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Abstract: Due to the high degree of intermittency of renewable energy sources (RES) and the growing
interdependences amongst formerly separated energy pathways, the modeling of adequate energy
systems is crucial to evaluate existing energy systems and to forecast viable future ones. However,
this corresponds to the rising complexity of energy system models (ESMs) and often results in
computationally intractable programs. To overcome this problem, time series aggregation (TSA) is
frequently used to reduce ESM complexity. As these methods aim at the reduction of input data and
preserving the main information about the time series, but are not based on mathematically equivalent
transformations, the performance of each method depends on the justifiability of its assumptions.
This review systematically categorizes the TSA methods applied in 130 different publications to
highlight the underlying assumptions and to evaluate the impact of these on the respective case
studies. Moreover, the review analyzes current trends in TSA and formulates subjects for future
research. This analysis reveals that the future of TSA is clearly feature-based including clustering and
other machine learning techniques which are capable of dealing with the growing amount of input
data for ESMs. Further, a growing number of publications focus on bounding the TSA induced error
of the ESM optimization result. Thus, this study can be used as both an introduction to the topic and
for revealing remaining research gaps.

Keywords: time series aggregation; complexity reduction; energy system model; temporal resolution;
renewable energy systems; clustering; typical days; time slices; system states; snapshots

1. Introduction

1.1. Drivers of Model Complexity

Due to the climate change caused by anthropogenic CO2 emissions resulting from the burning
of fossil fuels, a major turnaround in the fields of energy supply and consumption is an increasing
necessity. Key aspects of addressing this challenge are the integration of renewable energy sources
(RES) into existing energy systems, as well as a closer coupling of energy forms and sectors [1].

The evolution of the energy sector has been accompanied by a consistent effort to model and
predict its development. Early attempts to forecast future energy demands can be traced back to
the 1950s and constitute simple, assumption-based scenarios [2]. Another theoretical foundation
for modern energy system models (ESMs) is the principle of peak-load-pricing first described by
Boiteux in 1949 [3] (English translation in 1960 [4]) and Steiner in 1957 [5]. This approach distinguishes
between capacity and the operating costs of facilities producing non-storable goods. Thus, it applies to
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many simple energy systems with a single good (commodity), e.g., electricity which has led to the
development of approaches to solve simple generation expansion planning (GEP) problems with the
annual load duration curve as shown by Sherali et al. [6]. As key drivers for the early progress of
energy system modelling, three factors are of particular significance:

• The need for security of supply to be provided for the growing demand by governmental
quasi-monopolistic institutions throughout the 1970s, as well as the building of a reliable connection
between a more competitive energy sector and later public interest [7,8].

• The progress of computational resources that enabled more complex models [9].
• The integration of non-dispatchable technologies, such as most of the RES and their impact on

energy pricing; an effect that has constantly gained importance and which was first described in
1982 [10].

Ever since the first ESMs, based on optimizations rather than just simulations, were developed
during the 1970s and 1980s [9,11], two major options arose for their developers, namely whether to
focus on economic mechanisms, sometimes described as a top-down approach, or on the technical
dimension, usually known as a bottom-up one [12,13]. Amongst the bottom-up frameworks, this
review focuses on a vast number of approaches to modeling the different dimensions of energy
systems, including methodologies such as optimizations and simulations [9,12,13]. With respect to
the scope of ESMs, two fundamental dimensions can be delineated: namely spatiotemporal and
techno-economic. The spatiotemporal dimension comprises the setting of input data that a model
is intended to incorporate. The spatial sub-dimension is focused on the number of regions and
their connections to each other, as energy systems on a national or even larger scale usually face
the challenge of taking energy transmission between different regions into account. The temporal
sub-dimension is divided into two aspects, namely temporal resolution (TR), often referred to as time
steps, and the overall time horizon [9], which also concerns questions of storage modeling [14–20] as
well as the linking of dynamic processes [21–23] and investment dynamics [24,25]. In contrast, the
techno-economic dimension deals with how the components are represented in the model and whether
their design and/or operation are optimized or, if their operational behavior is simply simulated, how
they are mathematically represented and if the impact of supply and demand on energy prices is
dynamically modeled or not [13]. Each of the dimensions listed above drives the overall complexity
of ESMs, while the spatiotemporal resolution also affects the techno-economical dimension directly,
e.g., the TR also limits the (technical) operational exactness of components in the energy system.

Figure 1 illustrates the classification into top-down and bottom-up models [13,21,26–28], top-down
model types [29,30] and bottom-up model dimensions [13].

1.2. Motivation and Scope of the Review

Although Moore’s law has held true for approximately 40 years [31,32] and there have been
significant advances made in the branch-and-bound algorithms used for solving big mixed integer
linear programs (MILPs) such as those used in energy system optimization models [33], a decelerating
increase of transistor density could be observed in recent years [34]. On the other hand, liberalization,
decentralization, and an increasing volatility in energy generation [35] are leading to more complex
applications for ESMs. Therefore, the recent number of publications dealing with aggregation methods
in ESMs illustrates the fact that many application cases are too complex to be overcome solely by
computational power and mathematically equivalent transformations.



Energies 2020, 13, 641 3 of 61

Energies 2020, 13, x FOR PEER REVIEW 3 of 71 

 

 
Figure 1. Classification of energy system models (ESMs), the sub-dimensions of bottom-up models 
and the scope of the review on time series aggregation (TSA). 

1.2. Motivation and Scope of the Review 

Although Moore’s law has held true for approximately 40 years [31,32] and there have been 
significant advances made in the branch-and-bound algorithms used for solving big mixed integer 
linear programs (MILPs) such as those used in energy system optimization models [33], a 
decelerating increase of transistor density could be observed in recent years [34]. On the other hand, 
liberalization, decentralization, and an increasing volatility in energy generation [35] are leading to 
more complex applications for ESMs. Therefore, the recent number of publications dealing with 
aggregation methods in ESMs illustrates the fact that many application cases are too complex to be 
overcome solely by computational power and mathematically equivalent transformations. 

As mentioned above, the temporal sub-dimension in ESMs is crucial for the implementation of 
storages and the description of system dynamics, which is especially important for ESMs 
considering a high share of intermittent RES [36–41]. This applies for both single-node and 
multi-node ESMs, and the group of aggregation methods employed to tackle this issue is broad and 
diverse. Hence, this review addresses the issue of systematically categorizing the methods and their 
assumptions, as well as recent trends and the general shortcomings in the development of TSA 
methods. Furthermore, this work is intended to facilitate the development of new methods by 
combining existing methods and considering the shortcomings present. This endeavor differs from 
the scope of recent publications focusing on the general purpose of TSA [42]. The temporal 
sub-dimension that the aggregation methods presented in the following address is highlighted in 
Figure 1. As the input time series for constrained bottom-up ESM are often not only auto-correlated, 
i.e., to some extent periodic, but also cross-correlated, an aggregation based on time series can be 
applied in multiple ways. This review focuses only on the aggregation of time series based on their 
auto-correlation, i.e., the reduction of the number of time steps, e.g., by representing a whole year of 
data by a small number of typical days. This is represented by the rotating arrow in Figure 1 and will 
be defined as TSA in the narrow sense. In contrast, a reduction of the number of regions, 
technologies, or customer profiles is based on the mutual similarity of the same attributes at different 
locations or different attributes at the same location. Therefore, spatial or technological aggregation 
approaches are reducing the number of time series, but not the number of time steps. 

Figure 1. Classification of energy system models (ESMs), the sub-dimensions of bottom-up models
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As mentioned above, the temporal sub-dimension in ESMs is crucial for the implementation of
storages and the description of system dynamics, which is especially important for ESMs considering a
high share of intermittent RES [36–41]. This applies for both single-node and multi-node ESMs, and the
group of aggregation methods employed to tackle this issue is broad and diverse. Hence, this review
addresses the issue of systematically categorizing the methods and their assumptions, as well as recent
trends and the general shortcomings in the development of TSA methods. Furthermore, this work is
intended to facilitate the development of new methods by combining existing methods and considering
the shortcomings present. This endeavor differs from the scope of recent publications focusing on the
general purpose of TSA [42]. The temporal sub-dimension that the aggregation methods presented in
the following address is highlighted in Figure 1. As the input time series for constrained bottom-up
ESM are often not only auto-correlated, i.e., to some extent periodic, but also cross-correlated, an
aggregation based on time series can be applied in multiple ways. This review focuses only on the
aggregation of time series based on their auto-correlation, i.e., the reduction of the number of time steps,
e.g., by representing a whole year of data by a small number of typical days. This is represented by the
rotating arrow in Figure 1 and will be defined as TSA in the narrow sense. In contrast, a reduction
of the number of regions, technologies, or customer profiles is based on the mutual similarity of the
same attributes at different locations or different attributes at the same location. Therefore, spatial or
technological aggregation approaches are reducing the number of time series, but not the number of
time steps.

2. Methodology and Structure of the Review

As highlighted above, this review focuses on the TSA methods in bottom-up energy system
optimization models that include generation expansion planning (GEP), as well as unit commitment
(UC) and have constantly emerged and evolved since the late 1970s and 1980s [9,11]. Among the early
model frameworks, one group focuses on long-term system planning and has usually only one time
step per year such as LEAP [43], EFOM [44], and BESOM [45], which are not subject to aggregation
techniques and thus neglected in the following. The temporal dimension of the other major group of
early bottom-up ESMs such as TIMES [46–49] and its predecessors MARKAL [50], MESSAGE [12,51],
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IKARUS [9], and PERSEUS [52] are based on time slice formulations (in the case of PERSEUS called
“time slots”), which are explained in more detail in Section 3.2.1. Although the long-term planning
models with only one time step per year were consecutively combined with models with a higher
temporal resolution, as is the case for TIMES [46–49] as a combination of MARKAL [50] and EFOM [44],
the time slice approach, which is based on the modeler’s experience only, remained unchanged for
decades. With the first approaches to classify and group demand curves using unsupervised learning
techniques, which the authors traced back to 1999 [53], new techniques for defining the temporal
dimension of ESMs arose. To the best of the authors’ knowledge, this was first done manually in
2008 [54] and by using a standard clustering algorithm in 2011 [55]. In order to investigate the rapid
and manifold development of complex TSA methods based on feature-based grouping in detail, the
start year for the literature review was set to 1999 and the literature research was stopped in July 2019.
To avoid a bias towards the new methods based on unsupervised learning techniques, publications
within the relevant time interval, which are based on long-existing and constantly evolving frameworks
such as TIMES, are also considered. Thus, the research objective is narrowly defined and can be
exhaustively examined.

2.1. Methodology of the Literature Research

With respect to a systematic and keyword-based search for TSA methods, the major challenge
was the inconsistent naming of the applied methods. Furthermore, the majority of publications did not
explicitly address the comparison of the different aggregation methods. Instead, the TSA methods
were often simply applied. Therefore, terms such as TSA, TD, complexity reduction, or clustering,
which are crucial for identifying TSA methods, only appear in a minority of publications as keywords.
Moreover, a number of terms was found to be inconsistently or redundantly used by different research
communities. Examples for this are the terms “representative days” and “typical days”. Therefore, a
heuristic approach was used as starting point that focused on a search for methods based on citations
of earlier works. If no earlier work was cited dealing with TSA, the search was halted. Simultaneously,
terms that appeared in multiple publications were considered to be keywords and, to overcome the
problem of co-citation clusters [56] with own terms, these newly defined keywords were used for an
additional search on the internet. The keywords used for the literature research that arose from this
analysis are listed in Table 1 along with their definitions and terms that are synonymously used in
the literature.

Building upon the analyzed literature and the basic features of a TSA process introduced by
Kotzur et al. [57] and Schütz et al. [58], the table of methods in Appendix A was derived for categorizing
and comparing the different methods. Moreover, the methods were also investigated on the basis of
their capacity to link all time steps across the original time horizon, which enables seasonal storage,
and their premise to approximate the duration curve or the unsorted time series. This ultimately leads
to the structure of the following sections.
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Table 1. Glossary and simultaneous keyword list used for the literature research.

Term Synonym (Term in
This Review) Definition Keywords Used for

Literature Research

Clustering (of Time
Series)

Grouping,
(Clustering)

“Given a dataset of n time series data
D = {F1, F2, . . . , Fn}, the process of unsupervised

partitioning of D into C = {C1, C2, . . . , Ck} in such a
way that homogeneous time series data are grouped
together based on a certain similarity measure” [59]

Clustering

Complexity
Reduction

None,
(Complexity
Reduction)

Different techniques to increase the computational
tractability of ESMs [35] Complexity Reduction

Energy System
Model

Energy System
Optimization Model,

(Energy System
Model)

A model “the analysis of existing national energy
systems, as well as the prediction of potential future

scenarios, is usually performed with” [9]

Energy System
Optimization Model,

Energy System Model

Period None,
(Period)

A group of consecutive time steps describing a
regular amount of time (e.g., 24 h) Typical Period

Representative Typical,
(Typical)

A single time step or a period representing a group
of time steps or periods determined by clustering

Representative Day,
Representative Week

Sample None,
(Sample)

A single time step or period taken from the original
time series

Sampling,
Random Sampling,

Subsampling

Snapshot

System State,
Time Step,
(Time Step,

If subset of TS: Typical
Time Step)

A term used in the literature for typical time steps
(TTS) Snapshot

System State

Snapshot,
Time Step,
(Time Step,

If subset of TS: Typical
Time Step)

A term misleadingly used in the literature for typical
time steps (TTS). It actually describes the state of a

system under both external conditions (e.g., capacity
factors) and internal state variables (e.g., storage

levels) at a specific time step

System State

Temporal
Resolution

None,
(Temporal Resolution)

The resolution of a discretized time series given by
the length of its time steps Temporal Resolution

Time Series
Aggregation

Temporal Aggregation,
(Time Series
Aggregation

In the narrow sense:
The reduction of time steps in time series

In a broader sense:
The reduction of the number of time steps or time

series

Time Series
Aggregation,

Temporal Aggregation

Time Slice Time Slot,
(Time Slice)

Hierarchically merged time steps appearing in a
systematic order as used by the TIMES framework Time Slice

Time Step
Snapshot

System State
(Time Step)

The smallest possible time interval of a discrete time
series represented by a single value for each attribute

Time Step
Typical Time Step

Typical Representative
(Typical)

Periods or single time steps considered to capture the
basic characteristics of the external operating

conditions of an energy system are named “typical”

Typical Day
Typical Week

2.2. Structure of the Review

From the categorization in Appendix A, the methods presented in Section 3 are derived as the
basic aggregation methods, as well as miscellaneous methods that cannot be clearly categorized.
As aggregation methods commonly suffer from certain drawbacks, a number of methods exist to
preserve additional information of the original input time series, which are presented in Section 4.
Along with both Sections 3 and 4, the individual trends and possible reasons for them are discussed in
Sections 3.5 and 4.3. The major results of the review are concluded in Section 5.

Figure 2 illustrates the structure of the following chapters by highlighting comparable ideas
with rival methods with the same colors and steps to be taken or decisions to be made for applying
a sophisticated aggregation method with blue arrows. The grey backgrounds distinguish the basic
aggregation process presented in Section 3 from the preservation of additional information of the
original time series presented in Section 4.
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Along with the introduction of a new aggregation method, the impact of this method on potential
input data is visualized. For this, a time series for photovoltaic capacity factors is used, which consists
of 8760 hourly time steps for one year, and is illustrated in Figure 3. Finally, all of the described
equations refer to those in existing publications, but are reformulated for the sake of consistency within
this paper.
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Figure 3. One year of hourly resolved photovoltaic capacity factors simulated with PV-Lib [60].

3. Time Series Aggregation

The following section deals with the general concept of TSA. For the mathematical examinations
of the following section, the nomenclature of Table 2 is used.

The input data D usually consists of one time series for each attribute, i.e., D = A × S. The set
of attributes A describes all types of parameters that are ex-ante known for the energy system, such
as the capacity factors of certain technologies at certain locations or demands for heat and electricity
that must be satisfied. The set of time steps describes the shape of the time series itself, i.e., sets of
discrete values that represent finite time intervals, e.g., 8760 time steps of hourly data to describe a
year. For all methods presented in the following, it is crucial that the time series of all attributes have
identical lengths and TR. The possible shape of this highly resolved input data is shown in the left
upmost field in Figure 4.
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Table 2. Nomenclature for the mathematical examinations in the following section.

