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Abstract: In this paper, an improved sensorless vector control method for an interior permanent
magnet synchronous motor (IPMSM) drive with small DC-link capacitors is proposed. First, a fast
sliding-mode observer was applied, to enlarge the observer bandwidth. Then, an improved estimator
based on a proportional integral resonant controller was designed for the estimate speed shaping,
which means the actual speed can be tracked. This not only reduces the position estimate error,
but also enhances the grid power factor and suppresses the input current harmonics. Simulation and
experiments were conducted on a sensorless IPMSM drive system with a small film capacitor.
The effectiveness of the proposed estimation method was verified by the simulation and experimental
results. The estimated error was reduced and the grid current harmonics satisfy the requirements
of EN61000-3-2.

Keywords: interior permanent magnet synchronous motor; small DC-link capacitor; sensorless
vector control; fast sliding-mode observer; estimator; proportional integral resonant controller

1. Introduction

At present, interior permanent magnet synchronous motors (IPMSMs) are widely used in industrial
and white home applications due to their superior efficiency, power density, and torque-to-inertia
ratio [1–3]. The accurate rotor position and speed are the necessary information for control of the
motor. Nevertheless, the position sensors are very expensive and fragile [4]. In order to remove the
shaft position sensors, the position and speed sensorless control method must be used. The sensorless
control methods can be classified into two classes [5,6]. The first class are high frequency (HF) injections
suited to low and zero speed operations [7,8]. The other class is based on the back electromotive
force (EMF) machine model for mid- and high-speed operations [9,10]. Recently, as the sliding-mode
observer (SMO) method has been seen to have the attractive advantages of robustness to disturbances,
good dynamic performance, and low sensitivity to parameter variations [11], it is widely used in many
devices, such as fans, pumps, and air compressors.

Generally, in traditional AC-DC-AC IPMSM drive systems, large capacity electrolytic capacitors
are utilized at the DC-link to obtain a stable DC-link voltage. The electrolytic capacitor has a large
volume [12–15]; about 20% to 40% of high power drives’ volume would be occupied. In addition,
the electrolyte may evaporate, thus it decreases the reliability of drive system [16–19]. As film capacitors
have much longer lifetimes and less capacitance per unit, many studies have focused on replacing
electrolytic capacitors with film capacitors [20–23].

However, in small capacitor drive systems, the DC-link voltage fluctuates with twice the grid
frequency. Thus the motor torque and speed also varies periodically, which may lead to difficulties
in sensorless operations [24–26], which are limited by the SMO bandwidth. In addition, error and
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distortions of the estimated speed would generate harmonics on the grid side. Increasing the
observer gain can improve these issues, but high gains would produce chattering in the estimation.
So, a sensorless control method should be designed to meet the needs of a small dc-link capacitor
drive system.

Much research effort has gone into the development of sensorless drives. In [27,28], online parameters
identifications were used to improve the estimate robustness. In [29–31], nonlinearity compensations
were applied to reduce the estimated error. Adaptive filters were designed to filter out the undesired
harmonic components in back EMF by analyzing the harmonic distribution of position estimated error,
such as adaptive notch filter (ANF) [11], synchronous frequency extract filters (SFFs) [32], adaptive linear
neural (ADALINE) filter [33], adaptive vector filter (AVF) [34], and so on. All of these techniques can
improve the sensorless control quality, but have little impact on dynamic performance.

Hence, compared with large capacity electrolytic capacitors, the dynamic performance and
response of the sensorless control must be improved. In [35–37], the SMO is implemented in
field-programmable gate array (FPGA) to improve control bandwidth and system robustness. In [24]
and [38], sample and pulse width modulation methods have been proposed, the DC-link bus voltage
is sampled several times in the carrier half-period. The accuracy of the stator voltage is improved
during sensorless control. To increase the sampling times, an iterative sliding mode observer (ISMO)
was proposed in [39]; the SMO iteratively executed four times in one current control cycle, and the
phase delay and the ripples in the estimation of the back EMF were minimized. An estimator based
on third-harmonic back electromotive force is presented to improve the dynamic performance [40].
Although the bandwidth of SMO was enlarged by these methods, the previous studies for the sensorless
control were mainly aimed at the electrolytic capacitor system.

