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Abstract: Energy supply in remote areas (mainly in developing countries such as Colombia) has 
become a challenge. Hybrid microgrids are local and reliable sources of energy for these areas where 
access to the power grid is generally limited or unavailable. These systems generally include a diesel 
generator, solar modules, wind turbines, and storage devices such as batteries. Battery life 
estimation is an essential factor in the optimization of a hybrid microgrid since it determines the 
system’s final costs, including future battery replacements. This article presents a comparison of 
different technologies and battery models in a hybrid microgrid. The optimization is achieved using 
the iHOGA software, based on data from a real microgrid in Colombia. The simulation results 
allowed the comparison of prediction models for lifespan calculation for both lead–acid and lithium 
batteries in a hybrid microgrid, showing that the most accurate models are more realistic in 
predicting battery life by closely estimating real lifespans that are shorter, unlike other simplified 
methods that obtain much longer and unrealistic lifetimes. 
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1. Introduction 

Global warming and the increase of greenhouse gases caused by fossil-fuel-based energy 
generation have resulted in worldwide concern about future energy supply [1]. These inconveniences 
have become an opportunity for the use of renewable energy such as solar, wind, tidal, geothermal, 
and biomass, among others. In 2018, approximately 15% of the total energy consumed worldwide 
was of renewable origin, and it is estimated that by 2050 this percentage may reach 28% [2]. In terms 
of electrical energy generated, renewable sources generated 28% of the total worldwide energy in 
2018, and it is estimated that they could produce 49% by 2050 [2], reducing fossil fuel dependence 
and mitigating the effects caused by climate change. However, one drawback of renewable sources 
is their unpredictable nature and intermittency. To overcome this drawback, an attractive solution is 
to combine two or more energy sources in a hybrid system and include energy storage [3]. For 
example, photovoltaic power generation can be used during the day and wind power generation 
(which usually generates more energy) can be used at night, so the two sources of energy complement 
each other [4,5]. Furthermore, the different energy sources can be managed as a microgrid, which can 
solve reliability problems and provide an environmentally friendly solution [6]. In addition, 
increasing renewable energies can cause problems for quality; therefore, it is necessary to have a 
flexible and intelligent electrical network. One of the fundamental aspects to increase the electrical 
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grid’s flexibility is the use of storage systems that allow compensation for the variability of renewable 
energy sources. Conversely, electricity grids are designed considering energy sources that do not 
present variability, which happens with renewables, so electricity grids must have enough back-up 
capacity. Storage capacity is essential, thus making it possible to increase renewable generation while 
avoiding the possible problems that could be caused by its variability [3]. 

Hybrid microgrids are a new solution in remote areas that are difficult to access or that do not 
have access to conventional power grids [7]. In hybrid microgrids based on renewable energy, one of 
the main elements that support the energy supply due to the variable intermittency such as radiation 
or wind, as mentioned above, is storage technologies, and batteries in particular are the most suitable 
and convenient. 

Batteries are the most widely used storage devices in hybrid systems due to the maturity of 
technologies such as lead–acid and the emergence of technologies such as lithium-based batteries. 
The latter represents an attractive option due to their high energy density, longer life, and better 
environmental sustainability [8]. In addition, lithium batteries have seen a price reduction between 
8-16% annually [9].  

Batteries represent a high cost within a hybrid microgrid, and their performance and duration 
mainly depend on the microgrid’s operation. Battery life estimation is crucial since it influences the 
replacement costs and, therefore, the total system cost [10]. The batteries’ optimal operation within a 
hybrid microgrid is influenced by factors such as technology, the amount of charge and discharge 
cycles, the current, and the operating temperature, among others [11,12]. Parameters related to aging 
by degradation and corrosion have been represented by authors, such as the model by Schiffer et al. 
[13] that used weighted cycles and applied to lead–acid batteries.  

Based on this model, a comparison of lead–acid battery life prediction models was presented by 
Dufo-López et al. [14]. For battery life prediction, models based on equivalent cycles or “Rainflow” 
cycle counting models have traditionally been used [15]. As for lithium batteries, there are models 
(e.g., Wang et al. [16]) that include parameters such as the cycled charge (Ah) over time, charge and 
discharge currents, and temperature, applicable to LiFePO4/graphite (LFP) batteries. Other models 
for the same type of lithium batteries, such as that of Groot et al. [17], study their degradation when 
subjected to asymmetric charge cycles and at different temperatures. Conversely, Saxena et al. [18] 
considered an aging model based on state of charge (SOC) for lithium cobalt oxide LiCoO2/graphite 
batteries.  

