MF1 Small (−0.68, −0.2, 0.3)

Max-MF2 Mid (0, 0.4, 0.8)

Max-MF3 Big (0.6, 1, 1.48)
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Table 2. Membership functions of fuzzy output (POFF and PON means probably off and probably on).

Membership Function Name Range

MF1 OFF (−0.25, 0, 0.25)

MF2 POFF (0, 0.25, 0.5)

MF3 PON (0.5, 0.75, 1)

MF4 ON (0.75, 1, 1.25)

2.3. Disturbance Identification (DI)

Through the extracted features of fuzzy analysis, the identification of power quality disturbances
based on the fuzzy neural network is established for the fault protection of microgrid, as depicted in
Figure 6. In this way, the output of neural network can be used to determine the state of protective relay.
In this paper, Levenberg-Marquardt algorithm is applied for the training of neural network and the
evaluation index in the training process is based on the mean-squared error (MSE) [8,9]. According to
the experimentation in this paper, the original 135 fuzzy rules (5 × 3 × 3 × 3) can be reduced to 27,
as listed in Table 3.
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For the fuzzy membership layer, the ith output node xi would be the membership function output
MFOk, as addressed in Equation (8), where M is the number of features.

xi = fi(MFOk), i = 1, 2, . . . , M, k ∈ {E, P, Max, Min} (8)

In the rule layer, the jth output node yj would be

y j = f j(
∏

i

wi jxi) =
∏

i

wi jxi, j = 1, 2, . . . , N (9)

where Π means the multiplication of input signals and output of the results of product, wij is the weight
between the fuzzy membership layer and rule layer, and N is the number of rules with complete
rule connection.

In the output layer, the single output node O would be the absolute value of the summation of all
input signals, as shown in Equation (10), where wj is the weight associated with jth rule.

O = f (
∑

j

w jy j) =

∣∣∣∣∣∣∣∣
∑

j

w jy j

∣∣∣∣∣∣∣∣, j = 1, 2, . . . , N (10)

Table 3. Fuzzy rules for fault identification and trigger of protective relay.

IF THEN

Rule P Max Min E Output

1 High Mid Mid Thousand PON

2 High Mid Mid Hundred ON

3 High Mid Mid Digit ON

4 High Mid Mid Decimal ON

5 High Big Small Thousand OFF

6 High Big Small Hundred PON

7 High Big Small Digit ON

8 High Big Small Decimal ON

9 High Small Big Thousand OFF
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Table 3. Cont.

IF THEN

Rule P Max Min E Output

10 High Small Big Hundred PON

11 High Small Big Digit ON

12 High Small Big Decimal ON

13 Band Big Small Thousand OFF

14 Band Big Small Hundred PON

15 Band Big Small Digit ON

16 Band Big Small Decimal ON

17 Band Big Small Zero ON

18 Band Small Big Thousand OFF

19 Band Small Big Hundred PON

20 Band Small Big Digit ON

21 Band Small Big Decimal ON

22 Band Small Big Zero ON

23 Low Mid Mid Thousand OFF

24 Low Mid Mid Hundred OFF

25 Low Mid Mid Digit OFF

26 Low Mid Mid Decimal POFF

27 Low Mid Mid Zero ON

3. Case Studies

To examine the performance of proposed WEFNNBT for microgrid fault protection,
the experimental setup in Figure 7 is implemented. For the training of microgrid fault protection
system, 1000 noisy power signals extracted from this setup are used. The detection results of normal
power signal and interruption are displayed in Figures 8 and 9, respectively. According to numerous
experimental tests, the proposed method can deal with most identification of power events correctly
compared with the threshold method (TM) in [14], the traditional fuzzy analysis (FA) in [15], and the
traditional back-propagation neural network (BPNN) in [16], as listed in Table 4.
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relay based on identification with proposed WEFNNBT for normal power signal.
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Figure 9. (a) Waveform of interruption, (b) state of protective relay based on identification with TM for
interruption, (c) state of protective relay based on identification with FA for interruption, (d) state of
protective relay based on identification with BPNN for interruption, and (e) state of protective relay
based on identification with proposed WEFNNBT for interruption.
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Table 4. Comparison of identification accuracy.

