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Abstract: The increase of renewable energy generation to change the productivity of a country and
electrify isolated sectors are some of the priorities that several governments have imposed in the
medium term. Research centers are looking for new technologies to optimize the use of renewable
energies and incorporate them into hybrid generation systems. In the present work, the modeling
of a solar thermal energy generation plant is being carried out. The climatic data used belong to
two coastal cities and one island of Ecuador. The contribution of this work is to simulate a complete
model of SCF and PCS, in which the variables of outlet temperature and oil flow are involved at
the same time. Previously investigations use only outlet temperature for evaluating power plants.
The model of the solar thermal plant is composed of a field of solar collectors, a storage tank, and an
energy conversion system. As a result, we obtain a model of a thermosolar plant that will allow us to
make decisions when considering the incorporation of micronetworks in systems isolated from the
electrical network. The use of thermosolar technology allows the reduction in the risk of spills by the
transport of fossil fuels in ships. The study of the CO2 emission factor in Ecuador from 2011 to 2018 is
also carried out.
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1. Introduction

One of the main challenges to be reversed according to global development indicators is the
high concentration of greenhouse gases (GHG) due to the use of fossil fuels in electricity generation
applications and industrial processes [1,2]. One of the means to achieve a reduction in GHGs is the use
of technologies to convert solar energy into electricity. Among the main ones, we have photovoltaic
(PV) [3] and concentrating solar thermal (CST). The most used solar collectors are shown in [4,5] such
as flat-plate, parabolic compound, evacuated tube (heating of fluids to temperatures up to 200 ◦C;
parabolic trough, Fresnel lens, parabolic dish, and heliostat fields (heating of fluids to temperatures up
to 400 ◦C are the main technologies used for concentrating solar energy. In reference [6], the authors
present free applications that allow the design of solar fields.

This work focuses on parabolic trough solar thermal power plants, which consist of a Solar
Collector Field (SCF) [7], thermal energy storage (TES) [8], Power Conversion System (PCS) [9] and
auxiliary elements such as pumps, pipes, and valves. Solar collectors use solar radiation to heat
fluids such as oil or water. Thermal energy is used for heating or the production of steam for electric
generators. Works such as [10,11] describe the use of solar thermal plants for electricity generation.

For heating or the production of steam for electric generators, thermal energy is used. The main
goal of a parabolic trough solar field is to collect the maximum solar energy to produce as much
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electrical power as possible [12]. To achieve the best performance of the plant, electrical power depends
on the outlet temperature and the oil flow. The controls applied for these plants must be able to
maintain the plant’s performance on days when solar irradiance is low. Xiufan and Yiguo employ a
mathematical model of a PTC based on HTF energy balance, absorber tuve, and glass envelope [13].
Linrui et al. incorporate the heat loss of the absorber based on the energy balance [14]. Research like
Camacho and Gallego [15] propose changes in the outlet temperature set point according to the value
of the solar irradiance, but the oil flow is not covered by the proposed model.

The novelty of this work is to simulate a complete model of SCF and PCS, in which the variables
of outlet temperature and oil flow are involved. The simulation will be carried out by the TRNSYS
software [16]. At the same time, Matlab software will be used to show the validations of the models
based on the first principles of SCF and PCS operation; which was the case of [15].

A work similar to the current studio with TRNSYS is presented in reference [17]. The authors use
TRNSYS software to evaluate different options of integration of the set of solar collectors, the needs of
heating and hot water for a family dwelling are calculated.

Performing tests prior to the installation of the systems prevent over-sizing and under-sizing.
In the specialized literature, modeling and simulation programs can be found, among the main ones
and with a better answer in solving these problems are MATLAB [18] and Transient Systems Solution
Program (TRNSYS) [17,19].

For the modeling and simulation of solar collector fields (SCF), energy production and simulation
models based on mathematical equations are used that govern the components with respect to the
principle of operation of the same [20]. Using data in real-time allows developing strategies for the
design and control of plants.

On the other hand, this study aims to estimate how many GHG emissions will be avoided by fuel
consumption and to evaluate the emissions that the solar thermal plant produces due to its manufacture
and maintenance operations. Chengzhou et al. conducted a study on the typical amount of pollutant
emissions into the environment directly for each power generation technology [21]. To this end, a
study of the CO2 emission factor in Ecuador is proposed, which is where the plant will be implemented
in different coastal cities.