Sets & Indices

Set D
Set/Index of Attributes A, a
Set/Index of Time Steps S, s

Set/Index of Periods P, p
Set/Index of Inner-Period Time Steps T, t

Set/Index of Cluster Members C, k
Cluster Center (as Defined) c

Discrete Value of Time Series (Normed) x′(x)
Number of Items in a Set N

Matrix Path for Dynamic Time Warping w
Minkowski Exponent γ
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One approach for aggregating the input time series is to merge multiple time series of attributes
with a similar pattern. However, this can only be performed for attributes describing similar units
(e.g., the capacity factors of similar wind turbines) or similar customer profiles (i.e., the electricity
demand profiles of residential buildings). As this approach is often chosen to merge spatially distributed
but similar technologies, it is not considered as TSA in the narrow sense, but as spatial or technological
aggregation, as the number of time steps is not reduced in these cases. This is illustrated in the right
upmost field in Figure 4, and some examples from the literature are given in Appendix B.

TSA, as it is understood in this review, is the aggregation of redundant information within each
time series, i.e., in the case of discrete time steps, the reduction of the overall number of time steps.
This can be done in several ways. One way of reducing the number of time steps, as is shown in the
central field of Figure 4, is the merging of adjacent time steps. Here, it needs to be highlighted that the
periods shown in this field are for illustrative purposes only: The merging of adjacent time steps can
be performed for full-length time series or time periods of time series only. Moreover, the merging of
adjacent time steps can either be done in a regular manner, e.g., every two time steps are represented
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by one larger time step (downsampling) or in an irregular manner according to, e.g., the gradients
of the time series (segmentation). A third possible approach is to individually variate the temporal
resolution for each attribute, i.e., using multiple time grids, which could also be done in an irregular
manner, as pointed out by Renaldi et al. [61]. These three methods directly decrease the temporal
resolution and will be presented in Section 3.1.

Another approach for TSA is based on the fact that many time series exhibit a fairly periodic
pattern, i.e., time series for solar irradiance have a strong daily pattern. In the case of perfect periodicity,
a time series could thus be represented by one period and its cardinality without the loss of any
information. Based on this idea, time series are often divided into periods as already shown in the
middle of Figure 4. As the periods are usually not constant throughout a year (e.g., the solar irradiance
is higher in the summer than in the winter), the periods can either be merged based on their position in
the calendar (time slices and averaging) or based on their similarity (clustering), as shown at the bottom
of Figure 4. These methods will be described in Section 3.2. Moreover, information about the order in
which the periods appear in the original time series must be preserved to be able to model temporal
linkages such as the states of charge of storage technologies which will be referred to as “intertemporal
constraints” in the following. This is discussed in Section 3.2.4. As already mentioned, the TR can also
be reduced within the periods. This leads to Table 3, which illustrates the possible combinations of the
methods presented above. Here, each method from column one could be combined with each method
from column two.

Table 3. Overview over frequently used methods and their possible combinations.

Period Merging Type Resolution Variation Typical Periods

Time-based Downsampling Time Slices and Averaging
Feature-based Segmentation Clustering

The methods in the table dealing with resolution variation are described in Sections 3.1.1 and 3.1.2.
The method of using multiple time grids explained in Section 3.1.3 is neglected in the table due to its
seldom usage in ESMs. The methods concerning typical periods are described in the Sections 3.2.1
and 3.2.2. Moreover, a small number of methods based on random sampling and miscellaneous
methods, but cannot be properly categorized in Figure 4 or Table 3. However, they will be described in
Sections 3.3 and 3.4. In this way, Table 3 mirrors the structure of the following section.

In the following, methods that merge time steps or periods in a regular manner, i.e., based on their
position in the time series only, will be referred to as time-based methods, whereas aggregation based
on the time steps’ and periods’ values will be called feature-based. In this context, features refer not
only to statistical features as defined by Nanopoulos et al. [62], but in a broader sense to information
inherent to the time series, regardless of whether the values or the extreme values of the time series
themselves or their statistical moments are used [63].

3.1. Resolution Variation

The simplest and most intuitive method for reducing the data volume of time series for ESMs is
the variation of the TR. Here, three different procedures can be distinguished that have been commonly
used in the literature:

3.1.1. Downsampling

Downsampling is a straightforward method for reducing the TR by representing a number of
consecutive discrete time steps by only one (longer) time step, e.g., a time series for one year of
hourly data is sampled down to a time series consisting of 6 h time steps. Thus, the number of
time steps that must be considered in the optimization is reduced to one sixth, as demonstrated by
Pfenninger et al. [37]. As the averaging of consecutive time steps leads to an underestimation of the
intra-time step variability, capacities for RES tend to be underestimated because their intermittency is
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especially weakly represented [37]. Figure 5 shows the impact of downsampling the PV profile from
hourly resolution to 6-h time steps, resulting in one sixth of the number of time steps. In comparison to
the original time series, the underestimation of extreme periods is remarkable. This phenomenon also
holds true for sub-hourly time steps [38,64,65] and, for instance, in the case of an ESM containing a PV
cell and a battery for a residential building, this not only has an impact on the built capacities, but
also on the self-consumption rate [38,65]. For wind, the impact is comparable [64]. As highlighted by
Figure 4, downsampling can also be applied to typical periods. To the best of our knowledge, this
was initially evaluated by Yokoyama et al. [66] with the result that it could be a crucial step to resolve
a highly complex problem, at least close to optimality. The general tendency of downsampling to
underestimate the objective function was shown in a subsequent work by Yokoyama et al. [67] and the
fact that this is not necessarily the case when combined with other methods in a third publication [68].
Other works that deal with combined approaches will be discussed in Section 3.2.1.3.
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3.1.2. Segmentation

In contrast to downsampling, segmentation is a feature-based method of decreasing the TR of time
series with arbitrary time step lengths. To the best of our knowledge, Mavrotas et al. [54] were the first
to present an algorithm for segmenting time series to coarser time steps based on ordering the gradients
between time steps and merging the smallest ones. Fazlollahi et al. [69] then introduced a segmentation
algorithm based on k-means clustering in which extreme time steps were added in a second step.
In both works, the segmentation methods were applied to typical periods, which will be explained in
the following chapters. Bungener et al. [70] used evolutionary algorithms to iteratively merge the heat
profiles of different units in an industrial cluster and evaluated the different solutions obtained by the
algorithm with the preserved variance of the time series and the sum of zero-flow rate time steps, which
indicated that a unit was not active. Deml et al. [71] used a similar, but not feature-based approach, as
Mavrotas et al. and Fazlollahi et al. [54,69] for the optimization of a dispatch model. In this approach,
the TR of the economic dispatch model was more reduced the further time steps lay in the future,
following a discretized exponential function. Moreover, they compared the results of this approach to
those of a perfect foresight approach for the fully resolved time horizon and a model-predictive control
and proved the superiority of the approach, as it preserved the chronology of time steps. This was
also pointed out in comparison to a typical periods approach by Pineda et al. [72], who used the
centroid-based hierarchical Ward’s algorithm [73] with the side condition to only merge adjacent time
steps. Bahl et al. [74], meanwhile, introduced a similar algorithm as Fazlollahi et al. [69] inspired by
Lloyd’s algorithm and the partitioning around medoids algorithm [75,76] with multiple initializations.
This approach was also utilized in succeeding publications [77,78]. In contrast to the approach of
Bahl et al. [74], Stein et al. [79] did not use a hierarchical approach, but formulated an MILP in which
not only extreme periods could be excluded beforehand, but also so that the grouping of too many
adjacent time steps with a relatively small but monotone gradient could be avoided. The objective
function relies on the minimization of the gradient error, similar to the method of Mavrotas et al. [54].
Recently, Savvidis et al. [80] investigated the effect of increasing the TR at times of the zero-crossing
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effect, i.e., at times when the energy system switches from the filling of storages to withdrawing and
vice versa. This was compared to the opposite approach, which increased resolution at times without
zero crossing. They also arrived at the conclusion that the use of irregular time steps is effective for
decreasing the computational load without losing substantial information. Figure 6 shows advantages
of the hierarchical method proposed by Pineda et al. [72] compared to the simple downsampling in
Figure 5. The inter-daily variations of the PV profile are much more accurately preserved choosing
1460 irregular time steps compared to simple downsampling with the same number of time steps.Energies 2020, 13, x FOR PEER REVIEW 11 of 71 
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3.1.3. Multiple Time Grids

The idea of using multiple time grids takes into account that different components that link
different time steps to each other, such as storage systems, have different time scales on which they
operate [14,15,81]. For instance, batteries often exhibit daily storage behavior, whereas hydrogen
technologies [14,15] or some thermal storage units [81,82] have seasonal behavior. Because of this,
seasonal storage is expected to be accurately modeled with a smaller number of coarser time steps.
Renaldi et al. [61] applied this principle to a solar district heating model consisting of a solar thermal
collector, a backup heat boiler, and a long- and a short-term thermal storage system to achieve the
optimal tradeoff between the computational load and accuracy for modeling the long-term thermal
storage with 6 h time steps and the remaining components with hourly time steps. It is important
to highlight that the linking of the different time grids was achieved by applying the operational
state of the long-term storage to each time step of the other components if they lay within the larger
time steps of the long-term storage. This especially reduced the number of binary variables of the
long-term storage (because it could not charge and discharge at the same time). However, increasing
the step size led to an even further increase in calculation time, as the operational flexibility of the
long-term storage became too stiff and the benefit from reducing the number of variables of the
long-term storage decreased. Thus, this method requires knowledge about the characteristics of each
technology beforehand. Reducing the TR of single components is a highly demanding task and is left
to future research.

3.2. Typical Periods

The aggregation of time series into typical periods is based on the idea that energy systems
behave similarly under similar external conditions, e.g., similar energy demands and capacity factors
of RES [83]. Typical periods can consist of single time steps, which are called “system states” [19,83–86],
“snapshots” [63,87], or “external operation conditions” [88] in the literature, or periods containing
more than one time step, e.g., “typical days” (TDs) or “representative days”, which were used by
the majority of authors. In the context of control engineering, the term “system states” is especially
misleading, as the state of a system not only depends on external parameters such as capacity factors
and demands to be fulfilled, but also on storage levels and other endogenous state variables. Therefore,
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the term “system state” in discrete ESMs is only equivalent to time steps if the system is not temporally
coupled, i.e., neither state variables, nor intertemporal constraints linking them with each other exist.
The following will refer to “typical time steps” (TTSs) if the typical period consists of only one time
step. If not stated differently in the following, the authors used TDs. However, longer periods such
as typical (also called representative) weeks ([57,89–91] (“typical weeks”), [92–95] (“representative
weeks”) also exist. This work only makes further use of the word “representative” in the context of
clustering, as the representative of each cluster [96] is then interpreted as the new typical period.

Analogous to the previous chapter, a number of time-based and feature-based methods exist that
will be explained in the following.

3.2.1. Time-Based Merging

Time-based approaches of selecting typical periods rely on the modeler’s knowledge of the model.
This means that characteristics are included that are expected to have an impact on the overall design
and operation of the ESM. As will be shown in the following, this was most frequently done for TDs,
although similar approaches for typical weeks [89] or typical hours (i.e., TTSs) [97] exist. As pointed
out by Schütz et al. [58], the time-based selection of typical periods can be divided into month-based
and season-based methods, i.e., selecting a number of typical periods from either each month or
from each season. However, we divide the time-based methods in consecutive typical periods and
non-consecutive typical periods that are repeated as a subset with a fixed order in a pre-defined
time interval.

3.2.1.1. Averaging

The method that is referred to as averaging in the following, as per Kotzur et al. [57], focuses on
aggregating consecutive periods into one period. To the best of our knowledge, this idea was first
introduced by Marton et al. [98], who also introduced a clustering algorithm that indicated whether a
period of consecutive typical periods of Ontario’s electricity demand had ended or not. In this way, the
method was capable of preserving information about the order of TDs. However, it was not applied to
a specific ESM. In contrast to that method, one TD for each month at hourly resolution, resulting in 288
time steps, was used by Mavrotas et al. [54], Lozano et al. [99], Schütz et al. [100], and Harb et al. [101].
Although thermal storage systems have been considered in the literature [99–101] (as well as a battery
storage by Schütz et al. [100]), they were constrained to the same state of charge at the beginning and
end of each day. The same holds true in the work of Kotzur et al. [57]. Here, thermal storage, batteries
and hydrogen storage were considered and the evaluation was repeated for different numbers of
averaged days. Buoro et al. [89] used one typical week per month to simulate operation cycles on a
longer time scale. Kools et al. [102], in turn, clustered eight consecutive weeks in each season to one TD
with 10 min resolution, which was then further down-sampled to 1 h time steps. The same was done by
Harb et al. [101], who compared twelve TDs of hourly resolution to time series with 10 min. time steps
and time series down-sampled to 1 h time steps. This illustrates that both methods, downsampling
and averaging, can be combined. Voll et al. [103] aggregated the energy profiles even further with only
one time step per month, which can also be interpreted as one TD per month down-sampled to one
time step. To account for the significant underestimation of peak loads, the winter and summer peak
loads were included as additional time steps. Figure 7 illustrates the impact of representing the original
series by twelve monthly averaged consecutive typical days, i.e., 288 time steps instead of 8760.
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Figure 7. The time series of photovoltaic capacity factors represented by twelve monthly averaged
periods as used in other studies [54,99,100] and reproduced by Kotzur et al. [57] using the python
package tsam [57] (i.e., 288 different time steps).

3.2.1.2. Time Slices

To the best of our knowledge, the idea of time slices (TSs) was first introduced by the MESSAGE
model [9,51] and the expression was reused for other models, such as THEA [104], LEAP [105],
OSeMOSYS [106], Syn-E-Sys [107], and TIMES [48,49]. The basic idea is comparable to that of
averaging, but not based on aggregating consecutive periods. Instead, TSs can be interpreted as the
general case of time-based grouping of periods. Given the fact that electricity demand in particular not
only depends on the season, but also on the weekday, numerous publications have used the TS method
for differentiating between seasons and amongst days. In the following, this approach is referred to as
time slicing, although not all of the cited publications explicitly refer to the method thus. Instead, the
method is sometimes simply called “representative day” [66,67,108–113], “TD” [54,114–121], “typical
daily profiles” [16,17], “typical segment” [122] “time slot” [52], or “time band” [123]. Accordingly, the
term “TS” is used by the majority of authors [36,39,51,104–107,124–128]. The most frequent distinction
is made between the four seasons [16,17,36,39,104–107,115,121,124,126–128] or between summer,
winter. and mid-season [40,51,54,66,67,91,108–110,112,117,118,120,123,129,130], but other distinctions
such as monthly, bi-monthly, or bi-weekly among others [40,51,54,111,113,114,116,119,122,125] can
also be found. Within this macro distinction, a subordinate distinction between weekdays and
weekend days [16,17,51,106,107,111,113,116,121–123], weekdays, Saturdays, and Sundays [115,124,126],
Wednesdays, Saturdays, and Sundays [104,105], or others, such as seasonal, median, and peak [40]
can be found. In contrast to the normal averaging, each TS does not follow the previous one, but is
repeated in a certain order a certain number of times (e.g., five spring workdays are followed 13 times
by two weekend spring days before the summer periods follow). This is especially important when
seasonal storages are modeled [16,17,106], which will be explained in greater depth in Section 3.2.4.
As a visual inspection of Figures 7 and 8 shows, the TS method relying on the distinction between
weekdays and seasons is not always superior to a monthly distinction. The reason for this is that
some input data such as the PV profile from the example have no weekly pattern and spacing the
typical periods equidistantly is the better choice in this case if no other input time series (such as,
e.g., electricity profiles) must be taken into account. Thus, the choice of the aggregation method should
refer to the pattern of the time series considered to be especially important for the ESM. For instance,
the differences between week- and weekend days is likely more important to an electricity system
based on fossil fuels and without storage technologies, whereas an energy system based on a high
share of RES, combined heat and power technologies, and storage units is more affected by seasonality.
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(i.e., 288 different time steps).

3.2.1.3. Time Slices/Averaging + Downsampling/Segmentation

Like the simple averaging of consecutive time periods that can be further sampled down, e.g., as
done by Harb et al. [101], the typical periods in the TS method can also be further sampled down.
This can be done, for instance, by downsampling to 2 h TSs [116,118,122], 4 h TSs [40], or a number of
different time step sizes to investigate the downsampling impact [66–68]. Moreover, day and night
cycles (two diurnal TSs) [36,104,126–128], optionally including the peak hour of the day [36,127,128]
or other TSs of irregular length [39,54,106,107,112,123,129], were also used. Mavrotas et al. [54] also
implemented an algorithm for segmenting the chosen TDs to coarser TSs based on ordering of the
gradients between time steps and merging the smallest ones.

The extreme case of both the downsampling method and averaging/TS method is the representation
of the total time series by its mean, which was performed by Merrick et al. [40]. As this approach is
unable to consider any dynamic effects, it only served as a benchmark.