Event
Method

TM FA BPNN Proposed WEFNNBT

Normal 97.5% 98.1% 67.8% 99.2%

Sag 97.1% 16.1% 97.8% 98.8%

Swell 96.8% 17.5% 97.6% 98.6%

Harmonic 13.7% 96.4% 97.1% 99.1%

Impulse Transient 86.3% 95.8% 96.9% 98.2%

Oscillation 84.5% 95.2% 96.4% 97.7%

Interruption 12.8% 15.2% 97.7% 98.9%

The incorrect identification for the normal power signal with BPNN resulted from the inefficient
robustness of DWT to the noise. In the proposed method, the drawback of DWT would be modified
with the fuzzy analysis to largely reduce the interference of noise.

To examine the practical performance of proposed WEFNNBT in the field measurement,
the microgrid system in National Central University, Taiwan is tested. The system information
and photo are displayed in Table 5 and Figure 10. A 0.75-pu and 180 degree, a sag event occurs and
is quickly removed. The testing results for the identification with TM, FA, BPNN, and proposed
WEFNNBT are revealed in Figure 11. It is easily found that the TM and FA could not recognize the
power event due to the short duration. The incorrect protection command is triggered in BPNN, since
the noisy interference is present in DWT. The proposed WEFNNBT can accurately detect the event time
and activate the protective relay correctly with the advantages of robustness in FE, FC, and DI stages.

Table 5. System information of microgrid in National Central University, Taiwan.

Building Size 4 20-foot containers

Load Demand 10 kWh/day

Solar Generation 7.4 kW; the total power generation per day is 7.4 kW × 3.9 h = 28.86 kWh
3.9 h is the average sunshine hour in National Central University, Taiwan

Storage System
Lithium-ion Battery 21.6 kWh

Fuel Cell 5 kW

Power Inverter Three-phase 15 kW, AC output voltage is 220 V
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Figure 11. (a) Waveform of 0.75-pu and 180 degree sag, (b) state of protective relay based on
identification with TM for sag, (c) state of protective relay based on identification with FA for sag,
(d) state of protective relay based on identification with BPNN for sag, and (e) state of protective relay
based on identification with proposed WEFNNBT for sag.

4. Discussions

According to the testing results, it is found that the TM will lead to misclassification by simply
setting the threshold value. If the threshold value is unsuitably adjusted, the originally detected faults
may be ignored. In addition, the difference of phase angle will interfere with the determination of
threshold value. There is a hard trade-off between misjudgment and interference neglect. Therefore, it is
difficult for the TM to get a balance point that is sufficient for all situations.

For the faults of voltage swells, sags, and interruptions, its frequency-domain energy is closely
related to the phase of event occurrence and value of variations in pu. Similar to the TM, it is
difficult to determine the suitable membership functions for the FA to prevent misjudgment or achieve
interference neglect.

The performance of BPNN in [8] is dependent on the level of DWT, type of wavelet, size of neural
network, learning rate of neural network, and so on. The incorrect identification for the normal power
signal with BPNN in Table 4 results from the inefficient robustness of DWT to the noise. Therefore, it is
necessary to find out the suitable combination of DWT level, wavelet type, size, and parameters of
neural network to mitigate the noise interference. This process to determine the suitable combination
is time-consuming and not suitable for practical applications.

For the proposed WEFNNBT, the problem of DWT can be modified with the fuzzy analysis to
largely reduce the interference of noise. Compared with the direct usage of wavelet coefficients in
BPNN, four indices in Equations (4)–(7) and corresponding membership functions can effectively
mitigate the noise interference and condense the size of neural network with several dominant features.
In this way, the influence of wavelet type can be mitigated and then only signals of two high-frequency
wavelet analysis levels will be necessary. From the testing results, it is realized that the proposed
WEFNNBT can perform the fault identification accurately and suitably trigger the protective relay.
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5. Conclusions

In this paper, a robust system based on the wavelet energy fuzzy neural network-based technique
for fault identification and protection in the microgrid is developed. Through four defined energy
indices, the dominant singular features of fault signals can be correctly extracted by the fuzzy analysis.
According to the testing for 1000 noisy power signals, the maximal computational time for the proposed
system is 2.94 m/s. The experimental results reveal that the proposed method can effectively perform
the fault identification and then activate the protection relay to isolate the microgrid from the utility
power system in the real-time manner.
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Abbreviations and Symbols

WEFNNBT wavelet energy fuzzy neural network-based technique
FE feature extraction
FC feature condensation
DI disturbance identification (DI)
PCC point of common coupling
DWT discrete wavelet transform
POFF probably off

PON probably on
MSE mean-squared error
TM threshold method
FA fuzzy analysis
BPNN back-propagation neural network
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