The objective of this paper is the modeling of solar thermal power generation plant for the supply
of electrical energy. This document is structured as follows. After the introduction, the modeling of the
solar collector field is presented in Section 2. Section 3 shows the testing of the solar thermal power
generation plant for three plants. In Section 4, the study of emission factors in Ecuador is proposed.
Finally, the results and conclusions of the document are exposed.

2. Materials and Methods

Figure 1 shows the components that make up a solar generating plant. These are solar collector
field, storage tank, steam generation, steam turbine, and electrical generator. In the solar collector field
(SCF), solar irradiance heats the fluid circulating through the SCF causing it to reach temperatures in
excess of 200 ◦C. Thermal energy is accumulated in the storage tank. The thermal energy is then used
by a steam generator, which produces a steam pressure capable of moving a turbine. The mechanical
power of the turbine turns the electric generator sending the electric power to the micro-grid. The set
of steam systems and electric generators is called Power Conversion System (PCS). The condensate
produced in the PCS is treated and returned to the steam generator. The set of SCF, storage tanks, and
PCS systems are called Distributed Collector Systems (DCSs) [22,23].
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Figure 1. Solar thermal power generation plant.

Solar thermal power generation plants are one of the most used renewable energy technologies
in recent years [24,25] and have contributed significantly to the electrification of several
countries worldwide.

Next, the SCF and PCS models will be described with their basic principles and foundations, such
as the energy balance.

2.1. Solar Collector Field

In this section, the mathematical models based on differential equations of a parabolic trough
collector loop are presented. The model of the whole field is described as the placement of several
parabolic collector loops. The model of distributed parameters was tested and validated in studies
such as [26], which are currently used in research papers ratifying its applicability [25,27,28].

Parameter Model

Each SCF loop has four sectors connected in series; the sectors contain 12 collector modules. The
SCF has a total area of 2635.2 m2 that receives solar irradiance in the absorber tubes [29]. In Figure 2,
the distribution of the collectors is shown. Equation (1) describes the variation in internal plant
energy, which provides the evolution of the outlet temperature, Tloop,out(t). As can be seen, the outlet
temperature of the loop depends on several inputs, the manipulated one, Qloop(t) is the volumetric
flow, and the other ones act as disturbances: Tloop,in(t) is the inlet temperature, Ta(t) is the ambient
temperature, Tm(t) is the mean fluid temperature (see Equation (2)) and I(t) is the solar irradiance.
The equations modeling the dynamics of the outlet temperature of the loops are

ρCpAcs
∂Tloop,out(t)

∂t = IKoptnoG− ρ
C f

CpQloop(t)
Tloop,out(t)−Tloop,in(t−dtout−tin)

Leq
−Hl

Tm(t)−Ta(t)
Leq

(1)

Tm(t) =
Tloop,out(t) + Tloop,in(t− dtout−tin)

2
(2)

where ρ is the fluid density and Cp is the specific heat capacity depending on the temperature in the
fluid. Works such as [30] and [31] provide data on the thermal transfer fluid or HTF (Heat Transfer
Fluid), which is Santotherm-55. This oil circulates through the collector system. Santotherm-55 is
capable of reaching 305 ◦C without degrading. Acs is the collector tube’s cross area, Leq is the length of
the equivalent collector tube, Hl is the thermal losses coefficient expressed by (3),

.
m primary circuit
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mass flow rate and ∆h increased enthalpy. Kopt is the optical efficiency, no is the geometric efficiency, G
collector aperture, dtout−tin is the delay between the outlet temperature and the inlet temperature, and
C f is a conversion factor to calculate the mass flow rate inside this hypothetical equivalent collector
tube. It takes into account the number of parallel collectors in each loop-row, np, number of serial tubes
in each collector, nt, and kg·h−1 conversion.

−Hl =

.
m·∆h

Tloop,out+Tloop,in
2 − Ta

(3)
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2.2. PCS Model

As explained in the introduction, the PCS uses the high temperature coming from the storage
tank to generate steam. The steam pressure spins the turbine which is coupled to an electric generator.
This energy can be used in isolated systems or fed into the grid. The thermal energy Wt model is given
by P(TSCF,out) is calculated by the simplified model of the solar field in Equation (4) CM Cirre [32].