When batteries work in real conditions, the way they degrade and age differs from laboratory 
tests, so that the lifespan may be shorter than expected, as demonstrated in [19] for lead–acid 
batteries. When optimizing isolated hybrid systems, it is essential to consider battery aging and 
degradation models to estimate parameters such as net present cost (NPC) and levelized cost of 
energy (LCOE) [19]. In [20], the authors presented an optimization of microgrid-insulated diesel-
solar-wind power charge states of lead–acid batteries. Other studies have compared aging models 
for lead–acid and lithium batteries used in isolated photovoltaic systems [21,22]. 

The optimization of isolated hybrid systems mainly depends on predicting battery life, since an 
erroneous or overly optimistic prediction can lead to a poor estimate of the system costs. The 
importance of these considerations has been highlighted in recent publications [23,24]. However, it 
is necessary to consider these factors in systems where the actual and climatic conditions of operation 
differ considerably from the datasheet and the expected life of the battery according to laboratory 
tests.  

This article presents the optimization of an isolated hybrid microgrid considering different lead–
acid and lithium battery technologies and models. The system integrates solar modules, a battery, a 
wind turbine, a diesel generator, an inverter, and a charge controller. In addition, this system is 
optimized considering different battery models and technologies. In the second section, the different 
battery aging models are presented. In the third section, the microgrid under consideration is shown, 
and the results are presented in the fourth section. Finally, the conclusions and future work are 
presented.  
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2. Materials and Methods  

Battery aging models represent essential aspects such as anodic corrosion, active mass 
degradation, loss of adhesion to the grid, formation of lead sulfate in the active mass, loss of water, 
and electrolyte stratification [25]. Conversely, the models used for lithium batteries analyze capacity 
and power losses, impedance increase, and the effects caused by temperature [26]. The different lead–
acid and lithium battery models considered in this study are described below. 

2.1. Simplified Model of Equivalent Ah Cycles 

This model is used by optimization programs such as HOMER [27]. In this model, battery life is 
supposed to be reached at the end of a finite number of charge and discharge cycles, and the number 
of cycles is usually shown in the battery datasheet. The IEC 60896-11: 2002 [28] establishes the number 
of cycles. However, this model does not consider the battery’s operating status (e.g., SOC, 
temperature, acid stratification in the case of lead–acid batteries, current, and the amount of time the 
battery has not reached full charge). The number of complete cycles (Zn) is calculated by Equation (1): ( + ∆ ) = ( ) + | ( )|×∆ , (1)

where | ( )| (A) is the absolute value of the discharge current.  is the nominal capacity of 
the battery (Ah). 

If ( ) =  (when the number of cycles performed from the beginning of life until time t (h) 
is the same as the IEC number of cycles provided by the manufacturer), then the end of the battery 
life is reached. 

2.2. Cycle Counting or Rainflow Model 

The cycle-counting model, also known as “Rainflow,” is based on the Dowing algorithm [29]. 
This model is based on the Zi cycle count, corresponding to each Depth of Discharge (DOD) range 
(%), which is divided into m intervals for 1 year (an average year or the whole life). For each interval, 
there are several cycles until failure (CFi). The battery life is calculated by Equation (2): = 1∑ , (2)

This model takes into consideration the depth of discharge of the cycles; however, it does not 
take into account the batteries’ operating conditions, such as acid stratification, current, and 
temperature. 

2.3. Schiffer et al.’s (2007) Model 

The Schiffer model is a weighted charge model (Ah) proposed by Schiffer et al. [13] specifically 
for lead–acid batteries. The actual cycled charge in Ah is multiplied continuously by a weight factor 
that fully represents the battery’s actual operating conditions, considering the SOC (e.g., temperature, 
acid stratification, current, and the time it takes without reaching full charge) during the battery 
lifetime. The end of the battery’s lifetime is reached when its remaining capacity corresponds to 80% 
of the nominal capacity. Users can adapt this model to different battery types using the lifetime and 
flotation datasheet. Complex calculations to calculate the final loss of battery capacity due to 
continuous corrosion and degradation are made using Equation (3): ( ) = (0) − ( ) − ( ), (3)

where Ccorr is loss of corrosion capacity, Cdeg is degradation capacity losses, and Cd(0) is initial 
normalized battery capacity. 

This model allows us to model the charge controller and configure the protections against 
overloads and other parameters. 



