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Abstract: Metamodels have become increasingly popular in the field of energy sources because of
their significant advantages in reducing the computational cost of time-consuming tasks. Lacking the
prior knowledge of actual physical systems, it may be difficult to find an appropriate metamodel
in advance for a new task. A favorite way of overcoming this difficulty is to construct an ensemble
metamodel by assembling two or more individual metamodels. Motivated by the existing works,
a novel metamodeling approach for building the ensemble metamodels is proposed in this paper.
By thoroughly exploring the characteristics of regression-type and interpolation-type metamodels,
some useful information is extracted from the feedback of the regression-type metamodels to further
improve the functional fitting capability of the ensemble metamodels. Four types of ensemble
metamodels were constructed by choosing four individual metamodels. Common benchmark
problems are chosen to compare the performance of the individual and ensemble metamodels.
The results show that the proposed metamodeling approach reduces the risk of selecting the worst
individual metamodel and improves the accuracy of the used individual metamodels.
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1. Introduction

Metamodels, which are also referred to as surrogate models, are essentially approximate
mathematical models of real physical systems. In the past decade, metamodels have become
increasingly popular in the field of energy sources because of their significant advantages in reducing
the computational cost of time-consuming tasks [1,2]. Melo et al. [3] pointed out that researchers
in many countries are developing metamodels to estimate the energy performance of the building
stock. Bornatico et al. [4] used a kind of metamodel to optimize energy systems, and found that the
metamodel converged to the same solution at 150 times the speed of the fine model. Westermann and
Evins [5] summarized and discussed recent studies on the application of metamodels in sustainable
building design. Ferrero Bermejo et al. [6] reviewed and compared two typical metamodels, namely the
artificial neural networks and the support vector machine, for energy forecasting and condition-based
maintenance in PV plants.

Actually, a good metamodel mainly depends on its accuracy and generality for different design
tasks. To enhance the performance of metamodels, researchers have carried out a lot of studies over
the past few decades [7–11]. As a result, a large number of metamodels have been proposed, of which
several types have gained wide acceptance in various applications. They are polynomial response
surface (PRS) [12–14], support vector regression (SVR) [15–17], radial basis functions (RBF) [18,19],
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extended radial basis functions (E-RBF) [20], moving least squares (MLS) [21], artificial neural networks
(ANN) [22,23], multivariate adaptive regressive splines (MARS) [24] and Kriging (KRG) [25,26].
These different metamodels give us more options for different tasks. However, lacking the prior
knowledge of the actual physical systems, it is challenging to find a suitable metamodel in advance for
a new task. In particular, the worst metamodel may be chosen for the task.

A simple way to overcome the difficulty is to build a series of metamodels based on a given
training dataset at first, and then select the best one on the basis of some statistical techniques like
the cross-validation method. Another favorite way is to construct an ensemble metamodel, which
assembles two or more individual metamodels by introducing weight factors. The basic idea of such
an ensemble metamodel can be traced back to 1990s [27,28], and currently it has become a research
hotspot [8,29]. According to the characteristics of the weight factors, the techniques for building the
ensemble metamodels can be mainly categorized into methods based on local errors, methods based
on global errors, and methods based on regression.

In the first category, the weight factors (ωi = ωi(x)) are functions of design space, which are
determined by the local errors of individual metamodels at the point of interest. Zerpa et al. [30]
introduced a local weighted average model for the optimization of alkaline-surfactant-polymer
flooding processes by using the prediction variances of three individual metamodels (PRS, KRG,
and RBF). Sanchez, Pintos, and Queipo [31] proposed a general approach toward the ensemble of
kernel-based models based on the local prediction variances. Acar [32] investigated the efficiency of
methods based on the local errors, and developed a new approach to determine the weight factors by
using the pointwise cross-validation errors instead of the prediction variances. Zhang, Chowdhury,
and Messac [33] proposed a new metamodeling technique called adaptively hybrid functions, whose
weight factors are determined based on the local measure of accuracy in the pertinent trust region.
Lee and Choi [34] presented a new pointwise ensemble of metamodels, of which the weight factors
are calculated by using the v nearest points cross-validation errors.

In the second category, the weight factors (ωi = Ci, ∀x) are constant values in the entire design
space, which are determined by the global errors of individual metamodels. Goel et al. [35] studied
a global weight factor selection approach based on the generalized mean square cross-validation
errors (GMSE). Acar and Rais-Rohani [36] developed an accurate ensemble of metamodels by solving
an optimization problem that minimizes GMSE or root mean square errors (RMSE). Viana, Haftka,
and Steffen [37] obtained the optimal weight factors of the optimization problem by using the Lagrange
multipliers. This method was also employed by Toal and Keane [38] to construct an ensemble of
ordinary, universal, non-stationary and limit KRG models. Additionally, Acar [39] performed the
simultaneous optimization of the weight factors and the shape parameters in the ensemble of RBFs.