P(TSCF,out) = IKoptnoG−
H1

Leq
(TSCF,out, TSCF,in, Ta)Leqnl (4)

where, H1 is the linear function of thermal losses. The investigation of CM Cirre [32] was to make
several tests with different flows and inlet temperature, outlet temperature, and ambient temperature.
With the tests, the linear regression is obtained (5).

H1 = 1970
(Tloop,out + Tloop,in

2
− Ta

)
− 34, 651 (5)

To convert the thermal energy Wt into electrical energy We, the maximum efficiencies of the
complete DCS set formed by the SCF, the storage system and the PCS are used. Therefore, to perform
the conversion, the system efficiency values found by CM Cirre [32] are used. Thermal storage efficiency
chosen is ηalm = 0.98 and the thermal into electric power conversion is ηPCS = 0.22. The estimated
energy that can be provided by the DCS is shown by Equation (6).

P(TSCF,out) = IKoptnoG−H1nlηalmηPCS (6)

In Table 1, PCS efficiencies are presented according to the tests carried out in years of operation.
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Table 1. Power distribution at the Power Conversion System (PCS).

Property Quantity

Net electrical power 500 kW
Parasites 77 kW

Gross electrical power 577 kW
Gross efficiency ηgross = 19.13%

Oil thermal power PHTF = 3016 kW
Thermal losses LPCS = 259 kW

Refrigeration losses Lrs = 3016 kW

3. Testing of the Solar Thermal Power Generation Plant

In this section, the solar collector field model is implemented through the TRNSYS program.
TRNSYS has a specialized library with solar collector models, the storage tank, and the power
conversion system. In Figure 3 is shown the scheme of the devices used for the simulation of the SCF.
The field tests are carried out using the data provided by the TRNSYS, which contains solar irradiance,
incidence angles, and the ambient temperature of several locations in Ecuador.
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Table 2 shows the values used for the dimensioning of the solar collector field, the storage tank,
and the capacity of the power conversion system (the steam turbine and the electric generator).

To verify the correct functioning of the elements of the solar field, these elements are compared
with a model based on the differential equations presented above and the model provided by TRNSYS
Type 536.

The parabolic concentrator Type 536 is modeled on the theoretical equation developed in Solar
Thermal Process Engineering [12,17]. With the presence of flow, the temperature of the fluid at the
collector outlet is expressed by Equation (7).

∂Tloop,out(t)

∂t
= Tloop,in(t) +

Acs(IKopt −Hl(Tm(t) − Ta(t))

ρCpQloop(t)
(7)
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Table 2. Design parameters for solar power.

Property Quantity Unit

Collector Field

Collector type PTC -
Parabolic width 1.83 m
Collector length 3.05 m
No. of collector 480 -

No. of loop 10 -
Total mirror area 2635 m2

Mirror reflectivity 0.78 -

Storage Tank

Type Cylindrical
Tank volume 115 m3

Tank height 11.2 m
Tank loss coefficient 0.69 W·m−2

·K−1

Power Block

Electric generator output 0.5 MWe
Turbine capacity 0.5 MW

The inputs are the same as those presented in Equations (1) and (2). However, for Equation (6),
the entry temperature delay to the collector is not included.

For the validation of the TRNSYS model, it was necessary a Simulink/Matlab model for the
evolution of the outlet temperature (dynamic model), Tloop,out(t) represented by Equation (1). For the
input data, the tests of CM Cirre’s work [32] on control of a distributed solar collector field are
replicated. For the tests of both models, the delay of the Tloop,in(t) was discarded when there was a
change of temperature.

In Figure 4, the input values are presented in the solar field for a sunny day, without clouds and
in the summertime. Samples were taken from 11:50 to 15:00. The inlet fluid temperature (TSCF,in) at
the collector field remains constant at 153 ◦C. The ambient temperature Ta ranges from 30 ◦C to 32 ◦C.
The solar irradiance I shows a minimum value of 867.19 W·m−2 at 10:00 and a maximum value of
940 W ·m−2 at 14:38. The oil inflow flow (QSCF) at the collector field is provided by a controller with
minimum values of 15,800 kg·h−1 and a maximum of 25,000 kg·h−1.
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In Figure 5, the results of the solar field output temperatures are presented using the differential
equations with respect to the response given by the set of elements offered by the TRNSYS software.
As a result, it is possible to observe that the TRNSYS model is suitable for the tests that will be carried
out next with the thermal storage system and the power conversion system.Energies 2019, 12, x FOR PEER REVIEW 7 of 20 
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3.1. Distributed Collector System

The complete system comprising the collector field, temperature storage, and power conversion
system is shown in Figure 6, once the temperature is obtained through the collector field through the
SCF estimated at 280 ◦C as the working temperature. It is necessary to analyze the performance of the
thermal energy storage (TES) system.
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Figure 6. Model of the distributed collector system.