Considering the contradiction between the SMO bandwidth limitation and motor speed fluctuation
caused by a small DC-link capacitor, this paper focuses on the dynamic performance of speed estimation
for IPMSM drive system. A conventional SMO that is executed five times per current control cycle
and called the fast sliding-mode observer (FSMO) is proposed. It is much faster than that in [24]
and [38,39]. The ripples in the estimation of the back EMF can be minimized. Therefore, the estimation
error is diminished and the bandwidth is extended. Moreover, as the speed contains a sinusoidal
alternating component of high frequency, the estimated speed delay and distortion would generate
harmonics during power control operations. Thus, an improved estimator was adopted to shape the
estimated speed. With the proportional-integrational-resonant (PIR) controller in software quadrature
phase-locked loop (PLL), the estimated speed can track the actual speed better and the dynamic
performance could be enhanced. Based on the FSMO and the PIR controller, the improved sensorless
vector control method has a fast response. It is suitable for use with a drive system with a small DC-link
capacitor which requires high power factor and low input current harmonics.

This paper is organized as follows. In Section 2, the characteristics of motor speed and torque in a
small DC-link capacitor drive system are presented, and the causes of estimation error are analyzed.
In Section 3, the proposed sensorless vector control method, including FSMO and an improved
estimator based on the PIR controller are discussed and realized, including transfer function and
stability analysis. Finally, the effectiveness of the proposed sensorless vector control method is verified
with a 1.0-kW sensorless IPMSM drive.

2. Analysis of IPMSM Drive with Small DC-Link Capacitor

2.1. Torque and Speed Characteristics of Small DC-Link Drive System

In order to remove the influence of the film capacitor on sensorless control, the characteristics of
the drive system should be analyzed firstly. As shown in Figure 1, the system consists of a single-phase
diode rectifier, a small film capacitor at the dc-link, and a three phase inverter.
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Figure 1. Circuit diagram of the inverter with small DC-link capacitor.

The grid voltage can be presented as follows [12,13]:

ug = Ug sin(θg), (1)

where Ug is grid input voltage amplitude, θg is the phase angle of the grid.
In order to obtain high power factors and reduce grid current harmonics, the grid input current

must be synchronized with grid voltage. So the expected grid input current can be given as:

ig = Ig sin(θg), (2)

where Ig is the amplitude of the grid current. So the expected grid input power Pg can be calculated as

Pg = ugig = UgIg sin2(θg). (3)

Compared to a traditional drive system, the small volume of the film capacitor cannot maintain
the DC-link voltage constant. The DC-link voltage will fluctuate with twice the frequency of the grid
voltage, and it can be expressed as:

udc =
∣∣∣Ug sin(θg)

∣∣∣, (4)

As a result, the capacitor power Pc can be calculated as follows

pc = Cdcudc
dudc
dt

=
1
2
ωgCdcU2

g sin(2θg), (5)

where ωg is angular speed of the AC grid, Cdc is the capacitance of the DC-link capacitor. The inverter
output power can be calculated as follows:

Pinv = Pg − Pc, (6)

The electromagnetic torque can be calculated as follows [21,22]:

Te =
Pinv
ωr

=
UgIg sin2(θg) −

1
2ωgCdcU2

g sin(2θg)

ωr
= T0 + Tx sin(2θg + φT), (7)

where ωr is the rotor mechanical speed, T0 is the DC component, Tx is the ac component, φT is the
torque phase.

The mechanical motion equation of IPMSM is given as

J
dωr

dt
= Te − TL − Bωr, (8)

where Te is the electromagnetic torque, TL is the load torque, B is the viscous coefficient, and J is the
moment of inertia, respectively. The angle speed of IPMSM can be expressed as:

ωr = ω0 +ωx sin(2θg + φω), (9)
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where ω0 is the DC component, ωx is the ac component, φω is the speed phase.
From Equation (9), in a small DC-link drive system, the speed and torque of the rotor is sinusoidal

and varies periodically with twice the grid input voltage frequency.