It should be noted that in the first two categories the weight factors of individual metamodels
are restricted to a positive range (ωi > 0) and the sum of these factors is equal to 1

(
∑M

i=1 ωi = 1
)

.
Since they are different from the first two categories, the techniques in the third category mainly use the
regression methods (like least squares) to determine the weight factors. Accordingly, there is no longer
any restriction on the weight factors, which may even have negative values. Polynkin and Toropov [40]
introduced a novel mid-range metamodel assembly for the large-scale optimization problems, which
is constructed based on the linear regression method. Ferreira and Serpa [41] developed an augmented
least-square approach for creating the ensemble of metamodels, which can be extended to the efficient
global optimization. Zhou and Jiang [42] constructed an ensemble of four individual metamodels
(PRS, KRG, SVR, and RBF) from the view of the polynomial regression, and proposed a metamodel
selection method on the basis of the stepwise regression to eliminate the redundant ones from the set
of the candidate metamodels.

Motivated by these existing works, this paper proposes a different method for constructing the
ensemble metamodels, which combines the advantages of regression-type and interpolation-type
metamodels. The regression-type metamodels have better global trend fitting capacity than the
interpolation-type metamodels, while the interpolation-type metamodels perform better than the
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regression-type metamodels in the vicinity of the sampling locations. By thoroughly exploring the
characteristics of regression-type and interpolation-type metamodels, the proposed method could
extract some useful information from the feedback of the regression-type metamodels to further
improve the functional fitting capability of the ensemble metamodels.

2. Proposed Ensemble of Metamodels

2.1. Motivation and Basic Characteristics

The existing individual metamodels can be classified into regression-type and interpolation-type
metamodels. The regression-type metamodels aim to fit the global trend of the underlying
functions of the real physical systems in the entire design space, while the interpolation-type
metamodels aim to achieve the local accuracy in the vicinity of the sampling locations. Accordingly,
the regression-type metamodels can build smooth surfaces that pass across all the training points, while
the interpolation-type metamodels can construct models that go through each training point. That is to
say, for the regression-type metamodels there may be obvious deviations between the actual responses
and the approximate responses at the sampling locations, while for the interpolation-type metamodels
there is no deviation. These different characteristics make the two types of metamodels possess different
advantages and limitations. For example: (i) the regression-type metamodels have better global trend
fitting capacity than the interpolation-type metamodels, while (ii) the interpolation-type metamodels
perform better than the regression-type metamodels in the vicinity of the sampling locations.

It should be noted that obtaining the training dataset required for constructing the metamodels
may be time-consuming. Therefore, as much information as possible should be extracted from these
data. However, for the regression-type metamodels, there are apparent deviations between the
actual responses and the approximate responses at the sampling locations, from where some useful
information may be still extracted to further improve the performance of these metamodels. Exploring
the underlying knowledge of the training dataset and combining the characteristics of regression-type
and interpolation-type metamodels, this paper proposes a novel metamodeling approach for the
ensemble metamodels. The flowchart of the proposed metamodeling technique is shown in Figure 1,
which involves four main steps as follows.

Obtain initial training dataset by 

choosing a type of DOE and 

conducting experiments or simulations 

Choose an appropriate regression-type 

metamodel 

Utilize the initial training dataset to 

construct the regression-type 

metamodel 

. 

Step 1 

Update the 

training dataset 

by using the 

feedback of the 

established 

regression-type 

metamodel 

Step 2 

Choose an appropriate 

interpolation-type 

metamodel 

Construct the 

interpolation-type 

metamodel  to 

approximate the 

deviation function by 

utilizing the updated 

training dataset 

Step 3 

Construct the 

ensemble 

metamodel and 

predict the 

response at any 

point of interest 

Step 4 

Figure 1. Flowchart of the proposed approach for building ensembles of regression-type and
interpolation-type metamodels.

Step 1: An appropriate design of experiment (DOE) should be first chosen to generate n sampling
locations (x1, x2, . . . , xn), at where the actual responses (y1, y2, . . . , yn) are obtained by
conducting experiments or simulations. By using the initial training dataset (xi, yi) (i =
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1, . . . , n), a regression-type metamodel ŷ1(x) in Equation (1) is subsequently constructed to
approximate the actual model y(x).

ŷ1(x) ≈ y(x), x = (x1, x2, . . . , xk)
T (1)

where x denotes any point of interest.
Step 2: We suppose that there is a deviation function yd(x). It is obtained by subtracting the

approximate model ŷ1(x) from the actual model y(x).

yd(x) = y(x)− ŷ1(x) (2)

Some useful information may be still extracted from the deviation function yd(x).
To approximate the deviation function, the training dataset should be updated. In detail,
this paper first uses the established regression-type metamodel in Equation (1) to predict
the approximate responses (ŷ1

1, ŷ2
1, . . . , ŷn

1 ) at the initial sampling locations. Subsequently,
the deviations (y1

d, y2
d, . . . , yn

d) between the actual responses and approximate responses at
these locations are calculated as the updated training dataset.{

(x1, y1
d), (x

2, y2
d), . . . , (xn, yn

d)
}
={

(x1, y1 − ŷ1
1), (x

2, y2 − ŷ2
1), . . . , (xn, yn − ŷn

1 )
} (3)

Step 3: By using the updated training dataset in Equation (3), an interpolation-type metamodel ŷ2(x)
in Equation (4) is constructed to approximate the deviation function yd(x).