Energies 2020, 13, 581 4 of 17 

 

2.4. Wang et al.’s (2011) Model 

Wang et al.’s (2011) model provides a life cycle model for LiFePO4/graphite lithium–
ferrophosphate batteries considering parameters such as accelerated charge/discharge tests under 
different temperature conditions and discharges depths [30]. At low charge rates, the results indicate 
that the loss of capacity is significantly affected by time and temperature, whereas the effect is less 
important in the depth of discharge. This model underestimates the loss of capacity at 60 °C and 
overestimates it at 45 °C. The authors obtained a percentage of capacity loss given by Equation (4): (%) = 30,330 × −31,5008.314 × 	 . , (4)

where T is the absolute temperature in kelvins and Ah is the amount of charge (Ah) involved in the 
charging process since the start of battery operation. 

This equation is valid for charge rates equivalent to C/2; that is, 2-h full charge and discharge 
times. Charging rates are evaluated from this value up to 10C; that is, the battery will be fully charged 
in one-tenth of an hour. In our paper, we use this equation during the average year or the whole life. 

2.5. Groot et al.’s (2015) Model 

Groot et al. [17] obtained an empirical equation for lithium batteries of 2.3 Ah. It is shown that 
the life cycle of LiFePO4/graphite lithium–ferrophosphate batteries not only depends on the rates of 
charge and discharge (current), temperature, and depth of discharge, but is also affected by the 
pauses between charge and discharge times and those dependencies are highly nonlinear. To model 
the above, they proposed an empirical relationship given by Equation (5): = × × × ( × × ) + , (5)

where QEOL is the charge that the battery can deliver in its lifetime (kAh), I is the charge rate, T is the 
temperature in °C, and a, b, C, d, e, and f are adjustment constants. In our paper, we use this equation 
during the average year or the whole life. 

2.6. Saxena et al.’s (2016) Model 

Saxena et al.’s (2016) model [18] quantifies the life cycle for lithium oxide cobalt LiCoO2/graphite 
batteries subjected to charge states between 0–60%. It develops a model that estimates the batteries’ 
loss of capacity and the influence of the SOC and the rate of charge. Percentage of capacity loss is 
modeled by Equation (6): (%) = 1 × SOC × (1 + 2 × ∆SOC + 3 × ∆SOC × 100 . , (6)

where SOCmean is the average SOC (30–50%), ΔSOC is variation of the SOC (100–60%), EFC is 
equivalent full cycles, and K1, K2, K3 = 3.25, 3.25, and 2.25, respectively. In our paper, we use this 
equation during the average year or the whole life. 

2.7. Aging by Calendar Model 

This model considers two options for determining age, the first proposed by Petit et al. [30], 
which takes into account the loss of battery capacity due to two factors: current and temperature. 
Equation (7) describes this model: (%) = × − + × | |× ℎ , (7)

where Bcyc is an exponential factor in Ah1−Zcyc, which depends on the current, Eacyc is the activation 
energy expressed in J mol−1, γ is a coefficient to determine the acceleration in aging due to the current 
J mol−1 A−1, |I| (A) is the absolute value of the current, R is the gas constant (8.314 J·mol−1·K−1), T is the 
absolute temperature (K), and Zcyc is a constant with a value close to 0.5.  
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Swierczynski et al. [31] presented the other model that considers the storage temperature, the 
number of cycles, and depth described using Equation (8): (%) = (0.019 × SOC . + 0.5195) × (3.258 × 10 × . + 0.295)) × . , (8)

where tm is the storage time in months, T is the temperature in °C, and SOCst is the SOC at which the 
battery is stored (%). 

The iHOGA (improved hybrid optimization by genetic algorithms) [15] software version 2.5 
allows selecting any of the two models. The value of the current is limited in such a way that when 
the current is below Ctimes, the nominal capacity of the batteries’ (0.2 by default) calendar aging model 
is used, and when it is higher, a cyclic aging model is used. In our paper, we use these equations 
during the average year or the whole life. 

2.8. Economic Calculations 

iHOGA software performs the simulation of different combinations of components 
(photovoltaic (PV) generator, wind turbine/s, battery bank, diesel generator, etc.) during a whole 
year, in hourly steps, except for the cases where the Schiffer et al. [13] model for the battery is selected. 
In these cases, the simulation is also performed in hourly steps during the number of years of the 
battery lifetime (a priori it is not known, but it becomes known when the battery’s remaining capacity 
has dropped to 80%). 

For each combination of components and control strategies of the system, NPC and LCOE must 
be calculated so that the genetic algorithm [32] used by iHOGA can calculate the fitness of each 
combination and finally, after several generations, achieve the optimal system (the optimal 
combination of components and control strategy).  