2.2. Position Estimation Based on the SMO

The extended electromotive force model on the stator frame coordinate of IPMSM can be described
as follows [4]: [

uα
uβ

]
=

 R + pLd ωe
(
Ld − Lq

)
−ωe

(
Ld − Lq

)
R + pLd

[ iα
iβ

]
+ Eext

[
− sinθe

cosθe

]
,

Eext =
{(

Ld − Lq
)(
ωreid −

.
iq
)
+ωreψ f

}
,

(10)

where uα, uβ, iα and iβ are voltages and currents on α-β coordinate, respectively. R, Ld and Lq are the
stator resistance and inductance, respectively. ωe is the rotor electrical speed, θe is the rotor electric
angular, and p is the differential operator. Eext is the defined as the extended electromotive force.
The stator current equation of IPMSM on α-β coordinate can be described as follows: .

iα.
iβ

 = 1
Ld

 −R −ωe
(
Ld − Lq

)
ωe

(
Ld − Lq

)
−R

[ iα
iβ

]
+

1
Ld

[
uα
uβ

]
−

1
Ld

[
eα
eβ

]
. (11)

And the back electromotive force can be described as follows:{
eα = −Eext sinθe

eβ = Eext cosθe
. (12)

It can be seen that the back EMF signal contains the information of rotor speed and position.
Therefore, after the back EMF signal is estimated by using the observer, the rotor speed and position
information can be obtained.

Based on the sliding-mode variable structure theory, the sliding surface is selected as [9]:

S(is) = îs − is, (13)

where îs =
[
îα îβ

]T
is the estimated current value, is = [iα iβ

]T
is the actual measure value. On the basis

of Equations (11) and (12), the SMO can be expressed as:

d
dt

[
îα
îβ

]
=

[
(ω̂e −ωe)(Ld − Lq)

Ld

] (
iα
iβ

)
−

1
Ld

(
eα
eβ

)
−

1
Ld

l
(

sgn(îα − iα)
sgn(îβ − iβ)

)
, (14)

where sgn() is the sliding mode control functions, which can be the sign, saturation or sigmoid functions
of current errors. l is the sliding mode gain. To get the back EMF, the motor state observation model is
setup, îα and îβ are the estimated values that are calculated from the mathematical model. According to
the principle of SMO, the actual value is used to modify the state estimate, which turn the estimated
back EMF value approximates into the actual values. The back EMF can also be expressed as:

d
dt

(
êα
êβ

)
= −

[
0
ω̂e

ω̂e

0

](
eα
eβ

)
−m

(
sgn(îα − iα)
sgn(îβ − iβ)

)
, (15)

where m is the positive observer gain.
When the system state reaches the sliding mode, the current errors approach zero, and the eα

and eβ can be used as the estimated back EMF. Then, the observed back EMFs are used to get the
rotor position and speed by the software quadrature PLL. The block diagram of position and speed
estimations using the SMO and PLL is shown in Figure 2.



Energies 2020, 13, 580 5 of 26

Energies 2020, 13, x 5 of 27 

When the system state reaches the sliding mode, the current errors approach zero, and the eα 
and eβ can be used as the estimated back EMF. Then, the observed back EMFs are used to get the 
rotor position and speed by the software quadrature PLL. The block diagram of position and speed 
estimations using the SMO and PLL is shown in Figure 2. 

i
p
K

K
s

+
ˆeω

−
+

êα

êβ
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quadrature phase-locked loop (PLL).

The estimated rotor position obtained from the quadrature PLL can be expressed as follows:

θ̂e = tan−1(
eβ
eα
), (16)

ω̂e =
dθ̂e

dt
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2.3. Problems of SMO with Small DC-Link Capacitor

In conventional SMO, the sign switching function is a discontinuous control. This Bang-Bang
control may generate a severe chattering in the back EMF [34]. To reduce the chattering, a low pass filter
(LPF) should be used after the output of the sign function. However, this low-pass filter also causes a
long time delay in estimating the position of the rotor, which degrades the estimation performance and
precision, especially in high-power or high-speed IPMSM drive applications.

Besides, on the basis of Equations (7) and (9), the torque and speed of the motor consist of a DC
component and an AC component which fluctuate with twice the input voltage frequency. As shown
in Figure 3, the phase delay time is about 4 ms, while the estimated speed amplitude is only half
of the real speed. The actual speed cannot be tracked well enough. The phase delay, amplitude
decay, and waveform distortion of the estimated speed will generate harmonic components in the grid
current, which is undesirable for a small DC-link capacitor drive system. Furthermore, the position
estimate error also contains a steady-state error and a dynamic error, which leads the performance of
the sensorless control to degrade. In order to solve these problems, the dynamic performance of the
SMO should be improved to meet a wide range of frequencies.Energies 2020, 13, x 6 of 27 
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It is well known that the dynamic response of the estimation is restricted by the bandwidth of
the SMO control loop. The equivalent block diagram of the SMO is shown in Figure 4. TSMO is the
SMO control period. Tsample is voltage and current sample delay time. τ= L/R is the electromagnetic
time constant of motor, with τ >> TSMO and Tsample, therefore the simplified open loop transfer
function becomes:

GO(s) =
1/R

(Tds + 1)(τs + 1)
, (18)

where Td = TSMO + Tsample. In this second-order control system, the SMO control bandwidth is as
follows [41]:

ωc =
1

Td

√
√

2− 1
2

. (19)
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Figure 5. Interior permanent magnet synchronous motor (IPMSM) sensorless control with small
DC-link capacitor.