ŷ2(x) ≈ yd(x) (4)

Step 4: Finally, the ensemble metamodel ŷens(x) in Equation (5) is constructed by adding the
established regression-type metamodel ŷ1(x) and interpolation-type metamodel ŷ2(x) together.
By using Equations (1), (4) and (5), the established ensemble metamodel ŷens(x) can be used to
predict the response at any point of interest in the entire design space.

ŷens(x) = ŷ1(x) + ŷ2(x) ≈ ŷ1(x) + yd(x) ≈ y(x) (5)

2.2. Detailed Modeling Process

To clearly illustrate the proposed metamodeling technique, this paper selects two common
regression-type metamodels (PRS and SVR) and two popular interpolation-type metamodels, namely
RBFM (RBF with multiquadric-form basis function) and RBFI (RBF with inverse multiquadric-form
basis function). Accordingly, four types of ensemble metamodels can be obtained, which are PrsRbfm
(Ensemble Scheme 1, ensemble of PRS and RBFM), PrsRbfi (Ensemble Scheme 2, ensemble of PRS and
RBFI), SvrRbfm (Ensemble Scheme 3, ensemble of SVR and RBFM) and SvrRbfi (Ensemble Scheme 4,
ensemble of SVR and RBFI). The detailed modeling processes of these involved metamodels are
introduced as follows.
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2.2.1. Step 1: Construction of Regression-Type Metamodels

PRS is a general designation of a series of polynomial regression functions, of which the most
popular one is the second-order polynomial model. This paper adopts the second-order polynomial
model ŷ1,prs(x), which can be written as

ŷ1,prs(x) = zTβ = β0 +
k

∑
i=1

βixi +
k

∑
i=1

k

∑
j=i

β 2j+i(2k−i+1)
2

xixj (6)

where β = (β0, β1, . . . , β k2+3k
2

)T denotes a coefficient vector, z = (1, x1, x2, . . . , xk−1xk, xkxk)
T denotes a

polynomial basis-function vector.
To estimate β, the regression problem in Equation (6) can be transformed as follows by using the

initial training dataset.
y1

y2

...
yn

 =


y1

d,prs
y2

d,prs
...

yn
d,prs

+


1 x1

1 . . . x1
k . . . x1

1x1
1 . . . x1

k−1x1
k x1

k x1
k

1 x2
1 . . . x2

k . . . x2
1x2

1 . . . x2
k−1x2

k x2
k x2

k
...

...
...

...
. . .

...
. . .

...
...

1 xn
1 . . . xn

k . . . xn
1 xn

1 . . . xn
k−1xn

k xn
k xn

k




β0

β1
...

β k2+3k
2

 (7)

where yd,prs = (y1
d,prs, y2

d,prs, . . . , yn
d,prs)

T denotes the deviation vector.
Equation (7) can be also expressed as

y = Xβ + yd,prs (8)

According to the least squares method, β can be calculated as follows.

β = (XTX)−1XTy (9)

SVR is a regression function ŷ1,svr(x) in the high-dimensional space, as shown in Equation (10).

ŷ1,svr(x) = ωTψ(x) + b (10)

where ω denotes the weight vector, ψ(x) denotes the mapping function, and b denotes the bias.
To estimate ω and b, the regression problem in Equation (10) can be transformed as an optimization

problem in Equation (11) by introducing ε-insensitive loss function.

min
1
2
||ω||2

subject to


ωTψ(xi) + b− yi ≤ ε

yi −ωTψ(xi)− b ≤ ε

i = 1, . . . , n

(11)
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To solve Equation (11), the regularization parameter, C (> 0), and the slack variables, ξ+(i) and
ξ−(i), are introduced. In addition, Equation (12) can be obtained

min
1
2
||ω||2 + C

n

∑
i=1

(ξ+(i) + ξ−(i))

subject to



ωTψ(xi) + b− yi ≤ ε + ξ+(i)

yi −ωTψ(xi)− b ≤ ε + ξ−(i)

ξ+(i), ξ−(i) ≥ 0

i = 1, . . . , n

(12)

The Lagrange dual model of Equation (12) can be expressed as

max



− 1
2

n

∑
i,j=1

(α+(i) − α−(i))(α+(j) − α−(j))

k
〈

xi, xj
〉
+

n

∑
i=1

(α+(i) − α−(i))yi

−
n

∑
i=1

(α+(i) + α−(i))ε

subject to



n

∑
i=1

(α+(i) − α−(i)) = 0

0 ≤ α+(i), α−(i) ≤ C

i = 1, . . . , n

(13)

where α+(i) and α−(i) denote the Lagrange multipliers, k
〈
xi, xj〉 = ψ(xi)Tψ(xj) denotes a kernel

function, which has several different forms. This paper chooses the Gaussian kernel function, which
can be expressed as

k
〈

x, xi
〉
= exp(−γ||x− xi||2) (14)

According to Equation (13), α+(i) and α−(i) can be first obtained. According to KKT conditions [43],
ω and b can be then calculated.