The stratified tank is divided into ten segments for analysis, in which, the highest temperature is
in the upper part in the segment called “Top segment” and the minimum temperature in the lower part
in the “Bottom segment”. From the Top segment, the fluid with the working temperature is driven
to the steam generation system. In the steam generator, the produced steam reaches a pressure of
25 bar in order for the turbine can reach the working power of 500 kW. Input pressures for the tests are
assigned by a controller that assesses the load.

The Type 22 Iterative Feedback Controller is designed to maintain the setpoints for temperature,
oil and pressure flow. The iterative feedback controller tracks the tracking error xk(xk = y− yset) with
the secant method. Where xk is the tracking error, y is a controlled variable and yset is the set-point.
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The secant method [33,34] calculates output signal f (xk) of a controller for minimizing tracking error.
The method is defined by the recurrence Equation (8):

xk+1 = xk −
f (xk)

f (xk)− f (xk−1)
(xk − xk−1)

(k = 1, 2, . . . .)
(8)

where xk+1 is the root approximation of f (x) = 0, x0, x1 are the initial values of the secant method.
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of
secant lines to better approximate a root of a function f (x).

According to the operating principles of the steam system, it is necessary to enter the
thermodynamic variables; in Table 3, these variables are presented. Through the pressure and
temperature of the steam, it is possible to find the specific enthalpy and vapor volume values through
tables given by manufacturers specialized in steam systems.

Table 3. Values implemented in the steam system.

Property Quantity Unit

Steam enthalpy 25,000 kJ·kg−1

Steam pressure 25 bar
Steam exhaust pressure 16 bar

Steam mass flowrate 36,000 kJ·kg−1

Steam temperature 280 °C
Pinch point temperature difference 7 °C

In Figure 7, the input values are presented in the solar field for a sunny day, without clouds and in
the summertime. Samples have been taken from 09:00 to 15:30. The fluid inlet temperature (TSCF,in) at
the collector field remains constant at 186.3 ◦C. The ambient temperature Ta ranges from 30 ◦C to 32 ◦C.

Figure 7. Results of the parabolic collector field.

The solar irradiance I shows a minimum value of 421.9 W·m−2 at 09:00 and a maximum value of
975 W ·m−2 at 13:38. The input flow (QSCF) of the oil to the collector field is provided by the setpoint
delivered by a controller with minimum values of 3600 kg·h−1 and maximum of 9832.8 kg·h−1. As can
be seen, the flow of the pump from the collector field for a sunny day follows solar irradiance. (TSCF,out)

shows the temperature at the outlet of the collector field with a maximum value of 280 ◦C.
Figure 8 corresponds to a loading operation in the storage tank, in which the HTF is heated in

the collector field and enters the upper part of the tank. Due to the stratification in the tank, there are
different temperatures. The oil volumes are significantly different. As the thermocouples are placed at
intervals, the temperature changes are very pronounced.
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Figure 8. Evolution of the simulated oil temperatures during an experiment.

When the steam turbine is working the values of the inlet temperature to the power conversion
system and its respective output are shown in Figure 9. The input temperature (TPCS,in) has a minimum
value of 180 ◦C and reaches 280 ◦C. This temperature is provided by the storage tank.
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Figure 9. Input and output temperatures, workflow and power delivered by the Distributed Collector
Systems (DCS).

The outlet temperature (TPCS,out) has a minimum value and 99 ◦C and reaches 220 ◦C, the
temperature (TPCS,out) becomes the inlet temperature of the storage tank. As it is possible to
appreciate, the temperature (TPCS,out) presents a linear behavior, starting at 10:45 due to the continuous
consumption of the steam turbine.

In the experiment that will be carried out next, it will be seen how the operation of the turbine
depends on several factors such as weather conditions and electricity consumption, which makes
necessary other types of controls that interpret the requirements of the work during a whole day.