3.2.2. Feature-Based Merging

In contrast to representing time series with typical periods based on a time-based method, typical
periods can also be chosen on the basis of features. In this section, the clustering procedure is explained
both conceptually and mathematically. To the best of our knowledge, one of the first and most
frequently cited works by Domínguez-Muñoz et al. [55] used this approach to determine typical
demand days for a CHP optimization, i.e., an energy system optimization model with discrete time
steps, even though it was not applied to a concrete model in this work. For this purpose, all time
series are first normalized to encounter the problem of diverse attribute scales. Then, all time series
are split into periods P, which are compared to each other by transforming them for each value x of
each attribute a at each time step t within the period to a hyper-dimensional data point. Those data
points with low distances to each other are grouped into clusters and represented by a (synthesized or
existing) point within that cluster considered to be a “typical” or “representative” period. Additionally,
a number of clustering algorithms are not centroid-based, i.e., they do not preserve the average value
of the time series [58] which could, e.g., lead to a wrong assumption of the overall energy amount
provided by an energy system across a year. To overcome this problem, time series are commonly
rescaled in an additional step. The methods for this are presented in Sub-Section 3.2.2.3. This means
that time series clustering includes five fundamental aspects:

• A normalization (and sometimes a dimensionality reduction).
• A distance metric.
• A clustering algorithm.
• A method to choose representatives [59].
• A rescaling step in the case of non-centroid based clustering algorithms.
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As the clustered data are usually relatively sparse, while the number of dimensions increases with
the number of attributes, the curse of dimensionality may lead to unintuitive results incorporating
distance metrics [131], such as the Euclidean distance [59,132–134]. Therefore, a dimensionality
reduction might be used in advance [135–137], but is not further investigated in this work for the sake
of brevity. In the following, each of the bullet points named above will be explained with respect to
their application in TSA for ESMs. Further, the distance metric, clustering method, and the choice of
representatives will jointly be presented in Section 3.2.2.2, because the number of clustering methods
used for ESMs is small. Figure 9 shows the mandatory steps for time series clustering used for ESMs,
which are presented in the following. The grey boxes contain optional methods for maintaining
additional information that is important for the system design and which are presented in Section 4.
Figure 10 shows the time series of photovoltaic capacity factors represented by 12 typical days (TDs)
using k-means clustering and the python package tsam [57].Energies 2020, 13, x FOR PEER REVIEW 15 of 71 

 

 

Figure 9. Steps for clustering time series for energy system models (ESMs). 

 
Figure 10. The time series of photovoltaic capacity factors represented by twelve typical days (TDs) 
using k-means clustering and the python package tsam [57] (i.e., 288 different time steps). 

3.2.2.1. Preprocessing and Normalization 

Clustering normally starts with preprocessing the time series, which includes a normalization 
step, an optional dimensionality reduction and an alignment step. Because of the diversity of scales 
and units amongst different attributes, they must be normalized before applying clustering 
algorithms to them. Otherwise, distance measures used in the clustering algorithm would focus on 
large-scaled attributes and other attributes would not be properly represented by the cluster 
centers. For example, capacity factors are defined as having values of between zero and one, 
whereas electricity demands can easily reach multiple gigawatts. Although a vast number of 
clustering algorithms exist, the min-max normalization is used in the majority of publications 
[14,18,39,57,58,69,92,93,135,138–141]. For the time series of an attribute {1, , }aa N    consisting 

of {1, , }ss N    time steps, the normalization to the values assigned to a  in time step s  is 
calculated as follows: 

,
,

min( )
max( ) min( )

a s a
a s

a a

x x
x

x x
 


 

 (1) 

In cases in which the natural lower limit is zero, such as time series for electricity demands, 
this is sometimes [37,86,88,94,142–145] reduced to: 

,
, max( )

a s
a s

a

x
x

x





 (2)

Another normalization that can be found in the literature [41,97,146–148] is the z-normalization 
that directly accounts for the standard deviation, rather than for the maximum and minimum 
outliers, which implies a normal distribution with different spreads amongst different attributes: 

Figure 9. Steps for clustering time series for energy system models (ESMs).

Energies 2020, 13, x FOR PEER REVIEW 15 of 71 

 

 

Figure 9. Steps for clustering time series for energy system models (ESMs). 

 
Figure 10. The time series of photovoltaic capacity factors represented by twelve typical days (TDs) 
using k-means clustering and the python package tsam [57] (i.e., 288 different time steps). 

3.2.2.1. Preprocessing and Normalization 

Clustering normally starts with preprocessing the time series, which includes a normalization 
step, an optional dimensionality reduction and an alignment step. Because of the diversity of scales 
and units amongst different attributes, they must be normalized before applying clustering 
algorithms to them. Otherwise, distance measures used in the clustering algorithm would focus on 
large-scaled attributes and other attributes would not be properly represented by the cluster 
centers. For example, capacity factors are defined as having values of between zero and one, 
whereas electricity demands can easily reach multiple gigawatts. Although a vast number of 
clustering algorithms exist, the min-max normalization is used in the majority of publications 
[14,18,39,57,58,69,92,93,135,138–141]. For the time series of an attribute {1, , }aa N    consisting 

of {1, , }ss N    time steps, the normalization to the values assigned to a  in time step s  is 
calculated as follows: 

,
,

min( )
max( ) min( )

a s a
a s

a a

x x
x

x x
 


 

 (1) 

In cases in which the natural lower limit is zero, such as time series for electricity demands, 
this is sometimes [37,86,88,94,142–145] reduced to: 

,
, max( )

a s
a s

a

x
x

x





 (2)

Another normalization that can be found in the literature [41,97,146–148] is the z-normalization 
that directly accounts for the standard deviation, rather than for the maximum and minimum 
outliers, which implies a normal distribution with different spreads amongst different attributes: 

Figure 10. The time series of photovoltaic capacity factors represented by twelve typical days (TDs)
using k-means clustering and the python package tsam [57] (i.e., 288 different time steps).

3.2.2.1. Preprocessing and Normalization

Clustering normally starts with preprocessing the time series, which includes a normalization
step, an optional dimensionality reduction and an alignment step. Because of the diversity of scales
and units amongst different attributes, they must be normalized before applying clustering algorithms
to them. Otherwise, distance measures used in the clustering algorithm would focus on large-scaled
attributes and other attributes would not be properly represented by the cluster centers. For example,
capacity factors are defined as having values of between zero and one, whereas electricity demands can
easily reach multiple gigawatts. Although a vast number of clustering algorithms exist, the min-max
normalization is used in the majority of publications [14,18,39,57,58,69,92,93,135,138–141]. For the time
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series of an attribute a ∈ A = {1, . . . , Na} consisting of s ∈ S = {1, . . . , Ns} time steps, the normalization
to the values assigned to a in time step s is calculated as follows:

xa,s =
x′a,s −min(x′a)

max(x′a) −min(x′a)
(1)

In cases in which the natural lower limit is zero, such as time series for electricity demands, this is
sometimes [37,86,88,94,142–145] reduced to:

xa,s =
x′a,s

max(x′a)
(2)

Another normalization that can be found in the literature [41,97,146–148] is the z-normalization
that directly accounts for the standard deviation, rather than for the maximum and minimum outliers,
which implies a normal distribution with different spreads amongst different attributes:

xa,s =
x′a,s − x′a
σ(x′a)

(3)

In Appendix C, the normalization approaches are exemplarily illustrated for a hypothetical short
time series.

In the following, the issue of dimensionality reduction will not be considered due to the fact that
it is only used in a small number of publications [135–137] and transforms the data into eigenvectors
to tackle the non-trivial behavior of distance measures used for clustering in hyper-dimensional
spaces [133].

A time series can further be divided into a set of periods P and a set of time steps within each
period T, i.e., S = P×T. The periods are clustered into non-overlapping subsets PC, which are then
represented by a representative period, respectively. A representative period consists of at least one
discrete time step and, depending on the number and duration of time steps, it is often referred to
as a typical hour, snapshot or system state, typical or representative day, or typical week. The data
D = A× P×T can thus be rearranged so that each period is represented by a row vector in which all
inter-period time steps of all attributes are concatenated, i.e.,

Darr =


x1,1,1 · · · x1,1,Nt x1,2,1 · · · x1,Na,Nt

...
. . .

...
...

. . .
...

xNp,1,1 · · · xNp,1,Nt xNp,2,1 · · · xNp,Na.Nt

 with
a ∈ A = {1, . . . , Na}

p ∈ P =
{
1, . . . , Np

}
t ∈ T = {1, . . . , Nt}

(4)

The row vectors of Darr are now grouped with respect to their similarity. Finally, yet importantly,
it must be highlighted that the inner-period time step values can also be sorted in descending order,
which means that, in this case, the duration curves of the periods are clustered as done in other
studies [18,140,149,150]. This can reduce the averaging effect of clustering time series without periodic
patterns such as wind time series.

3.2.2.2. Algorithms, Distance Metrics, Representation

Although a vast number of different clustering algorithms exist [96,151] and have been used for
time series clustering in general [59], only a relatively small number of regular clustering algorithms
have been used for clustering input data for energy system optimization problems, which will be
presented in the following. Apart from that, a number of modified clustering methods have been
implemented in order to account for certain properties of the time series, which will be part of
Section 3.2.3. The goal of all clustering methods is to meaningfully group data based on their similarity,
which means minimizing the intra-cluster difference (homogeneity) or maximizing the inter-cluster
difference (separability) or a combination of the two [152]. However, this depends on the question
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of how the differences are defined. To begin with, the clustering algorithms can be separated into
partitional and deterministic hierarchical algorithms.

Partitional Clustering

One of the most common partitional clustering algorithms used in energy system optimization
is the k-means algorithm, which has been used in a variety of studies [14,15,24,37,57,58,63,69,74,78,
83–87,97,137–139,141,142,145–148,153–161]. The objective of the k-means algorithm is to minimize the
sum of the squared distances between all cluster members of all clusters and the corresponding cluster
centers, i.e.,

min
Nk∑

k=1

∑
p∈Ck

dist
(
xp, ck

)2
(5)

The distance metric in this case is the Euclidean distance between the hyperdimensional period
vectors with the dimension dim(vec(T×A)) and their cluster centers ck, i.e.,

dist
(
xp, ck

)
=

√√√ Na∑
a=1

Nt∑
t=1

(
xp,a,t − ck

)2
(6)

where the cluster centers are defined as the centroid of each cluster, i.e.:

ck =
1
|Ck|

∑
p∈Ck

xp,a,t (7)

This NP-hard problem is generally solved by an adopted version [76] of Lloyd’s algorithm [75], a
greedy algorithm that heuristically converges to a local minimum. As multiple runs are performed in
order to improve the local optimum, improved versions (such as k-means++) for setting initial cluster
centers have also been proposed in the literature [162].

The only difference regarding the k-medoids algorithm is that the cluster centers are defined as
samples from the dataset that minimize the sum of the intra-cluster distances, i.e., that are closest to
the clusters’ centroids.

ck = argmin
xl∈Ck

1
Nk

∑
p∈Ck

dist
(
xp, xl

)2
(8)

This clustering algorithm was used by numerous authors [14,19,41,55,57,58,74,78,86,139,141,
149,150,159,163–167], either by using the partitioning around medoids (PAM) introduced by
Kaufman et al. [168] or by using an MILP formulation introduced by Vinod et al. [169] and used in
several studies [14,41,55,57,139,159,164]. The MILP can be formulated as follows:

min
Np∑
i=1

Np∑
j=1

dist
(
xi, x j

)
× zi, j (9)

Subject to:
Np∑
j=1

zi, j = 1 ∀ j ∈ 1, . . . , Ni (10)

zi, j ≤ yi ∀ i, j ∈ 1, . . . , Ni (11)

Ni∑
i=1

yi = Nk (12)

In a number of publications [41,57,58,86,139,141,159], k-medoids clustering was directly compared
to k-means clustering. The general observation is that k-medoids clustering is more capable of
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preserving the intra-period variance, while k-means clustering underestimates extreme events more
gravely. Nevertheless, the medoids lead to higher root mean squared errors compared to the original
time series. This leads to the phenomenon that k-medoids outperforms k-means in the cases of energy
systems sensitive to high variance, as in self-sufficient buildings, e.g., as shown by Kotzur et al. [57] and
Schütz et al. [139]. In contrast to that, k-means outperforms k-medoids clustering in the case of smooth
demand time series and non-rescaled medoids that do not match the overall annual demand in the case
of k-medoids clustering, as shown by Zatti et al. [141] for the energy system of a university campus.

Agglomerative Clustering

In contrast to partitional clustering algorithms that iteratively determine a set consisting of
k clusters in each iteration step, agglomerative clustering algorithms such as Ward’s hierarchical
algorithm [73] stepwise merge clusters aimed at minimizing the increase in intra-cluster variance

SSE =
∑
p∈Ck

dist
(
xp, ck

)2
(13)

in each merging step until the data is agglomerated to k clusters. The algorithm is thus deterministic
and does not require multiple random starting point initializations. Analogously to k-means and
k-medoids, the cluster centers can either be represented by their centroids [41,159] or by their
medoids [18,37,41,57,72,86,135,140,143,144,148,159]. The general property that centroids underestimate
the intra-period variance more severely due to the averaging effect is equivalent to the findings when
using k-means instead of k-medoids.

Rarely Used Clustering Algorithms

Apart from the frequently used clustering algorithms in the literature, two more clustering
algorithms were used in the context of determining typical periods based on unsorted time intervals of
consistent lengths.

K-medians clustering is another partitional clustering algorithm that is closely related to the
k-means algorithm and has been used in other studies [58,139]. Taking into account that the Euclidean
distance is only the special case for of the Minkowski distance [170]

dist
(
xp, ck

)
=

 Na∑
a=1

Nt∑
t=1

∣∣∣xp,a,t − ck
∣∣∣γ

1
γ

(14)

K-medians generally tries to minimize the sum of the distances of all data points to their cluster
center in the Manhattan norm, i.e., for γ = 1 and the objective function [171,172]:

min
Nk∑

k=1

∑
p∈Ck

dist
(
xp, ck

)
with dist

(
xp, ck

)
=

Na∑
a=1

Nt∑
t=1

∣∣∣xp,a,t − ck
∣∣∣ (15)

For this, the L1 distance is usually used in the assignment step [171] and the median is calculated
in each direction to minimize the L1 distance within each cluster [172]. However, Schütz et al. [58,139]
used the Euclidean distance (like for k-means) in the assignment step to isolate the influence of using
dimension-wise medians instead of dimension-wise means (i.e., centroids). Thus, all values come from
the original dataset, but not necessarily from the same candidates [58].

Moreover, Schütz et al. [58,139] used k-centers clustering, which minimizes the maximum distance
of all candidates to its cluster center, i.e., according to Har-Peled [173],

min
C,|C|=k

(
max
p∈Ck

(
dist

(
xp, ck

)))
with dist

(
xp, ck

)
=

√√√ Na∑
a=1

Nt∑
t=1

(
xp,a,t − ck

)2
(16)
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Time Shift-Tolerant Clustering Algorithms

The last group of clustering algorithms applied for TSA in ESMs is time shift-tolerant clustering
algorithms. These algorithms not only compare to the values of different time series at single time
steps (pointwise), but also compare values along the time axis with those of other time series (pairwise).
In the literature [41,159], dynamic time warping (DTW) and the k-shape algorithm are used, both of
which are based on distance measures that are not sensitive to phase shifts within a typical period,
which is the case for the Euclidean distance. The dynamic time-warping distance is defined as:

dist
(
xp, ck

)
= min

w

√√√ L∑
l=1

wl (17)

where w describes the so-called warping path, which is the path of minimal deviations across the matrix
of cross-deviations between any entry of xp and any entry of ck [41,174]. The cluster centers ck are
determined using DTW Barycenter averaging, which is the centroid of each time series value (within an
allowed warping window) assigned to the time step [175]. Moreover, a warping window [41,159] can
be determined that limits the assignment of entries across the time steps. Shape-based clustering uses
a similar algorithm and tries to maximize the cross-correlation amongst the periods. Here, the distance
measure to be minimized is the cross-correlation and the period vectors are uniformly shifted against
each other to maximize it [41,159,174,176]. It must be highlighted that both dynamic time warping
and shape-based distance, have only been applied on the clustering of electricity prices, i.e., only one
attribute [41,159]. Moreover, Liu et al. [148] also applied dynamic time warping to demand, solar, and
wind capacity factors simultaneously. However, it is unclear how it was guaranteed that different
attributes were not compared to each other within the warping window which remains a field of future
research. Furthermore, a band distance, which is also a pairwise rather than a pointwise distance
measure, was used in a k-medoids algorithm by Tupper et al. [167], leading to significantly less loss of
load when deriving operational decisions for the next day using a stochastic optimization model.