2.2.2. Step 2: Update of Training Dataset

First, β calculated by Equation (9) can be used to substitute the one in Equation (6). Second,
the approximate responses of established PRS (ŷ1

1,prs, ŷ2
1,prs, . . . , ŷn

1,prs) at the initial sampling locations

(x1, x2, . . . , xn) can be calculated according to Equation (6). Then, the updated training dataset of PRS
can be expressed as {

(x1, y1
d,prs), (x

2, y2
d,prs), . . . , (xn, yn

d,prs)
}
={

(x1, y1 − ŷ1
1,prs), (x

2, y2 − ŷ2
1,prs), . . . , (xn, yn − ŷn

1,prs)
} (15)

Similarly, according to Equation (10), the updated training dataset of SVR can be obtained and
expressed as {

(x1, y1
d,svr), (x

2, y2
d,svr), . . . , (xn, yn

d,svr)
}
={

(x1, y1 − ŷ1
1,svr), (x

2, y2 − ŷ2
1,svr), . . . , (xn, yn − ŷn

1,svr)
} (16)
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2.2.3. Step 3: Construction of Interpolation-Type Metamodels

The general form of RBF can be expressed as

ŷrb f (x) =
n

∑
i=1

λiφ
(
||x− xi||

)
(17)

where λi denotes an interpolation coefficient, r = ||x− xi|| =
√
(x− xi)T(x− xi) denotes the distance

between points x and xi. φ(r) denotes a radially symmetric basis function, which has several different
forms, such as:

• Gaussian φ(r) = e(−r2/c2)

• Multiquadric φ(r) = (r2 + c2)
1
2

• Inverse multiquadric φ(r) = (r2 + c2)−
1
2

• Thin plate spline φ(r) = (r2) log(r)

The interpolation coefficient λi can be calculated by using the given training dataset (xi, yi)

(i = 1, . . . , n).
λ = A−1y (18)

where
λ =

[
λ1, λ2, . . . , λn

]T

A =


φ
(
||x1 − x1||

)
, φ

(
||x1 − x2||

)
. . . φ

(
||x1 − xn||

)
φ
(
||x2 − x1||

)
, φ

(
||x2 − x2||

)
. . . φ

(
||x2 − xn||

)
...

...
. . .

...
φ
(
||xn − x1||

)
, φ

(
||xn − x2||

)
. . . φ (||xn − xn||)


After choosing the multiquadric-form basis function, RBFM (ŷrb f m(x)) can be constructed to

approximate the actual model y(x) by replacing ŷrb f (x) and λi in Equation (17) with ŷrb f m(x) and
λi,rb f m. The coefficient λi,rb f m can be calculated based on Equation (18). Similarly, after choosing the
inverse multiquadric-form basis function, RBFI (ŷrb f i(x)) can be constructed to approximate the actual
model y(x). The coefficient λi,rb f i of ŷrb f i(x) can be calculated based on Equation (18).

Additionally, by choosing the multiquadric-form basis function, a model ŷ2,rb f m1(x) can be
constructed to approximate the deviation function of PRS yd,prs. By replacing the initial training dataset
(xi, yi) (i = 1, . . . , n) with the updated training dataset of PRS (xi, yi

d,prs) (i = 1, . . . , n), the coefficient
λi,2rb f m1 of ŷ2,rb f m1(x) can be calculated on the basis of Equation (18). Similarly, by choosing the inverse
multiquadric-form basis function, a model ŷ2,rb f i1(x) can be constructed to approximate the deviation
function of PRS yd,prs.

Finally, by choosing the multiquadric-form basis function, a model ŷ2,rb f m2(x) can be constructed
to approximate the deviation function of SVR yd,svr. By choosing the interpolation-type metamodel,
a model ŷ2,rb f i2(x) can be constructed to approximate the deviation function of SVR yd,svr.

2.2.4. Step 4: Construction of Ensemble Metamodels

By adding the established ŷ1,prs(x) and ŷ2,rb f m1(x) together, PrsRbfm (ŷprsrb f m(x)) can be
subsequently constructed as follows.

ŷprsrb f m(x) = ŷ1,prs(x) + ŷ2,rb f m1(x) (19)

Being similar to PrsRbfm, PrsRbfi (ŷprsrb f i(x)) can be constructed as follows.

ŷprsrb f i(x) = ŷ1,prs(x) + ŷ2,rb f i1(x) (20)
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SvrRbfm (ŷsvrrb f m(x)) can be constructed as follows.

ŷsvrrb f m(x) = ŷ1,svr(x) + ŷ2,rb f m2(x) (21)

SvrRbfi (ŷsvrrb f i(x)) can be constructed as follows.

ŷsvrrb f i(x) = ŷ1,svr(x) + ŷ2,rb f i2(x) (22)

The established ensemble metamodels, namely PrsRbfm, PrsRbfi, SvrRbfm, and SvrRbfi,
can be used to predict the response at any point of interest in the entire design space by using
Equations (19)–(22).

3. Numerical Experiments

3.1. Benchmark Problems

Referred to the website (http://www.sfu.ca/~ssurjano/index.html) and relevant literature [32],
six common benchmark problems (BPs) are selected to compare the performance of the individual
metamodels (PRS, SVR, RBFM, and RBFI) and the ensemble metamodels (PrsRbfm, PrsRbfi, SvrRbfm,
and SvrRbfi).