The NPC (€) of a combination of components i and control strategy k (NPCi,k) is obtained 
considering the acquisition cost of all the components, the installation and replacement costs of the 
components, the operating and maintenance (O&M) cost, and the fuel cost during the system lifetime, 
Lifesystem (years). All the cash flows are converted to the initial moment of the system (hour 0, year 1), 
considering inflation and interest rates [23]: NPC , = ∑ + NPC + ∑ & × ( )( ) +∑ × ( )( ) + , 

 

(9)

where j is the different components, ty is one year of the system lifetime, Costj is the acquisition cost 
of component j, NPCrepj is the sum of the replacement costs of component j during the system lifetime 
minus the residual cost of component j at the end of the system lifetime, CostO&Mj is the annual O&M 
cost of component j, Infgeneral is the general annual expected inflation, I is the annual interest rate, Costfuel 

is the annual cost of the fuel used by the diesel generator, Inffuel is the annual expected diesel fuel 
inflation, and CostINST is the installation cost.  

The LCOE (€/kWh) of a combination of components i and control strategy k (LCOEi,k) is 
calculated as follows: LCOE , = 	 NPC ,× , (10)

where Eload (kWh/yr) is the annual expected load of the system. 

2.9. Case Study 

The microgrid considered for this study is located in the community of Nazareth (Department 
of La Guajira, Colombia), and its coordinates are latitude 12° 20’ 52.14” N, longitude −71°16′8.80″ W. 
This place belongs to Colombia’s non-interconnected area (the Spanish acronym ZNI is used for these 
areas); however, it is located in a geographical place with a high potential for solar and wind 
resources, where proposals for microgrids have been made [33,34]. In addition, this area is 
characterized by not having 100% energy supply coverage. 
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Figure 1. Nazareth microgrid [35].  

The load profile is obtained according to the Energy Solutions data for the non-interconnected 
areas of Colombia IPSE (the government branch that plans and promotes these energy systems) [36], 
with an average temperature of 27 °C [37]. Table 1 shows the irradiation and wind data of the system 
installation site obtained from [38]. It can be seen that variation in irradiation and wind throughout 
the year is not very high. This situation is typical at latitudes close to the equator [39,40]. This small 
variability in wind and photovoltaic resources throughout the year allows for better use of renewable 
sources than at other latitudes [6]. The average daily electricity consumption is 30 kWh/day. The 
consumption is for households and street lighting. As it is an isolated microgrid, not interconnected 
with an electricity system, consumers of the microgrid cannot participate in the Colombian electricity 
market as self-consumers. The high number of areas not connected to the electricity grid is one of the 
most significant obstacles for renewable energy sources to participate in the Colombian electricity 
market [41]. 

Table 1. Irradiation and wind speed at the microgrid location. 

Month Irradiation (kWh/m2/day) Wind Speed (m/s) 
January 5.86 7.04 

February 6.51 7.24 
March 7.02 7.1 
April 6.92 6.93 
May 6.72 6.86 
June 7 7.64 
July 7.13 7.39 

August 7.17 6.62 
September 6.66 5.7 

October 5.99 5.25 
November 5.57 5.75 
December 5.39 6.7 

Figures 2 and 3 show the wind speed and solar radiation values for 1 year at the simulated 
microgrid’s location. Figure 4 shows the load profile during a typical day. 
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Figure 2. Wind speed (in an average year) at the microgrid location. 

 

Figure 3. Hourly solar irradiation (in an average year) and detail for a specific day at the grid location. 

 

Figure 4. Typical daily load profile for the case study at the grid location. 

The voltages in the microgrid are 48/220 V (CD/AC), the wind turbine power is 600 W, the 
inverter charger is 500 VA/48 V/70 A, the charge controller is PWM/48V/40A, and the diesel generator 
power is 1.6 kW. The other system data are summarized in Tables 2 and 3. 
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The system’s lifetime is considered the same as a PV generator’s expected lifetime (the most 
common PV lifetime considered by researchers all around the world is 25 years). The economic data 
used to calculate the NPC of the actual system are shown in Table 4, obtaining the results of Section 
3.1. 

Table 2. Photovoltaic (PV) data of the simulated microgrid. 

PV Module Type Monocrystalline 
PV module power (Wp) 380 
Number of PV modules in serial/Parallel 2/22 
PV module short current Isc (A) 10.11 
PV module open-circuit voltage Voc (V) 24 
PV module temperature coefficient (%/°C) −0.37 
NOCT (°C) 48° 
PV module slope 15° 
PV module azimuth 0° 

Table 3. Batteries data. 