3.2.2.3. Rescaling

Due to the fact that not all of the methods rely on the representation of each cluster by its
centroid (i.e., the mean in each dimension), these typical periods do not meet the overall average value
when weighted by their number of appearances and must be rescaled. This also holds true for the
consideration of extreme periods, which will be explained in the following chapters. Accordingly,
the following section will be referred to if rescaling is considered in the implementation of extreme
periods. To the best of our knowledge, the first work that used clustering not based on centroids
was that of Domínguez-Muñoz et al. [55], in which the exact k-medoids approach was chosen as per
Vinod et al. [169]. Here, each attribute (time series) of each TD was rescaled to the respective cluster’s
mean, i.e.,

c∗k,a,t = ck,a,t

∑
p∈Ck

∑Nt
t=1 xp,a,t

|Ck|
∑Nt

t=1 ck,a,t
∀ k, a, t (18)

Furthermore, Domínguez-Muñoz et al. [55] discarded the extreme values that were manually
added from the rescaling procedure. A similar procedure, which was applied for each time series, but
not for each TD, was introduced by Nahmmacher et al. [143], who used hierarchical clustering based
on Ward’s algorithm [73] and chose medoids as representatives, which was later used in a number of
other studies [14,18,41,57,140,159]. Here, all representative days were rescaled to fit the overall yearly
average when multiplied by their cardinality and summed up, but not the average of their respective
clusters, i.e.,

c∗k,a,t = ck,a,t

∑Np

p=1
∑Nt

t=1 xp,a,t∑Nk
k=1

(
|Ck|

∑Nt
t=1 ck,a,t

) ∀ k, a, t (19)
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Schütz et al. [58,139], Bahl et al. [74], and Marquant et al. [149,150] refer to the method of
Domínguez-Muñoz et al. [55], but some used it time series-wise and not cluster- and time series-wise.
Schütz et al. [58,139] were the first to highlight that both approaches are possible. It also needs
to be highlighted that these methods are not the only methods, as Zatti et al. [141], for instance,
presented a method to choose medoids within the optimization problem without violating a predefined
maximum deviation from the original data, but for the sake of simplicity, it focused on the most
frequently used post-processing approaches. Additionally, other early publications, such as by
Schiefelbein et al. [163], did not use rescaling at all. Finally, yet importantly, the rescaling combined
with the min-max normalization could lead to values over one. Accordingly, these values were
reset to one so as to not overestimate the maximum values and the rescaling process was re-run in
several studies [14,18,57,140,143]. In contrast, Teichgräber et al. [41,159] used the z-normalization with
rescaling in accordance with Nahmmacher et al. [143], but did not assure that the original extreme
values were not overestimated by rescaling.

3.2.3. Modified Feature-Based Merging

Apart from the methods that are based on the direct clustering of the time series’ values or periods,
a number of methods exist that group time series in a consecutive manner [53], by means of other
features, such as sorted time series (i.e., duration curves) [18,20,92–95,140,144,149,150,177] or other
statistical features such as the average, variance, minimal and maximal values [63], or predefine the
clusters based on additional information [88]. These methods will be presented in the following.

With respect to grouping consecutive typical periods, an early publication by Balachandra et al. [53]
started by grouping daily residual load profiles by month, and then applied multiple discriminant
analysis to these groups and reclassified the days at the beginning or end of a group (month) to the
preceding or subsequent group if they were more similar to it. This resulted in nine consecutive
groups represented by their centroids. However, this aggregation was not applied to an energy
system optimization.

Furthermore, a number of publications [20,94,95,144] rely on the principle introduced by
Poncelet et al. [177]. For this, the normalized duration curves were placed into bins, i.e., how
many hours of the year surpass a certain level between zero and the maximum level of the specific
attribute. The same was performed for each candidate day. Then, the sum of absolute differences
between the hours at which the reference curve surpassed a bin border and the hours at which the
curve derived from a linear combination of a given number of candidates surpassed the same bin
borders was minimized in an MILP.

Another approach aimed at reproducing a yearly duration curve was introduced by de
Sisternes et al. [92,93]. Here, the duration curve of power feed-in by wind and solar at a certain
penetration level was calculated and approximated by an exhaustive search for a combination from a
subset of typical weeks. As this was a combinatorial problem, the computation time rapidly increased
for higher numbers of weeks. In a later publication [92], the variability of the selected weeks was used
as an additional metric.

Instead of clustering the original time series, the yearly duration curve was approximated in a
number of publications [18,140,149,150]. For this, the candidate days were simply sorted prior to being
clustered. This decreased the averaging effect of statistical events, such as wind, as the largest value
and second largest, etc. always lay in the first dimension and second dimension, etc.

With respect to the clustering of other statistical features apart from the distribution curve
(duration curve), Agapoff et al. [63] applied k-means clustering to snapshots (i.e., TTSs) and used
different features for the clustering: either absolute values or the average, minimum, maximum, and
standard deviation of all considered regions for either price differences, non-controllable demand
and generation, or both. This is an extension with promising results to all thus far used clustering
algorithms only applied to normalized absolute values.
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Finally, yet significantly, Lythcke-Jørgensen et al. [88] introduced a so-called CHOP-method that
was based on splitting the range of each attribute, in this case the power price and relative heat demand
on a five-year basis, into different intervals based on important values (e.g., zero-price) and even
divisions between them. Then, all values (i.e., hours) were transferred in a 2d space in which the
intervals for both attributes formed a grid. From each cell, the centroid was subsequently calculated if
it contained any candidate hours. As information about the chronology of these TTSs was lost, the
design of storage technologies resulted in large deviations from the reference case.

These cases highlight that methods based on well-known approaches are constantly customized
for specific ESMs and improved where possible, which illustrates that the development of TSA methods
is a dynamic process.

3.2.4. Linking Typical Periods

As mentioned above, some components, such as storage components of ESMs, link consecutive
time steps by means of intertemporal constraints. The representation of time series by a few TDs or
weeks does not generally take their order across the entire time horizon into account. This means that
the modeling of filling levels is normally only possible within these typical periods with a periodic
boundary condition for the state of charge. In this case, the order of typical periods no longer plays a
role. On the other hand, seasonal storage cannot be sufficiently modeled by this method. Yet, this is
especially important for energy systems based on a high share of RES. As per Bauer et al. [81], central
solar heating plants with introduced short-term heat storages can typically supply 15–20% of the total
residential heating demand. With seasonal heat storages, this fraction can be increased to about 50%.
For a long period of time, the only approach to model seasonal storages was to drastically reduce TR,
as by Tveit et al. [178], making it impossible to model short-term storages. To overcome this issue,
different methods have been developed that take the linking of TDs into account.

As far as we know, the TIMES framework was the first to deal with linking TSs not only
consecutively, but also inter-period storages that work on a larger time scale [46–49]. However, since
the inter-period storages are meant to work between different years, e.g., as waste disposal sites [46],
they are not linked to the intra-period storages, which only link consecutive TSs (segments) within one
typical period, such as weekdays in spring.

Welsch et al. [106] and Samsatli et al. [16] independently developed a non-uniform hierarchical
time discretization that is based on the selection of TSs. In two publications [16,17], Samsatli et al.
chose two TDs with hourly data for both the week and weekend which was done for each season
consisting of 13 weeks. This resulted in 192 time steps. For the modeling of the seasonal storage, the
energy surplus across each time scale was determined and added up. As the chosen days appeared in
a regular order within each season, the capacity constraints were not postulated for each time step.
Instead, they were only defined for the first and last instance of each day type, the first and last week
of each season, and the first and last season of each year, if a multiple year approach was chosen.
Welsch et al. [106] chose a similar approach that consisted of three TSs for a workday and a weekend
day in each season. However, the case study was only run with one TD with an hourly resolution.

Both approaches did not consider a self-discharge rate. The approach of Welsch et al. [106]
was later developed by Timmerman et al. [107] to handle self-discharge and re-used by van der
Heijde et al. [95]. Since the typical days in these publications [16,17,95,106,107] are aligned in a regular
manner, the critical storage levels can only be reached at certain time steps which significantly reduces
the number of side constraints. Taking the configuration used by Timmerman et al. [107] as an example,
five identical workdays alternate 13 times per season with two identical weekend days. As each week
consists of only two day types, of which the first is repeated five times and the second is repeated twice,
the intermediate weekdays representing Tuesday, Wednesday, and Thursday cannot include critical
states of charge-neither for a rising state of charge across the weekdays (the critical day would be
Friday), nor for a decreasing state of charge across the weekdays (the critical day would be Monday).
The same holds true for the intermediate weeks in each season. As they are repeated 13 times, either
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the first or last week of each season is critical with respect to the state of charge of seasonal storage and
their capacity.

Similarly, but again independently, Spiecker et al. [116] developed a comparable approach that
linked workdays and weekend days for every second month in an inter-day manner for pumped storage
plants and an inter-month manner for large-scale storage systems in the E2M2s model. Moreover, the
TDs were based on a recombining decision tree of 2 h segments and were thus capable of modeling the
storage size stochastically.

Gabrielli et al. [15] developed a method to couple TDs using a function that assigns each day of
the original time series to the TD it is represented by. This function is used to couple the state of charge
of consecutive (typical) days in an additional equation and means that the operation of the components
is modeled for a number of TDs, while the state of charge of the storages is modeled for the entire time
horizon represented by a sequence of TDs. The approach was tested for a different number of TDs, as
well as in a later publication [15,160].

Wogrin et al. [85] earlier proposed the same approach as Gabrielli et al. [15] for TTSs and took
the information of the clustering indices, i.e., which original time step was represented by which
TTS, to link TTS in order to consider start-up and shut-down costs, which was later re-used by
Tejada-Arango et al. [19] for the calculation of storage levels using typical periods (days and weeks).
However, in contrast to Gabrielli et al. [15], the storage levels were not constrained for each time step
by Tejada-Arango et al. [19], but only at intervals of one week. Additionally, a similar method was
applied to avoid unnecessary unit transitions at the border between two consecutive TDs.

Like the idea of Gabrielli et al. [15], Kotzur et al. [14] introduced a similar method of linking TDs
in a chronologically correct order. Instead of directly linking each state of charge to the preceding one,
the superposition principle was used to distinguish intraday and interday states of charge. Here, the
interday state of charge describes the state of charge at the beginning of each day, while the intraday
state of charge is defined to be zero at the beginning of each day but is defined for each hour of each
TD. The sum of both values, i.e., the intraday state of charge for a given number of TDs, along with
the interday state of charge, which was determined by the sum of storage level differences of each
TD in the corresponding sequence, was then used to determine the storage levels at each time step.
This approach was also used in later publications dealing with seasonal storage [18,140].

Another slight deviation of this method was applied by van der Heijde et al. [20], who also used
the superposition principle discussed by Kotzur et al. [14] to couple TDs. However, they did not
use clustering algorithms to group similar days and represented these by one TD for each cluster,
but instead searched for a linear combination of days that minimized the deviation from the yearly
duration curve; a procedure introduced by Poncelet et al. [144]. In contrast to clustering algorithms,
this procedure did not directly lead to an assignment of original days to groups represented by single
TDs. This meant that this had to be performed in a separate step. For this, a mixed integer quadratic
programm (MIQP) problem was formulated that sought to minimize the sum of squared errors of each
day of the original time series to the TDs. The outcome of this was a sequence of TDs that represented
the original time series, which was crucial for linking the TDs in accordance with the aforementioned
approach of Kotzur et al. [14]. Recently, Baumgärtner et al. [77] included the storage formulation of
Kotzur et al. [14] in their rigorous synthesis of energy systems using aggregation approaches to define
upper and lower bounds for the objective function with full time resolution, which will be explained in
detail in Section 4.2.

The fact that a number of methods for linking typical periods were independently developed [14–
16,85,106] shows the value of giving an overview over all of the methods employed so far.

3.3. Random Sampling

Another minor group of publications uses TSA based on random sampling. This means that
the time steps or periods are randomly chosen from the original time series and considered to be
representative for the entire time series. Most of the methods in the following deal with single time
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steps instead of periods, which is an acceptable simplification when the impact of storage capacity or
other intertemporal constraints on the system design can be neglected [166]. In contrast to the methods
presented above, the time steps or periods are thus neither time- nor feature-based grouped or merged.
Methods that are only run once based on random or user-specified selection will be defined as “3.3.1.
Unsupervised”. However, the majority of random sampling methods presented in the literature are
repeated several times in order to determine a set of random samples that best captures the original
time series’ features. In the following, these methods are termed “3.3.2. Supervised”.

3.3.1. Unsupervised

As with supervised random sampling methods, unsupervised random sampling methods can be
applied to typical periods or single time steps. However, they appeared earlier than the supervised
methods (2011 and 2012).

Ortiga et al. [179] introduced a graphical method for which a number of days from the dataset
had to be defined. In a second step, the algorithm minimized the deviation between the duration curve
of the original dataset and a duration curve of the chosen periods multiplied by a set of variable factors
for the number of appearances of each TD.

With respect to the random sampling of time steps, Van der Weijde et al. [180] sampled 500 out of
8760 h to capture major correlations of the input data for seven regions.

However, in the years since 2012, these methods were substituted by supervised random
sampling methods.

3.3.2. Supervised

Munoz et al. [181] applied supervised random sampling for 1 up to 300 daily samples out of
a dataset of seven years, which were then benchmarked against the k-means clustering of typical
hours. A similar method was used by Frew et al. [182], who took two extreme days and eight random
days from the dataset and weighted each day so that the sum of squared errors to the original wind,
solar and load distribution was minimized. This procedure was then repeated for ten different sets of
different days, with the average of each optimization outcome calculated at the end. With respect to
time steps, Härtel et al. [86] either systematically determined samples taking every nth element from
the time series or randomly chose 10,000 random samples from the original dataset and selected the
one that minimized the deviation to the original dataset with respect to moments (e.g., correlation,
mean and standard variation). Another complex algorithm for representing seasonal or monthly wind
time series was proposed by Neniškis et al. [51] and tested in the MESSAGE model. This approach
took into account both the output distribution (duration curve) for a TD and the inter-daily variance,
not to be exceeded by more than a predefined tolerance, while using a random sampling process.
However, only the typical days for wind were calculated in this way, whereas the other time series
(electricity and heat) were chosen using TS. Recently, Hilbers et al. [166] used the sampling method
twice with different numbers of random initial samples drawn from 36 years. From a first run, the
60 most expensive random samples were taken and included in a second run with the same number
of samples.

These methods are fairly comparable to the method of clustering TTSs. However, the initial
selection of samples is based on random choice.

3.4. Miscellaneous Methods

Apart from the random sampling methods that cannot be systematically categorized with the
scheme in Figure 4, an even smaller number of publications cannot be grouped in any way with respect
to their TSA methods. For the sake of completeness, however, they are presented in the following.

Lee et al. [183] used an improved particle swarm optimization to optimize the UC of a power
system with respect to fuel and outage costs. This method was based on an evolutionary algorithm that
iteratively determined the “fittest” solutions and thus was quite comparable to supervised random
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sampling methods. However, the use of an own class of optimization algorithm is a unique feature.
A similar approach to solve the UC problem of a grid-connected building with renewable energy
sources and a battery was presented by Quang et al. [184]. In their work, a genetic algorithm and
a particle swarm algorithm were used for different charge and discharge rates of the battery based
on half-hourly time steps. It is worth mentioning that apart from these publications, a number of
other works exist which use, among other methods, genetic algorithms or particle swarm algorithms
to UC models. A comprehensive review on the methods to address the UC problem was given by
Saravanan et al. [185]. However, these approaches are based on a survival of the fittest principle and
not on a classic optimization problem so that an aggregation can only be applied by downsampling the
time steps used for simulation. Moreover, these approaches are not directly applicable to combined
UC and GEP models. Therefore, these methods are not further analyzed within the scope of this paper.

Xiao et al. [186] optimized the capacity of a battery and a diesel generator for an island system
by searching for the optimal cut-off frequency at which the running of a diesel generator was more
convenient without causing overly high fuel costs, whereas the battery capacity would be too large
if it was run on a high frequency band. For this, an analysis based on discrete Fourier transform
(DFT) was used, highlighting the different specific cost-dependent time scales on which different
technologies operate.

More recently, Pöstges et al. [187] introduced an analytical approach to aggregate the time steps
of a demand duration curve for a simple ESM without storage units and with only one energy type.
Interestingly, this method led to a simplified problem formulation based on a minimum number of
time steps without causing an error in the objective function. In this case, the supply technology costs
are based on capacity- and operation-specific costs and the approach was inspired by an earlier work
of Sherali et al. [6]. Sherali et al. proved in 1982 that the cost optimal operation of these simple systems
can be interpreted as an optimization problem which is closely related to the peak load pricing theory
introduced by Boiteux in 1949 [3] (English translation in 1960 [4]) and Steiner in 1957 [5].

To summarize, special methods that cannot be categorized in any way appear in an irregular
manner, but can have special implications for the improvement of preexisting methods.