BP1: Goldstein Price Function

f (x) =
[
1 + (x1 + x2 + 1)2 × (19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] (23)

where xi ∈ [−2, 2], for i = 1, 2.
BP2: Friedman Function

f (x) =10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 (24)

where xi ∈ [0, 1], for all i = 1, . . . , 5.
BP3: Power Sum Function

f (x) =
6

∑
j=1

[(
−

6

∑
i=1

xj
i

)
− 36

]2

(25)

where xi ∈ [0, 6], for all i = 1, . . . , 6.
BP4: Rosenbrock Function

f (x) =
6

∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
(26)

where xi ∈ [−5, 10], for all i = 1, . . . , 7.
BP5: Zakharov Function

f (x) =
9

∑
i=1

x2
i +

(
9

∑
i=1

0.5ixi

)2

+

(
9

∑
i=1

0.5ixi

)4

(27)

where xi ∈ [−5, 10], for all i = 1, . . . , 9.
BP6: Powell Function

f (x) =
2

∑
i=1

[
(x4i−3 + 10x4i−2)

2 + 5 (x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

4 + 10 (x4i−3 − x4i)
4
]

(28)

where xi ∈ [−4, 5], for all i = 1, . . . , 10.

http://www.sfu.ca/~ssurjano/index.html


Energies 2020, 13, 654 9 of 20

3.2. Numerical Setting

For all the benchmark problems, the MATLAB routine “lhsdesign” is used to generate training
points and test points. Referred to Jin, Chen, and Simpson [44], n = 3(k+1)(k+2)

2 training points are
selected for a k-dimension problem. Moreover, as many test points as possible should be used in
practice, since insufficient test points may increase the uncertainty of the results. This paper selects
ntst = 20,000 test points for each benchmark problem. Since the DOE sampling scheme may have
an obvious influence on the performance of the metamodels, 100 different training and test sets are
selected for each problem. The detailed numerical settings for all the benchmark problems are listed in
Table 1. The shape parameters (c) of RBFM and RBFI are both selected as 1 by referring to relevant
literature [34,45,46]. The parameters (ε, C, and γ) of SVR are selected by using the cross-validation
method, which was introduced in detail in the published paper of the authors [47].

Table 1. Detailed numerical settings for the benchmark problems.

Benchmark Problem NO. of Variables NO. of Training Points NO. of Test Points NO. of Training and Test Sets

BP1 2 18 20,000 100
BP2 5 63 20,000 100
BP3 6 84 20,000 100
BP4 7 108 20,000 100
BP5 9 165 20,000 100
BP6 10 198 20,000 100

3.3. Performance Criteria

The root mean square error (RMSE) and the max absolute error (MAE) are selected as the
performance criteria.

RMSE can be expressed as

RMSE =

√
∑ntst

i=1 (y
i − ŷi)2

ntst
(29)

where ntst denotes the number of test points.
MAE can be expressed as

MAE = max |yi − ŷi|, i = 1, 2, . . . , ntst (30)

4. Results and Discussion

4.1. RMSE

Figure 2 shows the boxplots of RMSE of the metamodels over 100 test sets for each benchmark
problem with 3(k+1)(k+2)

2 training points. It can be seen that: (1) for all the benchmark problems,
the most accurate ensemble metamodels outperform the most accurate individual metamodels;
(2) without exception, the least accurate individual metamodels perform worse than the least accurate
ensemble metamodels; (3) for each benchmark problem, the performance differences among the four
individual metamodels are greater than that among the four ensemble metamodels.



Energies 2020, 13, 654 10 of 20

PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

2

4

6

8

10

12

14
R

M
S

E
104 BP1

Metamodel
PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

0.5

1

1.5

2

R
M

S
E

BP2

Metamodel

PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

1.2

1.4

1.6

1.8

2

2.2

2.4

R
M

S
E

109 BP3

Metamodel
PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

2

2.5

3

3.5

4

4.5

5

5.5

R
M

S
E

105 BP4

Metamodel

PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

2

3

4

5

6

7

8

R
M

S
E

107 BP5

Metamodel
PRS SVR RBFM RBFI PrsRbfm PrsRbfi SvrRbfm SvrRbfi

0.5

1

1.5

R
M

S
E

104 BP6

Metamodel

Figure 2. Boxplots of RMSE of the metamodels over 100 test sets for each benchmark problem with
3(k+1)(k+2)

2 training points.

To provide a better comparison for these metamodels, the error values are normalized with
respect to the most accurate individual metamodel for each benchmark problem. Table 2 shows the
normalized means of RMSE of the metamodels for each benchmark problem with 3(k+1)(k+2)

2 training
points. The bold values in Table 2 are the most accurate individual/ensemble metamodels, the italic
values are the least accurate individual/ensemble metamodels, the underlined values are the ensemble
metamodels that perform better than all the individual metamodels, the “Best & Best” values denote
the differences between the most accurate ensemble metamodels and individual metamodels, and the
“Worst & Worst” values denote the differences between the least accurate ensemble metamodels and
individual metamodels. From Table 2, it can be seen that: (1) compared with the most accurate
individual metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced,
ranging from 1.1% to 22.2%; (2) compared with the least accurate individual metamodels, the means of
RMSE of the least accurate ensemble metamodels are reduced, ranging from 21.1% to 52.5%; (3) except



Energies 2020, 13, 654 11 of 20

for BP3, more than two ensemble metamodels perform better than the most accurate individual
metamodels; (4) for BP5, all the four ensemble metamodels perform better than the most accurate
individual metamodel.