Battery Type OPZS 
Number of batteries in serial/parallel 24/1 
Battery voltage (V) 2 
Battery capacity C10 (Ah) 3360 
Battery float life at 20 °C (years) 15 
Battery equivalent full cycles 1500 

Table 4. Economic data for net present cost (NPC) calculation. 

Parameters Economic data 
Battery bank acquisition cost 30,960 € 
PV generator acquisition cost 9680 € 
PV generator expected lifetime 25 years 
Diesel generator acquisition 800 € 
Diesel generator expected lifetime 10,000 h 
Inverter acquisition cost 2915 € 
Wind turbine acquisition cost 4255 € 
Wind turbine generator expected lifetime 15 years 
Controller acquisition cost 2215 € 
Expected controlled and inverter lifetime 10 year 
The lifetime of the system 25 years 
Average annual interest rate/inflation rate 4%/4% 
Installation cost 500 € 

In this work, electricity supply optimization has been carried out for this case, considering 
various possibilities for the PV generator size, as well as for the wind turbine, diesel generator, and 
lead–acid batteries. In addition, various lithium battery sizes have been considered. 

Tables 5–9 show, in detail, the parameters used in the optimization for each of the system 
components.  
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Table 5. PV modules considered in the optimization. 

Parameters Data 
Nominal Power 380 Wp 
Isc 10.11 A 
NOCT 47° 
α −0.37%/°C 
Acquisition cost 220 € 
Lifespan 25 years 
Nominal voltage (2 in serial) 24 V 
Maximum number allowed 2 in serial/50 in parallel 

Table 6. Wind turbines used in optimization. 

Parameters Model 1: WT600 Model 2: WT3000 

Maximum power 660 W 3471 W 
Hub height 13 m 15 m 
Acquisition cost 4255 € 7555 € 
Lifespan 15 years 15 years 
O&M cost 85 €/year 50 €/year 
Maximum number allowed in parallel 3 3 

Table 7. Batteries used in the optimization. 

Parameters 
Lead–Acid 1 Lead–Acid 2 Lithium 1 Lithium 2 

OPZS OPZS BYD B-Box 5.0 LG Chem 
Capacity 1865 Ah 3360 Ah 106.6 Ah 63 Ah 

Acquisition cost 820 € 1010 € 3390 € 3400 € 
O&M cost (one cell) 8.2 €/year 10.1 €/year 20 €/year 30 €/year 

O&M cost (whole bank) * 50 €/year 50 €/year 50 €/year 50 €/year 
Nominal voltage 2 V 2 V 48 V 48 V 
Float life at 20 °C 20 years 18 years 10 years 10 years 

Equivalent full cycles 1500 1600 6000 3200 
SOCmin 20% 20% 20% 20% 

Self-discharge 3%/month 3%/month 2%/month 2%/month 
Number of series batteries 24 24 1 1 

Maximum number in parallel 6 6 6 6 
* Cost of the maintenance technician’s journey. 

Table 8. Diesel generator considered in the optimization. 

Parameters Data 
Nominal Power 1.9 kVA 
Minimal power 30% 
Acquisition cost 800 € 
Lifespan 10,000 h 
O&M cost 0.14 €/h 
Diesel fuel cost (including transportation) 1.13 €/l 
Maximum number allowed in parallel 2 

Table 9. Inverter/charger considered in the optimization. 

Nominal Power 5 kVA 
Efficiency 90% 



Energies 2020, 13, 581 10 of 17 

 

Optimization means also looking for the optimal control strategy between the two preselected 
options by the iHOGA software [42]. The two global strategies are as follow: 

• Demand monitoring: Based on systems that include batteries and either diesel or gasoline 
generators, when the energy from renewable sources is not enough to meet the demand, the 
batteries will provide the rest of the energy. If the batteries cannot cover all of the demand, then 
the generator will work to meet the rest of the demand.  

• Cyclic charging: If the generator is required to provide power, then it will only work at its 
nominal power not only to meet the demand but also to charge the batteries only during that 
hour. This strategy may have a variation called a cyclic strategy up to the setpoint, which means 
that the diesel generator will continue to operate at its nominal power until the battery bank 
reaches a specific value of SOC charge status, which is at 95% by default. 

3. Results 

3.1. Actual System 

Table 10 shows the simulation results of the current system obtained from the data summarized 
in Section 2, considering different battery-aging models. 

Table 10. Simulation results for the current system, using the three lead–acid battery-aging models 
and an average ambient temperature of 27°. 