3.5. Overview and Trends in Aggregation

Due to the fact that the methods in Table 3 can be combined with each other and are either based
on the careful selection of the modeler or on feature-based algorithms, it is an open question whether a
clear trend can be observed with respect to the application of the methods.

For this purpose, Figure 11 shows the number of investigated publications containing at least
one of the basic aggregation methods presented above. The random sampling and the miscellaneous
methods were disregarded due to the small number of publications with no statistical significance.
Moreover, the modified feature-based period merging methods were considered to belong to the same
group of feature-based merging as the normal clustering methods for typical periods. Moreover, it
should be highlighted that the search for literature was ended in July 2019 and that the trends are
methodology-driven and not keyword-driven for the reasons given in Section 2.1.

At first sight, a comparison between the straightforward downsampling and feature-based
segmentation reveals no trend. However, publications dealing with downsampling mainly address the
question what TR is sufficient for a given problem, rather than improving the calculation time of a
problem with a given TR without deteriorating the results. Furthermore, downsampling sometimes
also only serves as a benchmark [37] that is outperformed by the other existing methods. In contrast to
that, the development of slightly variated segmentation methods is ongoing and could even offer the
option to iteratively increase the TR at crucial time steps instead of coarsening only.
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With regard to typical periods, the feature-based methods mainly represented by clustering have
a rising trend, in contrast to the time-based definition of TSs and “averaging”. Interestingly, the
number of publications based on TSs kept increasing for some time after the development of the
clustering approach in 2011. The reasons for this are twofold: First, the approach was only proposed by
Domínguez-Muñoz et al. [55], but its superiority was not proven in an energy system model. Secondly,
models such as the TIMES framework [46–49] have constantly been used ([105,124,126,127]) since their
publication. Accordingly, the method expires no sooner than the framework by which it is used unless
the framework itself is updated. This highlights the inertia of new methods and the need for proper
validation and benchmarking rather than the simple proposal of a method alone. Additionally, the
share of RES is slowly increasing in energy systems and, accordingly, the requirements for models and
their TR are changing as well [36–41].

Last but not least, the small number of publications that deal with a decrease in the TR, in contrast
to the high number of typical period approaches, is notable. This is due to the relatively low potential
of decreasing the number of time steps in energy system optimizations if the periodicity of day and
night cycles is not exploited. However, the impact of larger time steps can be increased by magnitudes
if it is combined with a typical period approach.

All things considered, Figure 11 shows that the future aggregation methods will most likely be
feature-based, i.e., either consist of clustering only or rely on both clustering and segmentation. Table 4
sums up the key aspects for this trend towards feature-based merging.

Table 4. Pros and cons of the presented major aggregation methods.

Period Merging Type Resolution Variation Typical Periods

Time-Based

Downsampling
- Does not exploit repeating time series
patterns
- Does not differentiate between more and
less variant sections of the time series

Time Slices and Averaging
+ Exploits repeating time series patterns
- Based on the modeler’s experience
- Does not merge similar adjacent
time steps

Feature-Based

Segmentation
- Does not exploit repeating time series
patterns
+ Differentiates between more and less
variant sections of the time series

Clustering
+ Exploits repeating time series patterns
+ Automatic identification of similar
patterns
- Does not merge similar adjacent
time steps

The combination of clustering and segmentation in order to compensate their remaining shortcomings
named in Table 4 was first applied by Mavrotas et al. [54], later by Fazlollahi et al. [69] and a similar
approach was recently used by Bahl et al. [74] and Baumgärtner et al. [77,78]. However, a detailed
examination if there is an optimal trade-off between intra-period resolution and the number of periods
remains a subject for future research.
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4. Preserving Additional Information

As highlighted in Section 3, TSA methods are based on the representation of discrete time series by
less time steps. These approaches are usually approximation methods, i.e., not analytically equivalent
transformations, which often also include averaging procedures. From this, two major drawbacks arise:

• Values of the original time series which could be especially important for the ESM are usually
not preserved.

• A reliable estimation of the deviation of the optimization result based on aggregated time series
from the one based on full time series can usually not be given.

In order to address the first problem, Section 4.1 presents the approaches found in literature to
keep additional information of the original time series considered to be important for the ESM during
the aggregation process. Section 4.2 introduces methods to re-evaluate the quality of the aggregation
after solving the aggregated ESM optimization to address the second issue.

4.1. A Priori Methods

Apart from the methods presented for TSA, the integration of periods or time steps considered to
be “extreme” is a common procedure not only used in heuristic time-based, but also in feature-based
approaches such as segmentation and clustering. Most of the methods are based on the assumption
that extreme values in the input data lead to a design that is robust for all remaining time steps so that
integrating these extreme periods ensures a feasible system design, despite the TSA.

In this section, approaches based on the input data only are presented, i.e., a priori methods.
The integration of time series features considered to be extreme can happen in three different ways:
by adding extreme periods to the set of typical periods, by the inclusion of extreme periods or time
steps into typical periods using replacement, or by directly modifying the corresponding feature-based
merging algorithm used for TSA in such a way that it automatically accounts for atypical periods.

4.1.1. Adding Extreme Periods

A straightforward approach to consider extreme values is to directly add them to the aggregated
time series. Of course, this depends on the way in which the time series are aggregated. In the case
of TTSs, i.e., single time steps that were derived from the original input data, extreme values can
simply be taken from the original input data, e.g., Munoz et al. [181] forced the top ten peak demand
hours to be individual clusters for the IEEE Reliability Test System [188]. The same holds true for
ESMs based on TSs. As Devogelaer et al. [125] pointed out, the TIMES framework generally uses three
daily levels as TSs: Day, night and a short peak slice (for electricity demand), which was also cited
in other papers [36,127,128]. Additionally, Mallapragada et al. [39] used TSs without a peak TS, but
highlighted that the original set-up in the ReEDS model [189], which the method was inspired by, used
an additional TS that captured all the peak loads throughout a year. Similarly, Voll et al. [103] added
two more time steps for winter and summer peak loads to their monthly-averaged demand profiles.

Extreme periods are usually defined as periods containing an extreme value of at least one attribute.
For instance, Domínguez-Muñoz et al. [55] and Ortiga et al. [179] included the days containing the peak
heating and peak cooling demands of their building models. The same was done for typical weeks by
de Sisternes et al. [92,93] by either adding the week or a separate day containing the peak net-load
hour. It was also pointed out that the integration of an additional day affected the approximation of the
duration curve less than forcing the algorithm in selecting an entire week. Stadler et al. [113] included
one peak demand day per month in their DER-CAM model. Wakui et al. [108–110], in turn, included
one peak day for winter and one for summer regarding the energy demand of a residential building.
Here, it is not clear if this applied for the overall demand of hot water and electricity, or the cumulative
sum of energy demand throughout the day, as the peak value for hot water supply demand was smaller
than that for the regular summer day. Marquant et al. [149,150] included a peak heating and peak
electricity demand day for a district energy supply system, while neglecting the extreme values of
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possible PV feed-in in the latter publication [150]. Frew et al. [182] not only included maximum days,
but also minimum days for each attribute into their POWER model [190]. For this, an extreme day was
defined as a day that included the peak or minimum value of one of the three attributes of wind, solar,
or e-demand averaged across all eligible regions. Merrick et al. [40] took one peak electricity demand
day per month into account while neglecting the days with minimum capacity factors for wind and
solar energy sources. Patteeuw et al. [94] added the coldest week, which coincided with the highest
e-demand into a system model for a residential building, but again neglected the possible impact of
solar thermal units and the PV panel. Heuberger et al. [158] integrated the day containing the peak
electricity demand, neglecting the days of minimum potential wind and PV feed-in into a national
hybrid GEP and UC model as well. Pfenninger et al. [37] tested various combinations of extreme days
and weeks defined by the maximum or minimum wind and solar availability across the UK or the
maximum or minimum difference between wind feed-in and electricity-demand.

For typical periods, Kotzur et al. [57] presented two different methods for adding extreme periods
to aggregated time series following the clustering process based on TSA to typical periods. The first
method simply appended the extreme periods, i.e., a period with a maximum or minimum (average
daily or single time step) value was excluded from the cluster it was first assigned to and was separately
integrated as a TD appearing only once. The second approach was to reassign all the days within the
cluster, which are closer to the extreme day than to the cluster center, i.e., the extreme period became
the representative of a new cluster.

Furthermore, the clustering tool tsam introduced by Kotzur et al. [57] can include typical periods
with a maximum or minimum average across the period for a chosen attribute, i.e., extreme values with
respect to the first momentum. This approach was also employed by Pfenninger et al. [37] for wind and
solar time series. Similarly, Poncelet et al. [144] included the days containing the highest and lowest
value for electricity demand and those with the highest and lowest average of wind and solar capacity
factors for a GEP model to benchmark their own feature-based approach. However, a comprehensive
study on whether time series for energy system optimizations can efficiently be clustered by means of
their statistical momentums (average, standard variation, etc.) is still an open research question.

Recently, Pöstges et al. [187] showed that, for extremely simple energy systems with supply units
with capacity-specific and operation time-specific linear cost functions, as well as only one considered
energy commodity, the optimal operation time and necessary capacities can be derived analytically
using the segments in the demand duration curve, in which each technology is the most profitable one.

Combinatorial Problem

A major drawback from which all of the methods presented above suffer is the fact that the
number of extreme constellations grows exponentially with the number of time series taken into
account. Figure 12 illustrates this for a hypothetical demand (D), wind capacity factor (W) and solar
capacity factor (S) time series.
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As illustrated, the consideration of the minimum and maximum electricity demand D and D leads
to two additional typical periods. Taking into account the extreme periods of an additional attribute
leads to four potential extreme constellations, while the integration of three attributes potentially leads
to eight extreme constellations, as in the publication of Frew et al. [182]. It is obvious that, for a certain
number of locations and technologies, more extreme days (minimums and maximums) are needed
than exist in a year (assuming that no period is extreme for more than one attribute). In the case of
TDs including “shoulder values”, i.e., the corners of the hypercube, this number is reached for only
nine different attributes (29 = 512 > 365). If the extreme periods are considered for each attribute alone
without deriving potential shoulder values, the number of extreme periods grows linearly with the
number of time series which refers to the number of corners for the 1D figure, the number of sides
of the square and the number of surfaces for the cube. In the case of TDs, including the extreme
period or value for just one attribute each, this number is reached for (183 × 2 extreme values = 366
> 365) different attributes. This is the reason why some authors such as Pfenninger et al. [37] only
considered the extreme values averaged across all regions. Other approaches aimed at automatically
including certain extreme features in the once chosen typical periods [54,154] or searching for atypical
days within the dataset with some additional constraints [141] which will be described in detail in the
following two sub-sections.

4.1.2. Inclusion of Extreme Values or Additional Features

Given the fact that averaging across different periods or time steps, as is the case in many TSA
approaches, leads to an underestimation of the inner-period variance, while manually adding periods
considered to be extreme increases the computational load, different algorithms have been implemented
on the basis of the inclusion of extreme values or additional features. Mavrotas et al. [54] synthesized
seasonal 24 h profiles of heat demand using monthly averages. Of all the monthly averaged samples
used for determining the seasonal profile, the overall maximum value was included in it. The adjacent
time steps around the maximum were calculated with weighted averages in order to smoothen the
profile, i.e., the day including the maximum value was weighted with 100% at the peak time step,
with 75% in the neighboring time steps and 50% in the second adjacent time steps. As the cumulative
sum of that profile no longer fitted the average cumulative sums of the used monthly profiles, the
remaining 19 time steps per day were rescaled.

Green et al. [154] presented an approach for including dominant or common ramps into the
profiles obtained by k-means clustering. For the dominant ramp method, the gradients of the centroid
profiles were determined and, according to these, the mean gradients of those cluster members with the
same gradient direction as the centroid profile were used to construct the ramps of the representative
profile. The common ramp approach was based on the same idea of using the mean of gradients of
pointing in the same direction. However, the choice which subset of gradients is used was made by
the median of all gradients in each time step and not according to the gradient of the mean profile.
A drawback of this method was that it could lead to significant offsets between the first and last time
step of each period.

Regarding the integration of extreme periods, Kotzur et al. [57] also proposed the method to use
the extreme period within a cluster as the cluster’s representative, which should usually lead to a fairly
conservative assumption, as this approach overestimates the frequency of extreme periods appearing
in the time series.

Apart from that, some publications have aimed at increasing the robustness of their ESMs by
artificially adding bias to the (aggregated) input data or favored stochastic optimization.

Spiecker et al. [116] used the stochastic E2M2s model implemented in GAMS to minimize the total
annual costs of an energy system by establishing a recombining tree structure to the model consisting
of two possible hydro power plant states and three possible wind feed-in states that changed in 2 h
intervals. Furthermore, the storage levels across an entire year were also stochastically modeled.
Wouters et al. [117] included variability of the season-based PV infeed into a neighborhood microgrid
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by splitting up the daily infeed into input-level histograms for each season. Then, the potential
output profiles were determined by averaging all feed-in profiles within one season and the same
cumulative feed-in level. Finally, the outputs of the PV panels for each season were determined using
the seasonal average weighted by the days of occurrence at each feed-in level appearing in that season.
Kools et al. [102] used synthesized PV profiles with minutely, quarter-hourly and hourly resolution, and
artificially added fluctuations using a normal distribution and gamma distribution with a stochastic
decomposition algorithm for a distributed generation system. Furthermore, the designs obtained for
different temporal granularities were cross-compared with respect to the energy losses when operating
the systems on a finer time scale.

Brodrick et al. [97] isolated three critical hours within six representative days for an integrated solar
combined cycle through excessive testing and used this strongly reduced model for a multi-objective
optimization based on an iteratively tightened CO2 constraint which resembled an exhaustive approach.
Although this method is not necessarily computationally less expensive, it differs from all the others
because the aggregated amount of input data was not increased by this method.

4.1.3. Additional Constraints in Feature-Based Merging

Apart from assuring that the representation retains certain characteristics, methods that are even more
sophisticated are capable of excluding extreme periods in the clustering process itself. For segmentation
processes, Stein et al. [79] illustrated this, introducing a mixed integer program (MIP) that minimized
the inter-time step differences for a given number of merging steps. Here, time steps not to be merged
such as extreme values could be excluded with an additional side constraint. Moreover, it was assured
that a maximum number of adjacent merges was not exceeded with an additional constraint. A similar
approach was previously introduced in a publication by Fazlollahi et al. [69], in which the segmentation
algorithm was based on iterative k-means clustering and maximum values were automatically excluded.
Furthermore, segmentation was applied to typical periods that were determined using a clustering process
to which extreme periods could be manually added. It is important to highlight that only maximum
values were expected to be extreme. With respect to supply data such as the capacity factors of RES, it is
trivial that periods with minimum values are likely critical as well.

With respect to an automatic inclusion of extreme days within a clustering algorithm, Zatti et al. [141]
introduced the so-called k-MILP clustering, which is a modified version of the exact k-medoids algorithm
and automatically excludes atypical periods. For this, the side constraint that each day from the original
time series must be assigned to a representative day was relaxed so that the atypical days increasing the
sum of distances the most could be excluded. However, the number of atypical days that were allowed
to be excluded had to be set by an additional constraint. Moreover, additional constraints were added
in order to assure that the sum over the repetition of representative days did not differ from that of the
original data beyond a predefined share. Additionally, it was imposed that for some selected attributes,
the extreme periods had to contain at least one day that was also close to the absolute extreme value of
the respective attribute.

Apart from that, Gabrielli et al. [15] constrained the clustering procedure for TDs to maintain the
maximum and minimum values of the heat and electricity demand profile used for a multi-energy
district system, although this also included a solar input time series.

Concerning algorithms used for the integration of extreme events into TTSs, i.e., typical periods
lasting for only one time step, a method based on a moving average has been proposed by Härtel et al. [86].
Here, the determined hourly TTSs derived from clustering were compared to their moving average within
a 6 h window of the full time series. If more than 95% of these values were above or below the values in
the cluster, the highest or lowest candidate within the system state cluster was chosen as representative.

The presented methods illustrate that considerable efforts have been made to integrate extreme
periods into the clustering processes. However, as pointed out by Scott et al. [191], the extreme
periods cannot be known in advance for most synthesis problems because the built capacities of each
technology are an endogenous outcome from the optimizations, e.g., the peak capacity factors of wind
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turbines are not relevant if wind turbines are not chosen to be built in a greenfield energy system
optimization. This imposes the need to gain information about possible designs of the energy system
with preliminary optimizations, which ultimately led to the development of multi-level approaches.