Table 2. Normalized means of RMSE of the metamodels for each benchmark problem with 3(k+1)(k+2)
2

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.280 1.866 1.113 1.000 1.000 1.000
SVR 1.224 1.000 1.262 1.149 1.006 1.133
RBFM 1.000 1.108 1.000 1.001 1.123 1.385
RBFI 1.133 1.261 1.536 2.175 2.073 2.166
PrsRbfm 0.929 1.043 0.981 0.957 0.889 0.989
PrsRbfi 0.977 1.173 1.062 0.990 0.985 0.994
SvrRbfm 0.968 0.922 1.039 1.006 0.778 1.080
SvrRbfi 1.010 0.937 1.176 1.102 0.910 1.109
Best & Best −7.1% −7.8% −1.9% −4.3% −22.2% −1.1%
Worst & Worst −21.1% −37.1% −23.5% −49.3% −52.5% −48.8%

Table 3 shows the frequency of the accuracy ranking (using RMSE) of the metamodels for the
six benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) the frequency of the
ensemble metamodels that rank 1st or 2nd is 11, yet the frequency of the individual metamodels is
only one; (2) the frequency of the individual metamodels that rank 7th or 8th is 12, yet the frequency
of the ensemble metamodels is zero; (3) considered the frequency of the metamodels that rank
the top/bottom two, all the ensemble metamodels have better performance than the individual
metamodels; (4) PrsRbfm performs best among the four ensemble metamodels, followed by SvrRbfm,
PrsRbfi, and SvrRbfi.

Table 3. Frequency of the accuracy ranking (using RMSE) of the metamodels for the six benchmark
problems with 3(k+1)(k+2)

2 training points.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th

PRS 0 0 2 0 2 0 0 2
SVR 0 0 1 0 0 2 3 0
RBFM 0 1 0 2 1 0 2 0
RBFI 0 0 0 0 0 1 1 4
Total 0 1 3 2 3 3 6 6

PrsRbfm 4 1 0 1 0 0 0 0
PrsRbfi 0 2 1 2 0 1 0 0
SvrRbfm 2 1 1 1 1 0 0 0
SvrRbfi 0 1 1 0 2 2 0 0
Total 6 5 3 4 3 3 0 0

To clearly compare the accuracy of each ensemble metamodel with their corresponding individual
metamodels, Figure 3 shows the normalized means of RMSE of each ensemble scheme for the six
benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) in Scheme 1, PrsRbfm
ranks 1st among PRS, RBFM, and PrsRbfm for all the benchmark problems; (2) in Scheme 2, PrsRbfi
ranks 1st for all the benchmark problems; (3) in Scheme 3, SvrRbfm ranks 1st for four benchmark
problems and 2nd for two benchmark problems; although RBFM ranks 1st for two benchmark
problems, it is the worst performer for three benchmark problems; (4) in Scheme 4, without exception,
the accuracy of SvrRbfi outperforms that of SVR and RBFI.
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Figure 3. Normalized means of RMSE of each ensemble scheme for the six benchmark problems with
3(k+1)(k+2)

2 training points.

Table 4 shows the normalized standard deviations of RMSE of the metamodels for each benchmark
problem with 3(k+1)(k+2)

2 training points. It can be seen that: (1) compared with the most accurate
individual metamodels, the standard deviations of RMSE of the most accurate ensemble metamodels
are reduced for BP5 and BP6, yet the standard deviations are increased for the other four benchmark
problems; (2) compared with the least accurate individual metamodels, the standard deviations of
RMSE of the least accurate ensemble metamodels are reduced, ranging from 8.4% to 35.5%.

According to the above experimental results, we think the proposed metamodeling approach
could reduce the risk of selecting the worst individual metamodel, and the constructed ensemble
metamodels perform better than the used individual metamodels in terms of accuracy. In particular,
PrsRbfm performs best among the four ensemble metamodels, followed by SvrRbfm, PrsRbfi,
and SvrRbfi.

To provide an explicit explanation for the better performance of the proposed approach,
a low-dimensional problem (BP1) and an ensemble scheme (ensemble of SVR and RBFM) are selected
as examples. Figure 4 shows the contour plot of the actual function and the approximate functions of
SVR, RBFM, and SvrRbfm. It can be seen that: (1) SVR has better global trend fitting capacity than
RBFM, such as in the red box area; (2) RBFM performs better in the vicinity of the sampling locations,
such as in the red ellipse region; (3) SvrRbfm combines the global trend of SVR and the local accuracy
of RBFM, such as in the red box area and the red ellipse region.
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Table 4. Normalized standard deviations of RMSE of the metamodels for each benchmark problem
with 3(k+1)(k+2)

2 training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.000 1.000 1.646 1.566 1.001 1.072
SVR 2.067 1.542 1.121 10.663 6.188 6.844
RBFM 1.462 1.167 1.000 1.000 1.204 1.488
RBFI 1.660 1.100 1.235 1.117 1.000 1.000

PrsRbfm 1.397 1.185 1.304 1.592 0.744 0.995
PrsRbfi 1.423 1.193 1.493 1.577 0.953 1.055
SvrRbfm 1.581 1.143 1.509 2.021 1.427 3.714
SvrRbfi 1.696 1.199 1.123 7.041 3.991 5.542
Best & Best 39.7% 14.3% 12.3% 57.7% −25.6% −0.5%
Worst & Worst −17.9% −22.2% −8.4% −34.0% −35.5% −19.0%