The inverter power controller is used to control the inverter power, which mainly generates the
q-axis current reference [16]. The generation of the current reference for flux weakening should take
the DC-link voltage fluctuation into consideration. The proposed SMO is applied to estimate the
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back EMFs with little phase shifts in the α-β reference frame. Then the position and speed of the
rotor are obtained by the software PLL according to the observed back EMFs. The PIR controller is
incorporated in the software quadrature PLL, which contains proportional, integrator and sinusoidal
tracking controllers. With the proposed controller, the sinusoidal actual speed can be tracked better
and the estimated position error can be reduced.

3.1. FSMO

In this part, an FSMO method to remove the chattering in back EMF and reduce the estimate error
is described. As shown in Figure 6, it is composed of the pulse-width modulation (PWM) update and
SMO samplers. The PWM update can be executed at peak or valley of triangular carrier, which is
doubled compared to the PWM frequency. The bandwidth of current control is enlarged [38], which is
beneficial in terms of good power control quality in small DC-link capacitance drives [12], and the
current ripples would be minimized. Ignoring the high-frequency switching harmonics, uα, uβ, iα and
iβ in the observer calculating process of the SMO becomes smoother.
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êθ

êα
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Furthermore, in the SMO samplers, the SMO and the software quadrature PLL of the estimator
are executed five times per current control cycle. The stator currents and the DC-link voltage are
sampled at the beginning of SMO. Thus the voltage and current changes in one current cycle can be
detected in real time to improve the accuracy of the stator voltage and current in the SMO. The sign
function and low pass filter are replaced with sigmoid function to suppress chattering in the back
EMF [10,39]. With the sampling delay time and control period reduction, the FSMO can extend the
observer bandwidth effectively [33]. Therefore, the estimate error can be reduced, and the system
would get a rapid response and good dynamic performance for sensorless control.

On the basis of the above analysis, since the number of samples is limited by the CPU’s processing
speed, a digital signal processor (DSP), which consists of a CPU and a control law accelerator (CLA),
was adopted to execute the whole control algorithm. As shown in Figure 7, the CPU was mainly used
to perform vector control and power control. The CLA only performs SMO, ensuring the SMO can be
implemented more times in one current control cycle. All of these control algorithms were executed on
a DSP chip without any additional cost.
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3.2. Improved Position Estimator Based on PIR Controller

In general, the estimated rotor position and speed can be calculated directly from back EMF
information, and the general rotor position estimators can be divided into two types. One type is
the anti-tangent function [10], but it is more sensitive to noise and harmonics in back EMF eα and eβ.
For example, when the eα is close to zero, an obvious estimation error may occur using arc-tangent
calculation, due to the noise. The other is software quadrature PLL [33]. The estimated speed can be
expressed as:

ω̂e = (Kp +
Ki
S
)(−eα sin θ̂e − eβ cos θ̂e), (20)

where Kp is the proportional gain, and Ki is the integral gain. The estimated speed performance
depends on the bandwidth of the proportional integral (PI) regulator in quadrature PLL. Based on
speed analysis of the drive system, the speed contains a sinusoidal component which fluctuates with
twice the grid frequency. The bandwidth of a traditional PI controller is lower [33]; the estimated speed
will be greatly delayed and a steady-state error will occur. Thus, it is necessary to design a suitable
controller in the quadrature PLL.

Based on the internal model principle, the resonance controller can be used to track alternating
signals without any steady-state errors. Thus the PIR controller [42] can be adopted to replace the PI
controller in order to eliminate the tracking error. The block diagram of the PIR controller is shown in
Figure 8.