4.2. A Posteriori Methods

The implementation of extreme periods normally increases the robustness of the aggregated
energy system optimizations, but does not necessarily lead to feasible solutions for the full time
series, for instance, because the component, for which an extreme value is integrated, is not chosen
in the optimization. Storage units that smooth out the impact of extreme periods can be another
reason why extreme values in the input time series are not necessarily the critical time steps in
the energy system. Therefore, a number of publications focus on multi-level approaches in order
to increase the robustness or operational exactness of aggregated energy system optimizations.
The presented approaches can be divided into non-iterative and iterative methods. Figure 13 illustrates
the interdependences of temporally aggregated energy system optimizations that motivate the inclusion
of multi-stage approaches.
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The main driver in the use of multi-stage approaches is based on the problems related to the
inclusion of extreme periods. Due to the fact that the absolute importance of a single component with
a given time series is unknown in advance, the impact of outliers within this time series is unknown
as well. Therefore, different approaches aim at isolating certain information about potential energy
system designs with preliminary optimizations in order to improve the aggregation process of the
input data without increasing the size of the optimization problem. A second driver for multi-stage
approaches is binary variables for design and operation, which significantly increase the complexity of
large-scale energy system MILPs. However, the operational decisions depend on the design decisions
and vice versa. Simply put, a component that is not chosen to be built is not operated. This can be
exploited by deriving simpler aggregated design problems and separated optimization problems that
can significantly reduce the complexity. Thirdly, not only aggregated ESMs but also the real energy
systems face uncertain input data. TSA methods can thus be used to simplify models which are then
re-calculated for slight variations in the input data. The resulting designs can then be compared
to each other by checking the operational feasibility when being exposed to the time series of the
other scenarios.

In the following, however, the approaches are divided into non-iterative approaches and iterative
approaches, as iterative approaches focus on outperforming state-of-the-art solvers, while non-iterative
approaches focus on the generation of fast and robust but suboptimal, or fast and optimal but only
relatively robust, solutions.
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4.2.1. Non-Iterative

Due to the fact that the main complexity of MILPs is caused by binary variables, Gabrielli et al. [15]
introduced a method for reducing the number of binary operational variables, i.e., the on/off status of
components. For this, the binary variables were modeled on the basis of a TD formulation obtained
using k-means and linked to the fully resolved continuous variables by means of an assignment
function. This approach did not necessarily lead to feasible solutions for less than six TDs, as the
reconversion of hydrogen from the hydrogen storage involved was not able to match the thermal
demand for a too limited number of operational modes.

A similar approach that focused on the reduction of binary variables was employed by
Kannengießer et al. [140], who used the hierarchical clustering of sorted time series in a first step and
determined the binary design variables of two ESMs. In a second step, the binary variables from the
first step were taken as input parameters for a second iteration in which the capacities and (linearized)
operation of the components were optimized for the full time series. This method was capable of
identifying a feasible but not necessarily optimal system design with an overall computation time for
the aggregated MILP and fully resolved LP that was smaller than the fully resolved MILP.

Apart from that, two recent publications dealt with the improvement of existing aggregation
approaches for the input data. Sun et al. [135] introduced a cost-oriented two-level approach for
solving an electricity investment model. Here, the model was independently solved for each input day
and the cost factors for each unit were determined. These were dimensionally reduced with Laplacian
Eigenmapping and then clustered for determining the cost-related TDs by choosing the medoid of
each cluster in the dimensionally-reduced cost space, which was proven to be effective, compared to
solely input data-based clustering.

Hilbers et al. [166] presented an approach based on random time steps. In a first run, a defined
number of random samples were taken from 36 years of data and the energy system optimization (in
the test case a power system model run with Calliope) was run once. From this, the 60 time steps with
the highest variable costs were taken and introduced into a second set of random time steps that added
up to the same total number of time steps. In order to avoid an overly conservative system design,
the 60 extreme time steps are expected to appear only once in 36 years, which was considered with a
corresponding small weight.

4.2.2. Iterative

Lin et al. [156] presented a two-stage approach for solving a semi-coarse model of a fully resolved
MILP for cogeneration in energy-efficient buildings. For this, TDs were determined using k-means
and the real days were chosen that were closest to the calculated centroids. The semi-coarse model
was defined as an MILP with aggregated variables but a full number of constraints, while the coarse
model was defined as an MILP with aggregated variables and constraints. Thus, the semi-coarse
model was solved by solving the coarse model and iteratively adding violated constraints from the full
model. The resulting semi-coarse model was an upper bound of the original problem with guaranteed
feasibility, which was not the case for the coarse model. Here, storage units were taken into account
and it was shown that the semi-coarse model had the same optimal value as the original model if the
profiles were periodic and no intertemporal constraints reached across the periods.

A similar approach was introduced by Bahl et al. [157], who chose k-means clustering for
determining TTSs for a distributed energy supply system without storage technologies. The system,
optimized for the aggregated TTSs, was then operationally optimized for the full time series. If the
system design was not feasible, additional feasibility time steps were defined for the aggregated
optimization problem. When an operationally feasible design was obtained for both the aggregated
and full time series, the difference between them was calculated and, if it was below a pre-defined
threshold, the iteration was terminated. Otherwise, the number of TTSs was increased. It is noteworthy
that a feasible operational optimization with the full time series for a system design based on an
aggregated optimization is, in general, an upper bound for the original problem of a combined
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design and operational energy system optimization. Based on this initial approach, four consecutive
publications [74,77,78,192] introduced an advanced iterative approach for simultaneously over- and
underestimating the objective function of the original MILP by using TSA. In the latest of these
publications [77], one branch for defining an upper bound and two branches for defining a lower
bound were used, of which the larger one defined the tightest lower bound. The upper bound used
k-means clustering and a randomly chosen further segmentation for determining the segmented TDs.
For these, the design of the energy system was calculated and operationally optimized. If the design
candidate was infeasible for the full time series, extreme values with no chronological order were
added, as was performed by Bahl et al. [157]. Otherwise, the TR was increased [78]. The first of both
the lower bounds was calculated using clustering to typical periods, segmentation and the relaxation
of the determined time segments. This means that within the segments, the demand and operation
only needed to lie within the maximum and minimum value of the original values in the segment.
The second lower bound was obtained using a common branch-and-cut algorithm, which is also
used in state-of-the-art solvers [78] such as Gurobi. For this, all binary variables were relaxed, which
transformed the problem into an LP. In additional steps, the relaxed variables were consecutively fixed
to binary variables, leading to a decision tree in which those branches were cut that did not improve
the best solution obtained. Last but not least, the latest version of the approach [77] also used the
seasonal storage formulation proposed by Kotzur et al. [14].

With respect to creating a robust system design, Gabrielli et al. [160] recently introduced an
approach for creating artificial variance within given input data, deriving optimal energy systems from
all the synthesized input scenarios and operationally testing these system designs for all other scenarios.
The sum of the ratios between the system costs of all scenarios and the reference scenario divided by
the number of scenarios was then denoted as optimality and the sum of the ratios of satisfied heat
demand in all scenarios and the satisfied heat demand in the reference scenario divided by the number
of scenarios was denoted as robustness. Besides, electricity could be taken from the grid at any time of
the year. To depict situations in which the heat demand could not be fulfilled, a slack variable with
arbitrarily high cost was introduced. In this manner, different system designs were examined with
respect to their robustness and optimality. This led to the result that energy systems designed for
a minimum emission of CO2 also tended to be the most robust ones with respect to satisfying heat
demand with a connection to the electricity grid only.

In another line of publications [66–68] by Yokoyama et al., semi-heuristic decomposition methods
for energy systems without storage units or other intertemporal constraints were introduced, but with
binary variables for both the design and operation of components. Here, the fact that operational binary
variables generally depend on the design decision, i.e., if a unit is not built, the operational binary
variables must be zero at any point in time, was exploited. In the first publication [66], the original
MILP was sub-optimally, but feasibly solved and simplex variables were derived from the result. Then,
sub-problems, each containing only one binary variable, were created, the optimal solution of the sub
problem was determined for both assumptions of the binary variable and the difference between them
was calculated. Based on this, the binary variables were set to either zero, one or remained a variable if
the impact was small and positive. Then, the original MILP was solved again with partly fixed binary
variables and, if a better solution was found, the process was repeated. Otherwise, it was terminated
with a suboptimal solution.

In the second publication [67], the operational binary variables in the design problem were relaxed
and the design binary variables were investigated using the branch and bound method. For each
candidate, the operational sub-problems were optimized for each period. If the operation was infeasible,
the design branch at the upper level was discarded. If all operational periods were feasible, the
objective function of the overall problem was calculated and, if the objective function of the master
problem was decreased, the design became the new incumbent. Otherwise, the branch in the upper,
operationally-relaxed MILP was discarded again. In this way, the operational binary variables were
not part of the branch and bound tree and could be calculated in parallel, exploiting the hierarchy
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between design and operation. This method was again not applicable to any system that included
storage technologies.

In the most recent publication [68], this method was used in combination with a downsampling
approach and further improved by defining bounds at the upper design and lower operational
optimization level. This should help to discard solutions that would not be able to improve the
objective function without calculating all the possible master and sub-problems. Additionally, an
ordering strategy was also applied to increase the chance of discarding sub-optimal solutions even
more rapidly.

In summary, multi-level approaches based on TSA in energy system optimizations try to exploit
five different features that are not given in simple aggregation approaches:

• Separating complicating binary variables from the vast majority of continuous variables.
• Separating the design problem from the operational problem.
• Obtaining feasible but suboptimal solutions instead of optimal but infeasible solutions for the

fully resolved input data.
• Deriving implications for a meaningful TSA from the system itself instead of the input data only.
• Determining a more robust energy system by exposing the once optimized energy systems to

different input data scenarios.

With respect to iterative approaches, however, it must be called into question as to whether these
approaches are more efficient than well-known iterative decomposition approaches such as Benders-
or Dantzig-Wolfe decomposition [193] (e.g., as used by Lara et al. [24] and Schwele et al. [194]).

4.3. Overview and Trends in the Integration of Additional Information

With respect to the methods to increase or even ensure the robustness of models optimized with
aggregated time series, Figure 14 shows the number of publications that deal with at least one of the
approaches presented above. Here, the publications from Sections 4.1.2 and 4.1.3 are summed up
in one group, as both approaches do not increase the number of periods to be considered and thus
do not suffer from the combinatorial problem presented in Section 4.1.1. Again, the trends are not
keyword-driven, but methodology-driven for the reasons given in Section 2.1.
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In contrast to the clear trends in aggregation methods, the development of methods in the area of
robustness is rather vague. The manual addition of extreme periods had a growing trend until 2016,
but then drastically decreased again. As mentioned above, an extreme event in the input time series of
a single attribute does not necessarily mean that it is also an extreme situation in the energy system.
This is even more the case if storage capacities are considered. Moreover, the number of extreme
periods is growing with the number of input time series, which makes this approach intractable for a
large number of regions if all cases of potentially extreme periods are considered. This might explain
why this method is slowly becoming unfavorable in times of growing ESMs. In contrast, the inclusion
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of extreme values, algorithmic considerations of extreme features within a given number of typical
periods, or the definition of atypical days as extreme days are not subject to a combinatorial problem
and therefore appear occasionally in the literature with a slightly rising trend. However, these methods
fail to guarantee robustness.

In contrast, the multi-stage approaches appear to have a clear upward trend, as they can be
capable of guaranteeing robust but suboptimal solutions with respect to the non-aggregated time
series. However, the convergence against the optimal solution can, to this end, only be guaranteed by
increasing the number of typical periods and using a sophisticated iterative approach [77,78], which
results in a resemblance to well-established and commercially-available solving algorithms. This leads
to the question if convergence to the real optimum is the main target of aggregation methods, or if their
focus will remain the creation of fast but satisfactorily accurate approximations that can be achieved by
only two stages of design and operational optimization [140].

All things considered, the question of robustness is highly dependent on the size of the model, the
considered attributes and the temporal interconnectedness. A field of future research thus remains
the derivation of mathematical theorems, as introduced by Lin et al. [156] and Teichgräber et al. [41].
For example, the conditions under which an extreme input event leads to an extreme system situation
or clear statements of under- and overestimation of the identified results for temporally-strongly
coupled systems are of great interest.

5. Conclusions

This review of TSA methods for ESMs has revealed manifold key findings. Firstly, it is possible
to systematically categorize the methods on the basis of their basic idea, the addressed problem and
their compatibility. Secondly, the advances in TSA methods are clearly driven by shortcomings in both
computational tractability and existing methods in models with changing requirements. Thirdly, it
was shown that there are rival methods, of which the feature-based ones are usurping the time-based
ones, as well as complementary methods. Moreover, compatible approaches can be applied stepwise
and contain further sub-steps, such as clustering.

However, a systematic overview was lacking to this end, which this work has tried to rectify.
One reason for this is also a major limitation of this literature review: As many publications focus
more on the solvability of ESMs than on the applied aggregation methods itself, a keyword- or
title-driven meta-analysis is not leading to a meaningful overview of existing methods and possible
trends. This issue was addressed by defining a clear interval of publication dates and providing the
most holistic categorization of the methods found in literature as possible.

Apart from that, open research questions are derived:

• The question of the most important statistical features of the time series to be kept, i.e., whether
the clustering of statistical features in a lower dimensional space is superior to the traditional
TSA methods.

• A way to measure the accuracy of different aggregation methods a priori by defining bounds that
are also valid for the computationally intractable problem.

• Enhancing the convergence rate of iterative methods in order to compete with the
branch-and-bound or decomposition methods of commercial solvers

• Expanding mathematical theorems regarding upper and lower bounds as introduced by
Yokoyama et al. [67], Lin et al. [156] and Teichgräber et al. [41] to more general ones applicable to
strongly temporally-interconnected ESMs.

• Developing an approach that is capable of identifying the most critical situations in input
time series in a non-empirical manner. This could lead to robust optimizations not based on
MonteCarlo-like approaches.

However, it should be highlighted that temporal aggregation methods are always based on
the complexity reduction of not perfectly redundant input data and thus introduce deviations from
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fully resolved models. Therefore, it should only be used for the sake of computational tractability.
Apart from that, the clustering procedures can also be time-intensive, which can lead to trade-offs
between the computational load of clustering and the saving of computational resources using the
aggregated models.

Moreover, the trends in TSA also imply that the frequently used k-means, k-medoids and
hierarchical clustering approaches to determine TDs are still state of the art. The review can thus be
seen as both a useful introduction for researchers new to the topic of TSA and as a detailed guide for a
standardized complexity reduction in ESMs including potential future research fields.
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Abbreviation Meaning
DTW Dynamic Time Warping
ESM Energy System Model
GEP Generation Expansion Planning
MILP Mixed Integer Linear Program
RES Renewable Energy Sources
TR Temporal Resolution
TD Typical Day
TTS Typical Time Step
TS Time Slice
TSA Time Series Aggregation
UC Unit Commitment
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Appendix A

Table A1. Table of Methods.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

1999 Balachandra
et al. [53] None (just approach) No No

Multiple
discriminant

analysis
Mean No Yes No

2002 Yokoyama et al.
[66]

Building or district model,
no storage technologies,

but multiple commodities
No No

Season-based
(summer,

mid-season, winter)
with 4-, 2-, or 1- h

resolution

(probably)
Mean No No No

2007 Lee et al. [183]
UC problem for 48 unit

power system (not further
specified)

No No No No No Yes No

2007 Swider et al.
[122]

Single-node model for
electricity production in
Germany with wind and
pumped hydro storage

No No

Every two months,
one weekday and
one weekend day

with 2-h resolution

(probably)
Mean No No No

2008 Marton et al.
[98] None (just approach) No Integral of absolute

error (L1 norm)

Clustering by
comparing each new

day to clusters of
preceding days

Mean

Yes, if outlier
surpass a certain
threshold of the

IAE and the
following day is

close to the
preceding cluster

Yes
No, although

curve was called
the duration curve

2008 Mavrotas et al.
[54]

Building model for a
hospital, no storage

technologies, but multiple
commodities

No No Monthly average Mean No No No

2008 Mavrotas et al.
[54]

Building model for a
hospital, no storage

technologies, but multiple
commodities

No/not mentioned No/not mentioned
Seasonal rescaled
average further

segmented
Rescaled mean

Peak demand
value of each

cluster is kept for
each attribute

No No

2009 Alzate et al.
[195]

Customer or unit
partitioning/none (just

approach)
Z-normalization

No (Hamming
distance for

out-of-sample
extension)

Spectral clustering None (just
grouped) No No No
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Table A1. Cont.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

2009 Casisi et al.
[114]

District model, no storage
technologies, but multiple

commodities
No No

Season-based (3
seasons for energy
demand and 24 for
sold energy to the

grid)