Therefore, the reason for the better performance of the ensemble metamodels may be
that the proposed metamodeling approach combines the advantages of the regression-type and
interpolation-type metamodels. The actual model is regarded as the sum of a regression-type model
and a deviation function. Some useful information is first extracted by the regression-type metamodel
to capture the global trend of the actual model in the entire design space. Then, some other information
is extracted from the deviations at the sampling locations by using the interpolation-type metamodel
to achieve the local accuracy in the vicinity of sampling locations.
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Figure 4. Contour plot of the actual function and the approximate functions of SVR, RBFM,
and SvrRbfm.
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4.2. Effect of Performance Criteria

The choice of different performance criteria may influence the results of the metamodels. To reduce
the source of uncertainty in the results as much as possible, the max absolute error (MAE) is selected
as another performance criterion.

Figure 5 shows the boxplots of MAE of the metamodels over 100 test sets for each benchmark
problem with 3(k+1)(k+2)

2 training points. Table 5 shows the normalized means of MAE of the

metamodels for each benchmark problem with 3(k+1)(k+2)
2 training points. From Figure 5 and Table 5,

it can be seen that: (1) for each benchmark problem, the performance differences among the four
ensemble metamodels are less than that among the four individual metamodels; (2) except for BP6,
more than two ensemble metamodels perform better than the most accurate individual metamodels;
(3) compared with the most accurate individual metamodels, the means of MAE of the most accurate
ensemble metamodels are reduced for five benchmark problems; (4) compared with the least accurate
individual metamodels, the means of MAE of the least accurate ensemble metamodels are reduced,
ranging from 14.2% to 48.9%.

Table 5. Normalized means of MAE of the metamodels for each benchmark problem with 3(k+1)(k+2)
2

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.055 1.583 1.000 1.000 1.000 1.000
SVR 1.149 1.000 1.405 1.312 1.080 1.325
RBFM 1.000 1.148 1.165 1.174 1.385 1.708
RBFI 1.189 1.200 1.626 2.515 1.939 2.353
PrsRbfm 0.910 1.111 0.952 0.980 0.944 1.015
PrsRbfi 0.965 1.278 0.999 0.999 0.996 1.002
SvrRbfm 0.950 0.933 1.164 1.168 0.957 1.244
SvrRbfi 1.021 0.956 1.338 1.285 1.052 1.302
Best & Best −9.0% −6.7% −4.8% −2.0% −5.6% 0.2%
Worst & Worst −14.2% −19.3% −17.7% −48.9% −45.7% −44.7%

Table 6 shows the frequency of the accuracy ranking (using MAE) of the metamodels for the six
benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) considered the frequency
of the metamodels that rank the top/bottom two, PrsRbfm, PrsRbfi, and SvrRbfm outperform all the
individual metamodels; (2) although SvrRbfi is a little worse than PRS, it still performs better than its
corresponding individual metamodels (SVR and RBFI); (3) PrsRbfm is the best performer of the four
ensemble metamodels, followed by SvrRbfm, PrsRbfi, and SvrRbfi.

Table 6. Frequency of the accuracy ranking (using MAE) of the metamodels for the six benchmark
problems with 3(k+1)(k+2)

2 training points.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th

PRS 1 0 2 1 0 1 0 1
SVR 0 0 1 0 0 2 3 0
RBFM 0 0 0 1 3 0 2 0
RBFI 0 0 0 0 0 1 0 5
Total 1 0 3 2 3 4 5 6

PrsRbfm 4 0 1 1 0 0 0 0
PrsRbfi 0 3 2 0 0 0 1 0
SvrRbfm 1 2 0 3 0 0 0 0
SvrRbfi 0 1 0 0 3 2 0 0
Total 5 6 3 4 3 2 1 0

In summary, the choice of the performance criteria influence the results slightly, but the
conclusions obtained by the two criteria remain unchanged.
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Figure 5. Boxplots of MAE of the metamodels over 100 test sets for each benchmark problem with
3(k+1)(k+2)

2 training points.

4.3. Effect of Sampling Densities

The choice of different sampling densities may also influence the results of the metamodels.
To investigate the effect of the sampling densities, this paper selects another two schemes with different
sampling densities, which are n = 5(k+1)(k+2)

4 and n = 7(k+1)(k+2)
4 .

Table 7 shows the normalized means of RMSE of the metamodels for each benchmark problem
with 7(k+1)(k+2)

4 training points. It can be seen that: (1) compared with the most accurate individual
metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced, ranging
from 0.9% to 8.1%; (2) compared with the least accurate individual metamodels, the means of RMSE of
the least accurate ensemble metamodels are reduced, ranging from 23.4% to 53.8%; (3) except for BP3,
more than two ensemble metamodels perform better than the most accurate individual metamodels;
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(4) all the ensemble metamodels perform better than the four individual metamodels; (5) PrsRbfm is
the best performer among the four metamodels, while SvrRbfi is the worst performer.