The steam flow (QPCS) works at a value of 5277.8 W and the electrical power obtained by the
generator (Power) reaches the value of 500 kW. The presented experiment is considered as the ideal
for a DCS where it can work optimally.

3.2. Performance of the Plant

The results focus on the performance of the plant in different meteorological parameters of the
three selected cities of the coast of Ecuador that are in different latitudes. The three selected sites are
Guayaquil, (latitude 2.16◦ S and longitude 79.9◦ W), Manta (latitude 0.97◦ S and longitude 80.7◦ W)
and San Cristóbal (latitude 0.87◦ S and longitude 89.44◦ W). As a sample, results of 7 days are taken
to present the performance of the plant in winter (from 8 to 14 February) and in summer (from 13 to
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19 July). Ecuador has two stations, Figure 10 shows the ambient temperature and solar irradiance
recorded in the winter (December to May) and summer (June to November) periods.
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The test for the proposed model was carried out with climatological data provided by the
TRNSYS software for one year. As a characteristic of the evaluated cities, the average annual ambient
temperature and annual maximum solar irradiance recorded are presented. The average ambient
temperature is 25.7 ◦C for Guayaquil, 24.8 ◦C for Manta and 23.9 ◦C for San Cristóbal. The maximum
recorded solar irradiance is 1046.8 W·m−2 for Guayaquil, 1046.6 W·m−2 for Manta and 1074.9 W·m−2

for San Cristóbal. Other factors that affect solar irradiance directly are the relative humidity percentage
(%H). In Guayaquil, the relative humidity percentage is 72.1%. In Manta a relative humidity percentage
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of 77.3% is recorded and in San Cristóbal, a relative humidity percentage of 51.1% is recorded.
The city of Guayaquil has the highest Total sky cover and the island of San Cristóbal has the lowest
relative humidity.

As can be seen in Figure 10, in winter the solar irradiance and the ambient temperature is
higher than in summer. In the winter the maximum solar irradiance is 1026.2 W·m−2 for Guayaquil,
1052.7 W·m−2 for Manta, and 1074.9 W·m−2 for San Cristóbal and the average ambient temperature is
26.8 ◦C for Guayaquil, 26.4 ◦C for Manta, and 25.8 ◦C for San Cristóbal. While in the summer solar
irradiance maxima are 1025 W·m−2 for Guayaquil, 1041.9 W·m−2 for Manta, and 1075.5 W·m−2 for
San Cristóbal, and the average ambient temperature is 24.7 ◦C for Guayaquil, 21.9 ◦C for Manta, and
24.0 ◦C for San Cristobal.

Figure 11 shows that solar irradiance is more intense in Manta and San Cristóbal. The solar
irradiance reaches a maximum value is 1024.4 W·m−2. The minimum value of solar irradiance occurs
in Guayaquil registering a value of de 833.3 W·m−2. This lower value in Guayaquil of solar irradiance
can be attributed to pollution and humidity.
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February is the most solar irradiance provided in Figure 12, the thermal energy collected by the
solar collector field in the three cities evaluated is shown. Manta and San Cristóbal have higher values
compared to Guayaquil. The maximum rate of thermal energy obtained in Manta and San Cristóbal is
1.98 MW and 1.86 MW, respectively. While the maximum rate in Guayaquil is 1.82 MW.
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The temperature at the exit of the site of the HTF registered in the 7 days of the month of February.
As it is possible to see in Figure 13 the highest temperature values registered in the three cities are
361 ◦C in San Cristóbal, 341 ◦C in Manta, and 327 ◦C in Guayaquil. The above results can be attributed
to the high irradiance value of the solar irradiance and to the ambient temperature in the areas closest
to the sea in Ecuador.Energies 2019, 12, x FOR PEER REVIEW 12 of 20 
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Figure 14 illustrates the annual thermal energy obtained from SCF and the annual electric power
generated for the selected cities. We can observe that the highest annual energy obtained by the solar
concentrator is reached in San Cristóbal, where it registers 3664.3 MW, while the electrical energy
generated is of 1090.7 MW. The lowest annual energy obtained by the solar concentrator is obtained in
Guayaquil, where it registers a value of 3314.8 MW, while the electric power generated is 986.4 MW.
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Figure 14. The annual collector energy gained and electric energy for selected sites.