Battery-Aging Model 
Lifespan NPC LCOE 
(years) (€) (€/kWh) 

Rainflow cycle counting 9.23 98,891 0.36 
Average full equivalent cycles 9.23 99,061 0.36 
Schiffer 7.05 119,458 0.49 

It is observed that the battery life is shorter with the Schiffer model (the most realistic model), 
and therefore more replacements are necessary throughout the system’s lifetime (25 years), so that 
NPC and LCOE are higher than using the other less realistic models. 

3.2. System Optimization 

Various optimizations have been made considering the different component options detailed in 
Section 2 (Tables 5–9). For each battery life model, two optimizations have been made, one for a 
hypothetical case of an average temperature of 20 °C and another for the real average temperature of 
the system’s location, which is 27 °C.  

Table 11 shows the results for the microgrid optimization considering the three aging models 
for lead–acid batteries (equivalent cycle model, Rainflow, and Schiffer et al.). Classic models such as 
equivalent cycles and Rainflow present similar results, both in the expected lifetime as well as factors 
such as NPC and LCOE. These costs are higher when considering Schiffer’s aging model, which is 
more realistic, since decreasing the batteries’ lifetime would require more replacements during the 
project lifetime and therefore increase the total system cost.  

It is also observed that using the equivalent cycle and Rainflow models, the battery lifetime is 
that of the floating lifetime since few cycles are performed per year. There is a reduction in the 
batteries’ lifetimes due to a 39.2% temperature increase using the real average temperature (27° at the 
installation site) compared to the case of 20 °C (the reduction is of the order of 50% for every 8.3 °C 
increase [43]). This reduction is much lower when using the Schiffer model since it considers many 
more parameters in addition to the temperature and cycles.  

Considering the most realistic model (Schiffer) at the real average temperature (27 °C), the best 
system would be composed of the following: PV with 31.9 kWp capacity, diesel with 1.9 kVA 
capacity, wind with 660 W capacity, batteries with a 89.520 kWh energy storage capacity, inverter of 
5 kVA capacity, with demand monitoring as the optimal control strategy, a battery life of 5.52 years, 
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a NPC of €104,690, and an LCOE of €0.36/kWh. Compared to the result of the current system, 
considering the Schiffer model (Table 4), where the NPV is €119,458 and the LCOE is €0.49/kWh, it is 
observed that the current system is not optimal.  

The results for one of the optimal cases obtained are shown in Figure 5 (with lead–acid batteries, 
Schiffer aging model, and at a temperature of 27 °C). The mono-objective optimization consists of 
obtaining the lowest NPC. The results show a minimum NPC of €104690 and an equivalent level of 
total CO2 emissions during the year of 1824 kg/year. 

In Figure 5, the horizontal axis shows the generations of the evolutionary algorithm used by the 
iHOGA optimization software. An evolutionary algorithm generation is similar to an iteration [32]. 

Table 11. Results of the system optimizations in the case of lead–acid batteries, using the three battery 
life models and with two different values of average ambient temperature (20 °C or 27 °C). 

Battery 
Aging 

Model 1 

Ambient 
Temp. 

Optimal System Configuration 2 
(In all cases: Diesel Generator 
Power = 1.9 kVA, Battery Bank 

Capacity = 89.52 kWh, and 
Inverter Power = 5 kVA) 

Control 
Strategy 3 

Lifetime 
(Years) 

NPC 
(€) 

LCOE 
(€/kWh) 

AFEC 20° 12.16 kWp/0 kW LF 20 52,544 0.19 
AFEC 27° 12.16 kWp/0 kW LF 12.31 59,413 0.21 
RCC 20° 34.2 kWp/0 kW LF 20 52,013 0.19 
RCC 27° 33.4 kWp/0 kW LF 12.31 59,413 0.21 

Schiffer 20° 32.68 kWp/0 kW LF 7.73 91,573 0.32 
Schiffer 20° 32.68 kWp/0 kW CC 7.59 92,195 0.32 
Schiffer# 20° 32.44 kWp/0 kW CC 7.36 92,650 0.32 
Schiffer 27° 31.9 kWp/660 kW LF 5.52 104,690 0.36 
Schiffer 27º 29.64 kWp/660 kW CC 5.67 104,730 0.36 
Schiffer# 27º 29.64 kWp/660 kW CC 5.63 105,307 0.36 

1 AFEC = average full equivalent cycles. RCC = rainflow cycle counting. Schiffer# = Schiffer without 
continuing up to SOC setpoint.; 2 PV power (kWp)/Wind turbine power (kW).; 3 LF = load following. 
CC = cycle charging. 

 
Figure 5. Results for NPC and CO2 emissions for every generation. 