Table 7. Normalized means of RMSE of the metamodels for each benchmark problem with 7(k+1)(k+2)
4

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.400 2.282 1.104 1.000 1.342 1.000
SVR 1.209 1.000 1.283 1.154 1.000 1.130
RBFM 1.000 1.186 1.000 1.012 1.496 1.371
RBFI 1.174 1.383 1.555 2.188 2.847 2.195
PrsRbfm 0.921 1.102 0.952 0.946 1.158 0.991
PrsRbfi 0.985 1.271 1.044 0.987 1.316 0.992
SvrRbfm 0.958 0.937 1.040 1.000 0.919 1.076
SvrRbfi 1.014 0.949 1.191 1.102 0.972 1.105
Best & Best −7.9% −6.3% −4.8% −5.4% −8.1% −0.9%
Worst & Worst −27.6% −44.3% −23.4% −49.6% −53.8% −49.7%

Table 8 shows the normalized means of RMSE of the metamodels for each benchmark problem
with 5(k+1)(k+2)

4 training points. It can be seen that: (1) compared with the most accurate individual
metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced for five
benchmark problems, ranging from 0.9% to 16.9%; (2) compared with the least accurate individual
metamodels, the means of RMSE of the least accurate ensemble metamodels are reduced, ranging
from 20.9% to 51.3%; (3) all the ensemble metamodels have better performance than the four
individual metamodels.

Table 8. Normalized means of RMSE of the metamodels for each benchmark problem with 5(k+1)(k+2)
4

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.268 1.577 1.115 1.022 1.000 1.000
SVR 1.248 1.000 1.242 1.206 1.027 1.174
RBFM 1.000 1.020 1.000 1.000 1.134 1.379
RBFI 1.100 1.126 1.517 2.151 2.030 2.093
PrsRbfm 0.937 1.008 1.015 0.991 0.918 0.991
PrsRbfi 0.980 1.098 1.079 1.014 0.989 0.995
SvrRbfm 0.965 0.924 1.053 1.035 0.831 1.073
SvrRbfi 1.002 0.938 1.167 1.152 0.951 1.139
Best & Best −6.3% −7.6% 1.5% −0.9% −16.9% −0.9%
Worst & Worst −20.9% −30.4% −23.1% −46.4% −51.3% −45.6%

In summary, the choice of different sampling densities influences the results slightly, but the
conclusions obtained by the three schemes with different sampling densities remain unchanged.

4.4. Significance of Results

The results above have proven the effectiveness of the proposed method to some extent. To further
demonstrate the advantages, the proposed method is compared with some other popular ensemble
metamodels, which are BPS (Best PRESS surrogate), PWS (PRESS weighted average surrogate),
and OWSD (Optimal weighted surrogate using the diagonal elements). The detailed descriptions of
these ensemble metamodels can be found in relevant literature [35,37]. Additionally, Kriging with first
order polynomial regression function (KRG1) and Kriging with second-order polynomial regression
function (KRG2) are also included in the performance comparison. To be noted, the principle and
modeling process of Kriging are different from that of the proposed metamodeling approach in
this paper.
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Figure 6 compares the performance of PrsRbfm, SvrRbfm, KRG1, KRG2, BPS, PWS, and OWSD.
It can be seen that: (1) for BP1, PrsRbfm and SvrRbfm perform better than the other five metamodels;
(2) for BP2, SvrRbfm and BPS are the best two performers; (3) for BP3, the accuracy of PrsRbfm and
BPS are better than that of the other metamodels; (4) for BP4, PrsRbfm and KRG2 are the best two
performers; (5) for BP5, SvrRbfm and BPS are more accurate than other metamodels; (6) for BP6,
PrsRbfm and KRG2 perform better the other metamodels.

In summary, the proposed metamodeling approach possesses some advantages when compared
with KRG1, KRG2, BPS, PWS, and OWSD.
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Figure 6. Boxplots of RMSE of PrsRbfm, SvrRbfm, KRG1, KRG2, BPS, PWS, and OWSD for the
benchmark problems.

5. Conclusions

This paper proposed a novel metamodeling approach for building ensemble metamodels.
Four types of ensemble metamodels, namely PrsRbfm, PrsRbfi, SvrRbfm, and SvrRbfi, were constructed
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by choosing four individual metamodels, namely PRS, SVR, RBFM, and RBFI. The performance of
these metamodels was investigated through six popular benchmark problems. The effects of the
performance criteria and sampling densities on the performance of the metamodels were studied.
Additionally, the significance of the results was discussed by comparing the proposed method with
some other popular ensemble metamodels. According to the results, some findings of this work could
be concluded as follows:

(1) According to the experimental results, the proposed metamodeling approach could reduce the
risk of choosing the worst individual metamodel, and the constructed ensemble metamodels
perform better than the selected individual metamodels in terms of accuracy.

(2) The reason for the better performance of the ensemble metamodels may be that the proposed
metamodeling approach combines the advantages of the regression-type and interpolation-type
metamodels. The ensemble metamodels not only capture the global trend of the actual model in
the entire design space, but also achieve the local accuracy in the vicinity of sampling locations.

(3) The choices of different performance criteria and sampling densities influence the results slightly,
but the obtained conclusions remain unchanged.

(4) The proposed metamodeling approach possesses some advantages when compared with some
other popular ensemble metamodels.
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