(probably)
Mean No No No

2009 Lozano et al.
[111]

Building model for a
hospital, no storage

technologies, but multiple
commodities

No No

Monthly average
with distinction

between weekday
and weekend

(probably)
Mean No No No

2010 Lozano et al.
[99]

District model, thermal
storage units, multiple

commodities
No No Monthly average (probably)

Mean No No No

2010 Nicolosi et al.
[104]

Single-node electricity
dispatch model for Texas

(ERCOT), no storage,
technologies mentioned,

(THEA)

No No

Full resolution, 4
seasons, Wednesday,

Saturday and
Sunday with hourly
resolution, 16 time

slices

Means No No No

2011 Domínguez-Muñoz
et al. [55] None (just approach) Yes, but not

mentioned which Euclidean k-medoids Medoids Peak heating and
peak cooling day No No

2011 Haydt et al.
[105]

Island electricity model for
Flores (Azores), no

explicitly modeled storage
technologies (only via
availability), (TIMES,
LEAP, EnergyPlan)

No No

LEAP: 9 time slices
from the duration

curve
TIMES: 4 seasons,

Wednesday,
Saturday, and

Sunday with hourly
resolution

EnergyPLAN: full
hourly resolution

Means No Yes LEAP: Yes
TIMES: No

2011 Ortiga et al.
[179]

Building model, thermal
storage units, multiple

commodities
No/not mentioned No/not mentioned Graphical method Existing days Peak heating and

peak cooling day No Yes

2011 Pina et al. [124]

Island electricity model for
São Miguel (Azores), no

explicitly modeled storage
technologies (only via

availability), no storage
technologies, (TIMES)

No No

4 seasons, weekday,
Saturday and

Sunday with hourly
resolution

(probably)
Mean No Yes No



Energies 2020, 13, 641 37 of 61

Table A1. Cont.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

2011 Weber et al.
[112]

Multi-node district model,
daily heat and electricity

storages, multiple
commodities

No No
3 seasons further
segmented into 6
irregular periods

(probably)
Mean No No No

2012 Buoro et al.
[89]

Building model, thermal
storage units, multiple

commodities
No No

Monthly average,
typical weeks with

168 h

(probably)
Mean No No No

2012 Devogelaer
et al. [125]

Multi-node model for
Belgium, multiple storage

technologies, multiple
commodities,

(JRC-EU-TIMES)

No No
26 2-week periods
with three daily

levels

(probably)
Mean Peak demand slice Yes No

2012 Mehleri et al.
[129]

District model, no storage
technologies, multiple

commodities
No No

3 seasons further
segmented into 6
irregular periods

(probably)
Mean No No No

2012 Van der Weijde
et al. [180]

Multi-node electricity
model for Great Britain, no
explicitly modeled storage

technologies (only as
source/sink)

No No N hourly samples Existing hours No No No

2012 Welsch et al.
[106]

Single-node electricity
model for a town, battery
storages, demand shifting,

(OSeMOSYS)

No No

In Proposal: 4
seasons, work days

and weekends, 3
daily intervals.

In example: Just one
day in hourly

resolution

(probably)
Mean No Yes No

2013 De Sisternes
et al. [93]

Single-node electricity
model, no storage

technologies, but minimum
up- and down-times

Min-max
normalization for

NLDC
Euclidean Exhaustive search or

heuristic Existing weeks Including peak
week or peak day No Yes

2013 Kannan et al.
[126]

Single-node electricity
model for Switzerland and

pumped hydro storage,
(TIMES)

No No

Season-based (four
seasons and to

diurnal time slices),
or weekdays,

Saturdays, Sundays
in hourly resolution

Average No Yes No

2013 Mehleri et al.
[130]

District model, thermal
storage units, multiple

commodities
No No 3 seasons with

hourly resolution
(probably)

Mean No No No
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2013 Pina et al. [115]

Electricity model for
Portugal, storage

technologies considered,
but modeling not

explained, number of
regions not mentioned,

(TIMES and EnergyPLAN)

No None
One weekday, one
Saturday and one
Sunday, 4 seasons

Not mentioned No No No

2013 Simões et al.
[127]

Multi-node model for
Europe, multiple storage

technologies, multiple
commodities, (TIMES)

No No
Season-based (four
seasons, day, night

and peak time slice)
Average

Average peak
demand during

each season
Yes No

2013 Spiecker et al.
[116]

Multi-node electricity
model for Europe, hydro

storage units, cogeneration
units on regional scale

No/not mentioned None

One weekday and
one weekend day for

every two months
with 2 h resolution

Not mentioned Yes, with stochastic
approach Yes No

2013 Voll et al. [103]
District model, no storage

technologies, multiple
commodities

No No Monthly average Mean

Two more time
steps for summer
and winter peak

loads

No No

2014 Adhau et al.
[153]

Stochastic single-node
electricity model, no
storage technologies

No/not mentioned Euclidean k-means Centroids No No No

2014 Benítez et al.
[196]

Customer or unit
partitioning/none (just

approach)

No/not mentioned
(only one attribute) Euclidean Dynamic k-means Centroids No Yes (yearly

trajectory) No

2014 Deane et al.
[64]

UC of the Irish electricity
system, pumped hydro

storage, (PLEXOS)
No No Downsampling (5,

15, 30 and 60 min) Average No Yes No

2014 Fazlollahi et al.
[138]

District heating model, no
storage technologies

Min-max
normalization Euclidean k-means Centroids Attribute peaks No No

2014 Fazlollahi et al.
[69]

Two single-node district
models with fixed

capacities, no storage
technologies, multiple

commodities, UC
(minimizing operating

costs)

Min-max
normalization Euclidean k-means and

segmentation Centroids Attribute peaks No No

2014 Green et al.
[154]

Electric dispatch model for
UK, pumped hydro storage

simulated, number of
regions not mentioned

No (just two
attributes of same

scale clustered)
Euclidean k-means Centroids Dominant ramp

integration No No
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2014 Poncelet et al.
[36]

Island electricity model for
Belgium, no storage

technologies or
transmissions,

re-evaluation with UC
model, (TIMES)

No No
Season-based (four
seasons, night, day

and peak slice)

(probably)
Mean

By choosing peak
slice No No

2014 Stadler et al.
[113]

Building model, multiple
storage technologies,

multiple commodities
(DER-CAM)

No No

(seven typical days
or one typical

weekday, one typical
weekend day and

one peak day)

(probably)
Mean

Peak demand day
in case of typical

weekday and
typical weekend

day

No No

2014 Wakui et al.
[110]

Building model, thermal
storage units, multiple

commodities
No No Season-based (probably)

Mean

Peak summer day
and peak winter

day
No No

2014 Wogrin et al.
[85]

Single-node electricity
model, no storage

technologies

No (attributes of the
same unit) Euclidean k-means, hourly, 6

system states Centroids No No No

2014 Xiao et al. [186] Island electricity model for,
no storage technologies No No No No No Yes No

2015 Agapoff et al.
[63]

Multi-node electricity
model for GEP, no storage

technologies
No/not mentioned Euclidean k-means, typical

hours (snapshots) Medoids

Included as
clustered features

(min, max, std.,
local difference

and avg.)

No No

2015 Brodrick et al.
[155]

Single-node model of a
coal-plant with alternative

natural gas and solar
thermal heat sources and

carbon capture and storage,
CO2 solvent storage unit,

multiple commodities

Normalization by
dividing by the

average
Euclidean k-means Centroids No No No

2015 Bungener et al.
[70]

UC of a chemical cluster,
multiple commodities

Normalized by
average values and

multiplied by weight

None, but variance
indicator and zero
flowrate indicator

Evolutionary
mechanisms

(segmentation)
Means No Yes (adjacent time

steps are merged) No

2015 Deml et al. [71]
Single-node electric

dispatch model, pumped
hydro storage

No No Progressive
downsampling Means No Yes No

2015 Fitiwi et al.
[142]

IEEE 24-bus Reliability Test
System [197], multi-node

electricity model, no
storage technologies

Normalized by
maximum line length

and base load
Euclidean k-means, typical

hours (snapshots)

Medoids
closest to the

clusters’
centroids

No No No
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2015 Harb et al.
[101]

Building model and district
model, thermal storage

units, multiple
commodities

No No
Monthly average,
also 15 min. and
hourly resolution

Mean No No No

2015 Harb et al. [90]
District model, thermal and

battery storage units,
multiple commodities

No No

Cluster by sums of
weeks (sensitivity
analysis also for

different day
numbers), typical

weeks

Means No No No

2015 Marquant et al.
[149]

District heating model, no
storage technologies,

multiple commodities
No/not mentioned Euclidean k-medoids Medoids

Peak electricity
and peak heating

days
No Yes

2015 Merkel et al.
[91]

District model, thermal
storage units, multiple

commodities
No No

Season based (three
weeks from

spring/autumn,
summer and winter),

15 min. resolution

(probably)
Existing weeks No No No

2015 Munoz et al.
[181]

IEEE Reliability Test
System [188], multi-node

electricity model, no
storage technologies

No/not mentioned Euclidean

Daily
moment-matching,
k-means for hours,

typical hours
(snapshots)

Centroids Top 10 peak load
hours included No No

2015 Poncelet et al.
[177] None (just approach) No/not mentioned L1-Norm Using so-called

“bins” Existing days No No Yes

2015 Samsatli et al.
[16]

Multi-node island model,
multiple hydrogen storage

technologies, multiple
commodities

No No
Season-based (four
seasons, weekdays
and weekend days)

(probably)
Mean No Yes No

2015 Schiefelbein
et al. [163]

District model, thermal
storage units, multiple

commodities
No/not mentioned Euclidean k-medoids Medoids No No

2015 Wakui et al.
[109]

Building model, thermal
and battery storage units,

multiple commodities
No No Season based (probably)

Mean

Peak summer day
and peak winter

day
No No

2015 Wouters et al.
[117]

District model, heat, cold
and battery storage

technologies, multiple
commodities

No No
Season-based

(spring/autumn,
summer and winter)

(probably)
Mean

Sensitivity analysis
by adding

variability to PV
input data

No No
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2015 Yang et al.
[118]

District model, heat and
cold storage technologies,

multiple commodities
No No

Season-based
(spring/autumn,

summer and winter),
2 h resolution

(probably)
Mean No No No

2015 Yokoyama et al.
[67]

Building model for a hotel,
no storage technologies,

but multiple commodities
No No

Season-based
(summer,

mid-season, winter)
with 8, 4, or 2 h

resolution and for
commercial solver 1

h

(probably)
Mean No No No

2016 Ameri et al.
[119]

District model no storage
technologies, multiple

commodities
No No Season-based

(summer and winter)
(probably)

Mean No No No

2016 Beck et al. [65] Electric building model,
battery storage No No

Single day
downsampled (10,

30, 60, 300, 900, 3600
s), analyzed single

days

Mean No Yes No

2016 Bracco et al.
[120]

District model, thermal and
battery storage

technologies, multiple
commodities, (DESOD)

No/not mentioned No
Season-based

(summer, winter,
mid-season)

(probably)
Mean No

No, initial
conditions at each

day,
e.g., SOC(p, t =

0) = 0

No

2016 De Sisternes
et al. [92]

Single-node electricity
model, battery storage and

minimum up- and
down-times

Min-max
normalization for

NLDC
Euclidean

Exhaustive search or
heuristic (refers to

[93], but with
additional cycled

power error), typical
weeks

Existing weeks Including peak
week or peak day No Yes

2016 Frew et al.
[182]

Multi-node electric model
of the US, pumped hydro,

thermal and battery storage
technologies, (POWER)

Yes, but not
mentioned is which,
but averaged across

all potential
developable sites

None Random days

Existing days,
weights

calculated with
least squares

method

Extreme days
containing the
peak value for

each of the eight
attributes

No (net storage
values of each day

must be zero or
SOC at start of

each day equals
that at the end)

Yes

2016 Haikarainen
et al. [198]

Customer or unit
partitioning/district model,

thermal storage units,
multiple commodities

No Euclidean k-means Means No No No
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2016 Kools et al.
[102]

District electricity model,
battery storage units, heat
demand driven CHP units

considered

No No

Averaging of eight
consecutive weeks in
each season to one

typical day

Mean

Normal
distributions

added for 1 min,
15 min and 1 h

resolution
(stochastic impact)

Control policy for
the storage (not

across days)
No

2016 Lin et al. [156]

Multiple building models,
thermal and battery

storage units, multiple
commodities

No/not mentioned
(attributes of the

same unit)
Euclidean k-means

Existing day
which is closest
to the centroid

No No (periodic SOC) No

2016 Lythcke-Jørgensen
et al. [88]

CHP-plant model, no
storage technologies,

multiple commodities

Heat demand normed
by maximum value No/not mentioned

So-called “CHOP”
aggregation

(graphical method)
for five years of

hourly data

Means No No No

2016 Merrick et al.
[40]

Single-node electricity
model, no storage

technologies
No None

Monthly median and
peak electricity

demand day with 4 h
resolution and only

one averaged period

Medoids Peak electricity
demand days No No

2016 Nahmmacher
et al. [143]

Multi-node electricity
model LIMES-EU [199]
with intraday storage

technologies, (LIMES-EU)

Demand:
region-specific

divided by maximum
value VRE: divided
by maximum value

across all regions

Euclidean hierarchical Medoids No No No

2016 Oluleye et al.
[123]

Single-node district model,
thermal storage units,
multiple commodities

None None

One weekday and
one weekend day for
winter, summer and
transition with 7 (6)
time bands (slices)

Not mentioned No No No

2016 Patteeuw et al.
[94]

Building heating model of
nine buildings, thermal
storage units, multiple

commodities

No/not mentioned,
Demand:

region-specific
divided by maximum

value

L1-Norm

Using so-called
“bins”, heuristic,

hierarchical
clustering according
to Nahmmacher et al.
[143] for the years of

2013–2016

Existing weeks
(6)

Coldest week and
week with highest
e-demand (same

week)

No Yes
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2016 Ploussard et al.
[87]

IEEE 24-bus Reliability Test
System [197], multi-node

electricity model, no
storage technologies

No/not mentioned Euclidean k-means, typical
hours (snapshots)

Existing
snapshot

closest to the
centroids

No No No

2016 Poncelet et al.
[128]

Island electricity model for
Belgium, no storage

technologies or
transmissions,

re-evaluation with UC
model, (TIMES)

No None

For each of the four
seasons one night,

day and peak
electricity time slice

Mean Peak electricity
time slice No No

2016 Poncelet et al.
[144]

Single-node electricity
model based on [200], no

storage technologies,
(LUSYM)

No/not mentioned,
Demand:

region-specific
divided by maximum

value

L1-Norm, Euclidean

Using so-called
“bins”, heuristic,

hierarchical
clustering according
to Nahmmacher et al.