Figure 6 shows the annual distribution of energy generated in this case by the system for a year. 
The percentage of energy generated by renewables is 96.81%. Of this, 9703 kWh/year is supplied by 
the photovoltaic generator and 6705 kWh/year by wind turbines, while a smaller contribution is made 
by the 541 kWh/year diesel generator. The excess energy is 3496 kWh/year, which could be used to 
charge electric vehicles or to generate hydrogen, which could later be used in fuel-cell-powered 
electric vehicles [44]. 
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Figure 6. Annual energy distribution. 

The optimization results considering lithium batteries instead of lead–acid batteries are shown 
in Table 12. It is considered that the lithium batteries used can be LiFePO4/graphite or 
LiCoO2/graphite. Wang et al.’s model proved the most optimistic even when compared to the Groot 
model when the temperature rises, whereas Saxena’s model showed similar results for different 
temperatures because it is based on the SOC. 

Table 12. Results of the optimizations for the case of lithium batteries, using the three models of 
battery life and with two different average ambient temperature values (20 °C or 27 °C). 

Battery 
Aging 

Model 1 

Ambient 
Temp. 

Optimal System Configuration 2 

(In all Cases, Inverter Power = 5 kVA) 

Control 
Strategy 

3 

Lifetime 
(Years) 

NPC 
(€) 

LCOE 
(€/kWh) 

Wang 20° 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 10 47,889 0.17 
Wang 20° 15.2 kWp/1.9 kVA/0 kW/20.46 kWh CC 10 52,657 0.18 
Wang 27° 14.44 kWp/1.9 kVA/1.66 kW/15.35 kWh LF 6.15 56,204 0.20 
Wang 27° 13.68 kWp/1.9 kVA/1.66 kW/15.35 kWh CC 6.12 64,796 0.23 
Groot 20° 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 10 47,934 0.17 
Groot 20° PV 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 10 52,657 0.19 
Groot 27° 14.44 kWp/1.9 kVA/0 kW/15.35 kWh LF 6.15 56,204 0.20 
Groot 27° 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 6.15 63,747 0.23 

Saxena 20° 13.68 kWp/1.9 kVA/0 kW/15.35 kWh LF 3 78,427 0.29 
Saxena 27° 19 kWp/1.9 kVA/3.32 kW/15.35 kWh LF 3.03 84,742 0.22 
AFEC 20° 20.52 kWp/1.9 kVA/1.66 kW/10.2 kWh LF 10 54,216 0.19 
AFEC 27° 13.68 kWp/3.8 kVA/3.32 kW/5.1 kWh LF 6.15. 58,216 0.2 
AFEC 27° 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 6.15. 63,747 0.23 
RCC 20º 14.44 kWp/1.9 kVA/0 kW/15.3 kWh LF 9.88 48,455 0.18 
RCC 20º 15.2 kWp/1.9 kVA/0 kW/20.4 kWh CC 9.88 53,461 0.19 
RCC 27º 14.44 kWp/3.8 kVA/3.32 kW/5.1 kWh LF 6.15 57,162 0.2 

1 AFEC = average full equivalent cycles. RCC = rainflow cycle counting.; 2 PV power (kWp)/Diesel 
generator power (kVA)/Wind turbine power (kW)/Battery bank capacity (kWh); 3 LF = load following. 
CC = cycle charging. 

It is observed in the results of Table 7 that even with the most pessimistic model, the NPC and 
LCOE are much lower than those of lead–acid battery optimizations using the realistic Schiffer model 
(Table 6), leading to the conclusion that lithium batteries are suitable for this case.  
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3.19%

PV Energy annual generation Wind Energy annual generation Diesel Energy annual generation



Energies 2020, 13, 581 13 of 17 

 

4. Discussion 

In this work, different models and battery technologies have been compared in the optimization 
of a hybrid microgrid. The classic lead–acid battery aging models used by various researchers, such 
as the equivalent cycle model and the Rainflow cycle counting model, generally tend to overestimate 
the battery’s lifespan up to three times its actual duration. However, Schiffer et al.’s [13] weighted 
model has shown better results since their predictions are closer to the real ones. The results from the 
different optimizations show that lower net current costs (NPC) and lower LCOE are obtained for 
both lead–acid and lithium battery models; therefore, it is concluded that the current system is not 
optimized. 