Figure 15 presents the instantaneous efficiency of the plant, which is defined as the electric power
rate obtained from the total divided electric generator incident beam radiation falling concentrator
area for the three selected cities. From the comparison, we observed that the variation of efficiency in
the three cities is similar, covering a minimum efficiency of 31.1% and a maximum efficiency of 41.1%
in the last hour of the afternoon for the three cities.
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Figure 15. The overall efficiency of the solar power plant for the Guayaquil, Manta, and San Cristóbal
during three days in February.

4. CO2 Emissions

To find out how much CO2 emissions are avoided using thermo-solar energy, information was
collected from the Electricity Regulation and Control Agency (ARCONEL) [35]. In Figure 16, the trend
line shows gross electricity production, which is the sum of the amount of electricity generated by the
country’s existing infrastructure and the energy imported from Colombia and Peru. Bars display the
amount of tCO2 generated annually [36]. In Table 4, fuel consumption for gross electricity production
in the period 2011–2018 are shown. The CO2 emission factor and the density of the different fuels used
in the thermal generators are visible in the nomenclature table.
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Table 4. Consumption of fuel used in electricity generation.

Fuel
2011 2012 2013 2014 2015 2016 2017 2018(Units Million)

Fuel oil (l) 1208.8 1421.6 1561.6 1676.6 1526.6 1136.1 645.1 843.3
Diesel (l) 783.3 60.0 804.2 843.8 965.6 842.4 491.9 519.6

Naphtha (l) 66.8 0.5 12.3 0.0 0.0 0.0 0.0 0.0
Natural gas (m3) 518.8 680.0 759.1 782.6 753.9 767.9 688.8 592.1

Waste (l) 155.0 149.6 145.9 164.6 267.2 225.5 129.6 130.0
Crude (l) 285.5 3055.0 343.7 350.5 341.5 456.4 461,4 508.7
LPG (l) 32.3 28.6 26.8 28.6 33.2 37.7 32.3 35.9

Cane bagasse (t) 1064.3 1122.3 343.5 1447.7 1504.4 1542.8 1668.5 1437.1
Biogas (m3) 0 0 0 0 0 8,119,299.9 16,327,344.0 26,622,714.2
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To calculate the emissions of primary air pollutants and CO2, the basic model used in jobs such
as [37,38] was applied, resulting in Equation (9).

EFEL,k,y =

∑
i FCi.y·EEdw·i·y·EFCO2.i.y

EGk.y
(9)

where:
EFEL·k·y, CO2 emission factor of the generation units m in the year y (tCO2·MWh−1);
FCi.y, Quantity of fossil fuel type i consumed in the year y of the generation units m;
EEdw·i·y, Energy density by weight of fossil fuel type i in the year y;
EFCO2.i.y, CO2 emission factor by fuel type i in the year y (tCO2·MWh−1);
EGk.y, Net energy generated in the year and except for low-cost units (MWh);
k, All grid-connected generation units in the year y except low-cost units;
i, All fuels used by generation units in the year y;
y, Year corresponding to the data used for the analysis.

4.1. Emission Factor

The gross electricity generation is calculated with the data from Table 5 the CO2 emissions
produced. The CO2 emission factor for each unit of electricity available for consumption is established
by dividing the total net emissions from Table 6 by the gross electricity production plus imported
energy values from Figure 15. The results are shown in Figure 16, which indicates that annual CO2

emissions due to gross electricity generation in Ecuador in the period 2011–2018 ranged between
emission 5787.3 and 8704.2 ktCO2·year−1

.

Table 5. CO2 emissions (kt·year−1) due to gross electricity generation in Ecuador.

Fuel 2011 2012 2013 2014 2015 2016 2017 2018

Fuel oil 2970.9 3493.5 3838.0 4120.5 3751.4 2792.8 1583 2072.8
Diesel 1755.2 1417.8 1802.3 1890.7 2163.7 1887.7 1102.7 1164.5

Naphtha 134.6 0.8 24.7 0 0 0 0 0
Natural gas 907.7 1190.6 1327.5 1365.9 1318.3 1341.9 1206 1035.9

Waste 381.5 367.2 358.8 405.1 656.9 554.2 318.1 319.7
Crude 644.3 688.9 775.5 790.8 770.6 1029.6 1041.1 1147.6

Liquefied gas Petroleum 41.9 37.3 35.0 37.6 43.2 49.2 42.1 46.9
* Cane bagasse 827.4 872.5 850.0 1124.9 1169.6 1199.4 1297.1 1117.2

* Biogas 0 0 0 0 0 8897.1 29,173
Total 6836.1 7196.1 8161.8 8610.5 8704.2 7655.3 5292.9 5787.3

* Total net emissions do not include sugar cane and biogas values. Considering that, being biomass, its. Combustion
does not generate net CO2 emissions.