[143]

Existing days,
medoids

No, for heuristics
days with highest
and lowest value
for e-demand and
highest and lowest
average for wind

and PV

No Yes

2016 Samsatli et al.
[17]

Multi-node
hydrogen-electricity model
for Great Britain, multiple

hydrogen storage units,
multiple commodities

No No
Season-based (four
seasons, work days
and weekend days)

(Probably)
Mean No Yes No

2016 Schütz et al.
[139]

Building model, thermal
and battery storage units,

multiple commodities

Min-max
normalization Euclidean

k-means
k-medians
k-medoids
k-centers

Centroids
Medians
Medoids
Centers

No No No

2016 Stenzel et al.
[38]

UC of building electricity
model with battery storage No None downsampling Means No Yes No

2016 Wakui et al.
[108]

Building model, thermal
and battery storage units,

multiple commodities
No No Season based (probably)

Mean

Peak summer day
and peak winter

day
No No

2016 Wogrin et al.
[83]

Single-node electricity
model, pumped hydro and

battery storage
No/not mentioned Euclidean

k-means (98 system
states (typical

hours))
Centroids

No, but the first
and last hour of the
time horizon were
manually added

Yes No
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2017 Bahl et al. [157]

District model from Voll
et al. [103], no storage
technologies, multiple

commodities

No/not mentioned
(attributes of same

scale clustered)
(probably) Euclidean k-means, typical

hours (snapshots) Centroids

Feasibility time
steps (peak values)

and operation
optimization for
full time series

No No

2017 Brodrick et al.
[146]

UC of an integrated solar
combined cycle, no storage

technologies, multiple
commodities

Z-normalization Euclidean k-means Centroids No No No

2017 Härtel et al.
[86]

Multi-node transmission
expansion planning model,

no storage technologies

Either normed by
highest value per
market or highest

value across all
markets

Euclidean

k-means, k-medoids,
hierarchical,

systematic sampling,
moment-matching,

typical hours
(snapshots)

Centroids,
medoids,

sample points

Heurisitc defining
new cluster centers
if 95% of a cluster’s

data points are
below or above a 6
h moving average,
with the lowest or
highest chosen as
the new cluster

center

No No

2017 Heuberger
et al. [158]

Single-node electricity
model with carbon capture
and storage and grid-level

storage

Yes, but not
mentioned which Euclidean k-means Means

Day with annual
electricity peak

demand
No No

2017 Marquant et al.
[150]

District heating model,
thermal and battery

storage units, multiple
commodities

No/not mentioned Euclidean k-medoids Medoids
Peak electricity

and peak heating
days

No Yes

2017 Moradi et al.
[121]

Single-node model of an
energy hub, thermal and
battery storage, multiple

commodities

No No

Season-based (one
work day and one
weekend day per
spring, summer,

autumn and winter)

(probably)
Mean No No No

2017 Pfenninger
et al. [37]

Multi-node electricity
model for Great Britain,

pumped hydro and battery
storage units

Normalized by the
maximum value

across all time steps
and model zones

Euclidean

k-means,
hierarchical,

downsampling,
heuristics

Centroids,
medoids

Min/max solar and
wind days, wind

and PV weeks and
wind-demand

weeks

No No
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2017 Renaldi et al.
[61]

Single-node district heating
system, long- and

short-term thermal storage
units, multiple
commodities

No None
Multiple time grids
for different storage

technologies

Downsampled
3 h steps for
long-term

storage

No Yes No

2017 Timmerman
et al. [107]

Two business park models
(one based on the model of

Voll et al. [103]), thermal
and electrical storage units,

multiple commodities,
(Syn-E-Sys)

No No
Season and

weekday-based (4 ×
2 × 4 6 h intervals)

(probably)
Mean No Yes No

2017 Schütz et al.
[100]

Building model, thermal
and battery storage units,

multiple commodities
No No

Monthly average
(one typical day per

month and
weighted)

(probably)
Mean No No No

2017 Sun et al. [136]
Customer or unit

partitioning/none (just
approach)

Time steps wise (in
period) average s

divided by maximum
value of each

customer

Likelihood-function Vine-copula mixture
model None No No No

2017 Teichgräber
et al. [147]

Oxyfuel natural gas plant,
liquid oxygen storage,
multiple commodities

Z-Normalization Euclidean k-means Centroids No No No

2017 vom Stein et al.
[79]

Multi-node electricity
dispatch model for Europe,

pumped hydro storage
No L1-Norm

Clustering of
consecutive time

steps with objective
to minimize

gradients within
clusters

Mean No
Yes (clustering of
consecutive time

steps)
No

2017 Yang et al.
[201]

Customer or unit
partitioning/none (just

approach)
Z-normalization Shape-based

distance k-shape None No No No

2017 Zhu et al. [164]
(refers to [55])

Building model for an
airport in China optimizing

economics or CO2
emissions, no storage

technologies, but start-up
and shut-down costs

Yes, but not
mentioned which Euclidean

k-medoids (only
three season-specific

typical days)
Medoids No No No
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2018 Almaimouni
et al. [137]

Single-node GEP for
electricity, validated with

rolling horizon UC, no
storage technologies

Normalize by
√

m− 1
with m as number of

days, principal
components

Euclidean k-means Centroids No No Only as error
estimator

2018 Bahl et al. [192]

District model from Voll
et al. [103] and a

single-node pump system,
no storage technologies,
multiple commodities

No/not mentioned
(attributes of same

scale clustered)
Euclidean k-means, typical

hours (snapshots)

Undersestimators
from minimum
values of each

cluster

Feasibility time
steps (peak values)

and operation
optimization for
full time series

No No

2018 Bahl et al. [74]

District model from Voll
et al. [103] with additional
heat and cold storage units,

multiple commodities

Yes, but not
mentioned which Euclidean

k-medoids (daily
clustering and
segmentation)

Medoids
further

segmented

Feasibility time
steps (peak values)

and operation
optimization for
full time series

No No

2018
Brodrick et al.
[97] refers to

[146]

UC of an integrated solar
combined cycle, no storage

technologies, multiple
commodities

Z-normalization Euclidean

k-means (6
representative days)
further reduced to

three extreme hours

Centroids Three extreme
hours No No

2018 Gabrielli et al.
[15]

Single-node district model,
thermal, battery and

hydrogen storage, multiple
commodities

No/not mentioned

Not mentioned
(probably

Euclidean/default for
Matlab k-means)

k-means Centroids

Maximum and
minimum values

of the demand
profiles

Yes No

2018 Kotzur et al.
[57]

Three single-node models
(CHP system, residential
building, island system),

thermal, battery and
hydrogen storage, multiple

commodities

Min-max
normalization Euclidean

k-means, averaging,
k-medoids,

hierarchical, typical
days and typical

weeks

Centroids
medoids

Peak periods heat
and electricity

demand,
minimum PV

feed-in

No No

2018 Kotzur et al.
[14]

Three single-node models
(CHP system, residential
building, island system),

thermal, battery and
hydrogen storage, multiple

commodities

Min-max
normalization Euclidean Exact k-medoids Medoids No Yes No

2018 Lara et al. [24]

Multi-node electricity
model for Texas, multiple

storage units
(e.g., lithium-ion, lead-acid,

and flow batteries)

Mentioned, but not
which one Euclidean k-means for the

years of 2004–2010 Centroids No No, 50% SOC
heuristic No
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2018 Liu et al. [148]

Multi-node electricity
model for Texas (greenfield

GEP), storage units and
ramping constraints

considered

Z-Normalization
DTW distance,
Euclidean as
benchmark

(k-means initially),
hierarchical,
k-means as
benchmark

Medoids,
centroids for

k-means-benchmark
No No No

2018
Mallapragada

et al. [39]
(2004–2010)

Electricity GEP model for
Texas, no storage or
transmission units,

ramping in production cost
simulation considered

Min-max
normalization

between 0 and 2

Euclidean and
L1-Norm (as
benchmark)

4 seasons and 4 daily
segments vs.

k-means
Medoids No No, refers to [24],

50% SOC heuristic No

2018 Neniškis et al.
[51]

Electricity and district heat
model of Lithuania,

pumped hydro storage,
multiple commodities,

(MESSAGE)

No None

Workday and
weekend day either
for four seasons or
for twelve months

Mean
No (but

synthesized wind
time series)

No No

2018 Pineda et al.
[72]

Multi-node electricity
model of Europe, intraday,

interday storage and
ramping constraints

considered

Mentioned, but not
which one Euclidean Hierarchical Medoids No Yes, by clustering

adjacent periods No

2018 Schütz et al.
[58]

Building model, thermal
and battery storage units,

multiple commodities

Min-max
normalization Euclidean

k-means
k-medians
k-medoids
k-centers

Centroids
medians
medoids
centers

No No No

2018 Stadler et al.
[165]

Building model, thermal
and battery storage units,

multiple commodities
No/not mentioned (probably) Euclidean k-medoids Medoids No No No

2018 Teichgräber
et al. [159]

Two minimal UC problems:
An electricity storage

model and a gas turbine
dispatch model

Element-wise
Z-Normalization

Euclidean, Dynamic
Time Warping,
Shape-based

Distance

k-means
k-medoids
Barycenter
Averaging

k-shape
hierarchical

Centroid,
medoids No No No

2018 Tejada-Arango
et al. [19]

UC of the Spanish
electricity system, battery

and pumped hydro storage

Yes, but not
mentioned what kind

of normalization
(probably) Euclidean k-medoids for RP,

k-means for SS
Medoids,
centroids No Yes No

2018 Tejada-Arango
et al. [84]

UC of the IEEE 14 bus
electricity model, battery

and pumped hydro storage

No/not mentioned
(attributes of same

scale clustered)
Euclidean k-means (for typical

hours) Centroids No No No



Energies 2020, 13, 641 48 of 61

Table A1. Cont.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

2018 Tupper et al.
[167]

UC of the IEEE 30 bus
electricity model with wind

generation, no storage
technologies

No/not mentioned Euclidean, band
distance k-medoids Medoids No No No

2018 Van der Heijde
et al. [95]

Single-node district heating
model, thermal storage No/not mentioned L1-Norm

Using so-called
“bins” and four

seasons
Existing weeks

No, but each
season needs to

contain at least one
typical week

Yes Yes

2018 Voulis et al.
[145]

Customer or unit
partitioning/none (just

approach)

Normalization by
maximum e-demand Euclidean

k-means
(spatio-temporal

differentiation
between workdays,

weekends,
neighborhoods,

districts and
municipalities)

Centroids No No No

2018 Welder et al.
[18]

Multi-node model for
power-to- hydrogen in

Germany, hydrogen
storage technologies,

multiple commodities

Min-max
normalization Euclidean hierarchical Medoids No Yes Yes

2019 Baumgärtner
et al. [78]

District model from Voll
et al. [103] with additional
heat and cold storage units

and a single-node pump
system, multiple

commodities

No/not mentioned Euclidean k-medoids
Segmented
under- and

overestimators

Feasibility time
steps (peak values)

and operation
optimization for
full time series

No No

2019 Baumgärtner
et al. [77]

Single-node model for
industrial site based on
Baumgärtner et al. [202]

with heat, cold and battery
storage, Multi-node model
for Germany with battery

and hydrogen storage,
multiple commodities

No/not mentioned Euclidean k-means

Centroids,
segmented
under- and

overestimators

Feasibility time
steps (peak values)

and operation
optimization for
full time series

Yes No

2019 Gabrielli et al.
[160]

Single-node district model,
thermal, battery and

hydrogen storage, multiple
commodities

No/not mentioned

Not mentioned
(probably

Euclidean/default for
Matlab k-means)

k-means Centroids

Maximum and
minimum values

of the demand
profiles

Yes No
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Table A1. Cont.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

2019 Hilbers et al.
[166]

Single-node electricity
model of Great Britain, no

storage technologies

Yes, but not
mentioned which Euclidean

Samples (hourly).
As benchmark:

k-medoids (days)

Existing hours.
As benchmark:
medoids (days)

Yes with the
method of

subsampling and
keeping the most
expensive days

No No

2019 Kannengießer
et al. [140]

Multi-node district model
and single-node island
model, thermal, battery
and hydrogen storage,
multiple commodities

Min-max
normalization Euclidean hierarchical Medoids

No, but operation
optimization for
full time series

No Yes

2019 Motlagh et al.
[203]

Customer or unit
partitioning/none (just

approach)
No/not mentioned

Adjacency metric, in
mapping parameter
space: Euclidean d

Feature-based
clustering or

dynamic
load-clustering

None No No No

2019 Pavičević et al.
[204]

Customer or unit
partitioning/multi-node
electricity model of the

western Balkan, pumped
hydro storage and CHP

with thermal storage,
(Dispa-SET)

No None By technology and
location Mean No No No

2019 Pöstges et al.
[187]

Single-node electricity
model, no storage

technologies, analytically
solved as

peak-load-pricing model

Yes, cap-specific costs None

Segments in the
duration curve
implying use of

different
technologies (hours)

Sorted existing
hours

Yes, by
determining the
capacity of each
component from
the merit order

No Yes

2019 Savvidis et al.
[80]

UC of dispatch electricity
model for Germany,

pumped hydro storage,
(E2M2)

No No No No

Certain time series
qualities define

intervals in which
can be

downsampled

Yes, by clustering
adjacent periods No

2019 Sun et al. [135]
Multi-node electricity

model of Great Britain with
intraday storage

Min-max
normalization,
dimensionality

reduction applied

Euclidean hierarchical Medoids No No No

2019 Teichgräber
et al. [41]

Two minimal UC problems:
An electricity storage

model and a gas turbine
dispatch model

Element-wise
Z-Normalization

Euclidean,
Dynamic Time

Warping,
Shape-based

Distance

k-means
k-medoids
Barycenter
Averaging

k-shape
hierarchical

Centroid,
medoids No No No
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Table A1. Cont.

Year Author ESM for Case Study,
(Framework) Normalization Distance Metric Clustering/

Grouping Representative Extreme Periods Linking Periods Duration Curve

2019 Van der Heijde
et al. [20]

Multi-node district heating
model, thermal storage No/not mentioned L1-Norm Using so-called

“bins” Existing days

No, but
rearranging the

typical days to the
original sequence

using a MIP

Yes Yes

2019 Yokoyama et al.
[68]

Building model for two
hotels and four office
buildings, no storage

technologies, but multiple
commodities

No None downsampling Means No No No

2019 Zatti et al.
[141]

District model of Parma
university campus and

building model, thermal
and battery storage,

multiple commodities

Min-max
normalization Euclidean

(k-means,
k-medoids)

k-MILP
(modification of

k-medoids)

(Centroids),
medoids

Automatically
integrating

atypical days
No No

2019 Zhang et al.
[161]

Single-node electricity
model consisting of hydro,
PV and wind power plants

with reservoir storage

No/not mentioned Euclidean k-means Means

No, but used
Vine-Copula,

ARMA-model and
latin hypercube

sampling to
generate scenarios

No No
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Appendix B

Customer and Unit Partitioning

It is noteworthy that aggregations based on time series do not necessarily mean the aggregation of the
temporal dimension. Instead, similar time series can also be clustered in order to generate a smaller number of
possible technologies or regions with similar demand behavior or similar technologies. This is referred to as
customer [136] and unit [204] partitioning. Given the fact that, in some cases, new methods were first introduced
in this field of TSA, a short overview of methods used in this field could imply possible approaches for the TSA
methods presented above.

One of these examples was published by Alzate et al. [195], who used spectral clustering with an out-of-sample
extension to cluster customer profiles for electricity demand. For this, 123 time series were used for training
and 122 for validation. The approach significantly outperformed the selection found by k-means clustering.
Benítez et al. [196] implemented a modified version of k-means for customer partitioning that was not only
capable of clustering groups of customers with their daily profiles, but also with respect to their yearly profiles.
This means that each cluster center of a (daily) period followed a trajectory throughout the year resulting in
representative yearly profiles. Sun et al. [136] used a C-vine copula-based mixture model to cluster residential
electricity demands by maximizing a log-likelihood function, which slightly outperformed k-means clustering but
was computationally significantly more demanding. Yang et al. [201] used k-shape clustering for forming typical
residential daily profiles before applying it to TSA purposes. This highlights the importance of cross-linking
different research fields within energy system analysis. Recently, Motlagh et al. [203] applied two different
clustering algorithms on electricity demands for customer partitioning. The first one included a preliminary
principal component analysis to decrease the complexity, followed by clustering using the adjacency metric, while
the second one was model-based and transferring the profiles into the phase space. Then, a mapping strategy
based on neural regression was used and the Euclidean distance between the map parameters was calculated,
which outperformed the first, feature-based approach.

With respect to unit partitioning, Pavičević et al. [204] introduced three levels of potential clustering scopes.
The first was based on similar characteristics if the components were small, at the same location, with the same
commodities and comparable temporal characteristics, while the second focused on the same location and the
same commodities and the third only on the same commodities, such as averaged heat and electricity demands of
industrial sites and residential buildings. Haikarainen et al. [198] used k-means clustering for grouping different
nodes in an energy network that were then represented as a single component with averaged costs and the traits
of all of the included technologies (supply, demand, storage). Based on decisions made for a coarse clustering, the
number of clusters was stepwise increased and, in a final run, all binary decision variables were retained and a
linear problem was solved for the fully resolved energy grid. This means that the clustering was not based on
temporal features, but on spatial ones. This means that the units were merged based on their distance to each
other, not their traits.

This highlights that temporal, spatial, and technological information can theoretically be aggregated based
on their own or based on each other. Thus, TSA is traditionally seen as the aggregation of time series derived from
temporal information.

Appendix C

Calculation Example for Time Series Normalization

In the following, a hypothetical time series is normalized as per Equations (1)–(3). The time series is given as
six-dimensional row vectors including only positive values, representing 4 h intervals of electricity demand in kW
for January 1st:

x =
[

1 2 3 3 2 1
]
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Min-Max-Normalization:

xMin−Max =
x−min(x)

max(x) −min(x)
=

x− 1
3− 1

=

[
0 1 2 2 1 0

]
2

=
[

0 0.5 1 1 0.5 0
]

Max-Normalization:

xMax =
x

max(x)
=

x
3
=

[
1 2 3 3 2 1

]
3

=
[

1
3

2
3 1 1 2

3
1
3

]
Z-Normalization:

xZ =
x−µ
σ

µ = 1
N

N∑
i=1

xi =
1
6 (1 + 2 + 3 + 3 + 2 + 1) = 2

σ =

√
1
N

N∑
i=1

(xi − µ)
2 =

√
1
6

(
(1− 2)2 + (2− 2)2 + (3− 2)2 + (3− 2)2 + (2− 2)2 + (1− 2)2

)
=

2
√

6

This means:

xZ =
x− 2

2
√

6

=

√
6

2

[
−1 0 1 1 0 −1

]
=

[
−

√
6

2 0
√

6
2

√
6

2 0 −

√
6

2

]
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