As for LiFePO4/graphite lithium–ferrophosphate batteries, Groot et al.’s [17] model presents 
more realistic results than Wang et al.’s [16] model, mainly due to temperature increases. Conversely, 
Saxena et al.’s [18] model showed the same results despite the variation in temperature, since the 
model is based on the SOC. Finally, comparing the two technologies (lead–acid vs. lithium), the 
results show lower NPC and LCOE costs for the case of lithium (compared to the realistic Schiffer 
model for lead–acid), which allows more optimistic insight into the exploration of new aging models 
for emerging technologies such as lithium batteries, as they represent an alternative storage 
technology for hybrid microgrids. 

5. Conclusions 

The most relevant conclusions of this work are as follows: 

1. Optimal dimensioning and management of the elements that make up a microgrid give rise to 
significant energy and economic benefits. 

2. Classic models for estimating battery life provide results that are too optimistic, so it is advisable 
to use models that are more realistic. 

3. The effect of temperature in the estimation of battery life can be significant, so models that 
consider this parameter should be used. 

4. Lithium-ion batteries are suitable as storage systems in a microgrid since they give rise to a lower 
cost throughout the life of the installation due to a longer lifespan than lead–acid batteries and 
a lower maintenance cost. 

These conclusions allow us to state that it is necessary optimize the designs of microgrids not 
connected to the electricity grid since the economic benefits can be significant. An adequate design 
will allow for better use of renewable generation, and even take advantage of the surplus energy that 
can be used in electric vehicles, or in the case of islands, for water desalination. Furthermore, it is 
necessary to be open-minded and use other storage technologies, in addition to lead–acid batteries, 
since a lower initial cost does not imply that the total cost, throughout the life of the installation, will 
be low. Therefore, the use of other generation technologies, such as lithium-ion batteries, should be 
considered in the design, although their initial cost may be higher. 
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Nomenclature and Abbreviations 

a, b, C, d, e, f adjustment constants 
AFEC Average Full Equivalent Cycles 

Ah 
amount of charge involved in the charging process since the start of battery 
operation (Ah) 
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Bcyc exponential factor 
CC Cycle Charging 
Ccorr final loss of battery capacity due to continuous corrosion and degradation 
Ccorr loss of corrosion capacity 
Cd (0) initial normalized battery capacity 
Cdeg degradation capacity losses 
CFi cycles until failure for interval i 
Costfuel annual cost of the fuel used by the diesel generator (€) 
CostINST installation cost (€) 
Costj acquisition cost of component j (€) 
CostO&Mj annual O&M cost of component j (€) 
Cn nominal capacity of a battery (Ah)  
DOD Depth of Discharge (%) 
Eacyc activation energy expressed in J mol−1 

EFC Equivalent Full Cycles 
Eload annual expected load of the system (kWh/yr) 
iHOGA improved Hybrid optimization by genetic algorithms 
HOMER Hybrid optimization model for multiple energy resources 
I charge rate (A) 
IEC International Electrotechnical Commission 
Inffuel annual expected diesel fuel inflation (€) 
Infgeneral general annual expected inflation (%) 

IPSE 
Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas 
No Interconectadas 

Ir annual interest rate (%) 
Isc PV module short current (A) 
LCOE Levelized Cost of Energy 
LCOEi,k LCOE (€/kWh) of a combination of components i and control strategy k 
LF Load Following 
Lifebat battery life (h) 
NOCT Nominal operation cell temperature (°C) 
NPC Net Present Cost (€) 
NPCi,k NPC (€) of a combination of components i and control strategy k 

NPCrepj 
sum of the replacement costs of component j during the system lifetime minus 
the residual cost of component j at the end of the system lifetime (€) 

O&M operating and maintenance costs 
PV Photovoltaic 
QEOL charge that the battery can deliver in its lifetime (kAh) 
Qloss percentage of capacity loss (%) 

 percentage of capacity loss (%) 
R gas constant (8.314 J·mol−1·K−1) 
RCC Rainflow Cycle Counting 
Schiffer# Schiffer without continuing up to SOC setpoint 
SOC State of Charge (%) 
SOCmean average SOC (30%–50%) 
SOCmin minimum SOC allowed 
SOCst SOC at which the battery is stored (%) 
t elapsed time, in hours 
T temperature (K, °C) 
tm 

ty 
storage time, in months 
one year of the system lifetime 

Voc PV module open-circuit voltage (V) 
Zcyc constant with a value close to 0.5 
Zi cycle count 

ZIEC 
number of cycles provided by the manufacturer to reach the end of the battery 
life. ( ) number of complete cycles 

γ coefficient to determine the acceleration in aging due to the current (J mol−1 A−1) 
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α PV module temperature coefficient (%/°C) 
ΔSOC variation of the SOC (100%–60%) | ( )| absolute value of the discharge current (A) 
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