Table 6. Life Cycle (LC) Impact Metrics by System and Phase for CSP Designs.

Life Cycle Phase Plant System GHG (g CO2eq·kWh−1)

Manufacturing
HTF

Power plant
Solar field

TES

13
Construction 1.8

Operation 11
Dismantling 0.12

Disposal 2.1
Grand total 26

The International Energy Agency [39] reports the average value of the emission factor for Ecuador,
for the period 2011–2018, equal to 337.5 gCO2·kWh−1. The average value for the period 2011–2018 in
Figure 17 is equal to 331.2 gCO2·kWh−1. These mean values are congruent with a difference of 3.75%.
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Figure 17. CO2 emission factor (g·kWh−1) for electricity generation in Ecuador.

The CO2 emission factor for each unit of electricity available for consumption ranged from 188.7
to 342.4 gCO2·kWh−1. The highest value of the emission factor corresponds to the year 2014, as can
be seen in Figure 18, the year with the highest percentage of participation of non-renewable sources
(49.1%). The lowest value (188.7 gCO2·kWh−1) corresponds to 2017, the year with the lowest share of
non-renewable sources (73.6%).
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The CO2 emission factor for the unit consumption of electricity is used at various levels: national,
regional, local, institutional, family, and personal; in evaluations of sustainability indicators, such as
the carbon footprint and the ecological footprint. It is a basic parameter in energy planning to evaluate
the change of emissions with new configurations of the energy matrix or mix.

Burkhardt et al. [40,41] performed the Life Cycle Assessment (LCA) of a Parabolic Trough
Concentrating Solar Power (CSP) plant to define the impacts of the main design alternatives for this
type of plant.

LCA is recognized as a holistic and standard approach for quantifying the environmental impacts
of renewable energy (RE) technologies. LCA accounts for the impacts resulting from upstream and
downstream activities over the life cycle (LC) of a power plant. The authors used a hybrid analysis,
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where, the system is modeled of component masses and process energy flows, and the categories of
costs are translated to environmental impacts via economic input-output.

According to the guidelines described in the international standard series ISO 14040-44 [42],
the hybrid LCA evaluates the following LC phases of the proposed trough plant: Manufacturing,
construction, operation, and maintenance (O&M, dismantling, and disposal).

Life cycles of the following systems are evaluated to identify areas of high impact: HTF system,
solar field system, TES system, and power plant system.

Through the software SimaPro LCA modeling software and the EcoInvent life cycle inventory
(LCI) database, Burkhardt et al. provide greenhouse gas (GHG) emissions of select components and
systems. Where GHGs are Emissions of individual GHGs from the CSP plant LC are presented as the
sum of each GHG weighted by its 100-year global warming potential (GWP)3 to obtain grams of CO2

equivalents (g CO2eq·kWh−1). In addition, they are presented as a summary in Table 6.

4.2. Results and Discussion of Emission Factors

Table 7 shows the CO2 emissions by the energy generation of the solar thermal power
generation plant. Using a conversion factor of 0.8 kgCO2·kWh−1, the CO2 emissions were calculated.
The conversion factor was calculated in the Wind Project Isla San Cristóbal [43]. In its study on the
CO2 emission factor due to electricity generation in the Galapagos Islands. The CO2 emission factor
for mainland Ecuador was 0.197 kgCO2·kWh−1. The CO2 emission factor for Galapagos is four times
higher than that of Ecuador because on the continent energy is obtained from various sources, such as
burning fossil fuels and hydroelectric, while in Galapagos, non-renewable energy is produced solely
by burning fossil fuels. On the other hand, to calculate the emissions produced by the CSPs due to
their maintenance and other variables that were explained above, an emission factor of 0.026 g CO2·h−1

will be used. Although this emission factor was calculated for a CSP of greater dimensions than those
presented in this work, it serves as a reference value for the calculation.

Table 7. CO2 emissions avoided by the generation of thermo-solar plants.

Selected
Sites

Electricity
Energy
MWh

Gallons
Saved

Invoicing
Dollars

Emissions
TON CO2 Generated

by the
Thermo-Solar Plant

Emissions
TON CO2 Avoided

When Not
Using Fuel

Total Emissions
TON CO2 Avoided

Guayaquil 411.1 35,747.8 52,703.0 10.7 81.0 70.3
Manta 497.2 43,234.8 63,741.0 12.9 98.0 85.1

San
Cristóbal 680.6 59,182.6 87,252.9 17.7 544.4 526.7

5. Conclusions

In conclusion, the cities being close to latitude 0 have a large amount of solar irradiance throughout
the year. Achieving high temperatures in the HTF in winter and summer is ideal for the operation of
solar plants. The total annual solar thermal energy obtained from the selected sites is 3664.3 MW in
San Cristóbal, 3461.5 MW in Manta, and 3314.8 MW in Guayaquil. Manta and Guayaquil are large
cities located on the continent. Hydroelectric plants supply their electricity consumption. The city of
San Cristóbal is an island located in the Galápagos archipelago.

The electricity consumption of San Cristóbal is largely covered by thermal generation (fossil fuels)
and, to a lesser extent, by wind and photovoltaic generation. The implementation of thermos-solar
plants in the islands allows for the reduction in the consumption of fossil fuels and CO2 emissions.
Investing in solar thermal generation systems is more recommendable on the island of San Cristóbal.
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Nomenclatue

Symbol Description Unit
Acs Collector absorber cross-sectional area (m2)
Cp Specific heat capacity (J·°C−1

·kg−1)

C f
Conversion factor to account for the number of modules, connections, and kg·h−1

conversion (np·nt·kg·h−1
·m−3)

dtout−tin Outlet fluid temperature-inlet fluid temperature-related transport delay in
f (xk) Output signal function
FCi.y Quantity of fossil fuel type i consumed in the year y of the generation units m (kg)
EEdw·i·y Energy density by weight of fossil fuel type i in the year y (MWh·kg−1)
EFEL·k·y CO2 emission factor of the generation units m in the year y (tCO2·MWh−1)
EFCO2.i.y CO2 emission factor by fuel type i in the year y (tCO2·MWh−1)
EGk.y Net energy generated in the year and except for low-cost units (MWh)
G Collector aperture (m)
Hl Thermal losses coefficient (W·°C−1)
H1 Linear function of thermal losses (W)
i Fuels used by generation units m in the
I Year solar irradiance

(
W·m−2

)
k Generation units connected to the grid in the year y
Kopt Optical efficiency
L Loop pipe length (m)
Leq Equivalent length of the collector (m)
.

m Primary circuit mass flow rate (kg·s−1)
no Geometric efficiency (Unitless)
nl Number of operational loops (Unitless)
np Number of parallel collectors in each loop-row (Unitless)
nt Number of serial tubes in each collector (Unitless)
Qloop Volumetric flow rate in the loop

(
kg·h−1

)
QPCS Volumetric flow rate in Power Conversion System

(
kg·h−1

)
QSCF Volumetric flow rate in solar field collector

(
kg·h−1

)
Ta Ambient temperature (◦C)
Tm Mean fluid temperature (◦C)
Tloop,in Inlet temperature of the loop (◦C)
Tloop,out Outlet temperature of the loop (◦C)
TPCS,in Inlet temperature in the Power Conversion System (◦C)
TPCS,out Outlet temperature in the Power Conversion System (◦C)
TSCF,in Inlet temperature of the solar field collector (◦C)
TSCF,out Outlet temperature of the solar field collector (◦C)
v Flow rate (m·s−1)
xk Tracking error
y Controlled variable
yset Set-point
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Greek symbol
∆h Increased enthalpy (J·kg−1)
ρ Water density (kg·m−3)
LPG Liquefied Petroleum Gas (l)
Density Energy Density by Weight
Value Unit Value Unit
944.0 kg·m−3 11.2 kWh·kg−1

850.0 kg·m−3 11.6 kWh·kg−1

739.0 kg·m−3 12.4 kWh·kg−1

0.67 kg·m−3 10.7 kWh·kg−1

944.0 kg·m−3 2.2 kWh·kg−1

874.0 kg·m−3 11.6 kWh·kg−1

528.6 kg·m−3 13.7 kWh·kg−1

120.0 kg·m−3 4.76 kWh·kg−1

1.15 kg·m−3 1.48 kWh·kg−1
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