The transfer function can be expressed as

G(s) = Kp +
Ki
s
+

2Krωcs
s2 + 2ωcs +ω2

0

, (21)

where Kp is proportional gain, Kr is resonant gain, ωc is cutoff frequency, Ki denotes the integral gain,
and ω0 is resonant frequency, which is 200π rad/s when the grid frequency is 50 Hz. The PIR controller
combines the advantages of PI controller and resonance controller. For example, the dc component in
speed estimation is controlled by the PI controller, and the sinusoidal AC component is regulated by
the resonance controller. The PIR controller replaces the PI controller to eliminate the tracking error of
speed and position estimations. The Bode diagrams of the PI and PIR controllers are shown in Figure 9.
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It is obvious that the PI controller has high gain at low frequency. As frequency increases, the gain
becomes smaller, and the bandwidth is too small to regulate the 100 Hz sinusoidal signal. On the
contrary, the PIR controller has high gain at the resonant frequency, and it decreases sharply away
from the resonant frequency until it coincides with the PI controller. Optimized performance with
overall frequency range is achieved. The dc component and AC component of the estimate speed are
facilitated to be fast tracked by the PIR controller.

Besides the gain, the other parameters also affect the controller performance. According to
Equation (21), there are four main parameters, Kp, Ki, Kr, and ωc. The frequency response output of the
PIR controller under different parameters are shown in Figure 10. Figure 10a shows the frequency
response output of the PIR controller under different values of ωc, such as 0.2π rad/s, 1π rad/s, and 2π
rad/s. ωc is the frequency width of the resonant control, which does not influence the controller gain.
As the resonant frequency is a constant value, ωo = 200π, the width should be set as small as possible.
In order to ensure the dynamic performance and filter out the harmonic components, the ωc should be
set as a proper value. Figure 10b shows the frequency response output of the PIR controller under
different values of Kr, such as Kr = 0.2, 0.5, and 0.8. The Kr only determines the gain of resonant
frequency. When it increases, the gain increases. But the phase angle and the resonant width remain
constant. The Kr could be set by the amplitude error of the motor estimate and actual speed. Figure 10c
shows the frequency response output of the PIR controller under different values of Kp, such as Kp
= 0.5, 1, and 2. The Kp has effects on the overall frequency range, and the gain increases when Kp
increases. Figure 10d shows the frequency response output of the PIR controller under different values
of Ki, such as Ki = 5, 20, and 40. This affects the phase of the controller, and the delay time decreases
when Ki increases outside of the resonant frequency bound. The magnitude curves coincide together.
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Based on the above analysis of the PIR controller characteristics, the dc component can be
controlled by ωc and Kr, and the AC component can be controlled by Kp and Ki. The suitable
parameters would ensure the speed estimate tracking performance and position estimate error of the
estimator. The control block diagram of the proposed estimator based on the quadrature PLL can be
seen in Figure 11, where θe is actual position, ω̂e is estimated speed and θ̂e is estimated position.

Energies 2020, 13, x 11 of 27 

estimator. The control block diagram of the proposed estimator based on the quadrature PLL can be 
seen in Figure 11, where eθ  is actual position, ˆeω  is estimated speed and ˆ

eθ  is estimated position. 

+
−

eθ êθ

ˆeω
i

p
KK
s

+

1
s2 2

0

2
2
r c

c

K s
s s

ω
ω ω+ +

 

Figure 11. Control block diagram of the proposed estimator. 

The equivalent open loop transfer function of the estimator can be given by 
3 2 2 2

0 0
2 2 2

0

( (2 2 ) +( 2 ) + )
( )

( 2 )
p c c r i c i i

o
c

K s s s
G s

s s s
ω ω τ τ ω ω τ ω τ

ω ω
+ + + +

=
+ +

, (22)

where Kp is the equivalent open-loop gain of the estimator, τr = Kr/Kp is the equivalent resonant 
coefficient, and τi = Ki/Kp is relative to the integral time constant. In order to analyze the estimator 
stability and adjust the controller parameters, the sampling time is set to 10 μs, and Equation (22) is 
transferred into discrete time domain. The root locus of the close-loop when Kp changes from zero to 
infinite is shown in Figure 11. Obviously, while the ωc, τr, and τi changes, the closed-loop 
characteristic roots can be located inside the unit circle boundary in the z plane, which indicates a 
stable system. 

In Figure 12a, when τi =15 and τr =10, the root locus comes together with different ωc, such as ωc = 
0.2π rad/s, 4π rad/s, and 20π rad/s. Therefore, the ωc has less effects on the estimator system. To 
eliminate unexpected harmonics, the bandwidth ωc must to be set small [17], and it can be designed 
as 4π rad/s, which relates to the AC component in the estimated speed. 

In Figure 12b,c, the characteristic roots move toward to the outside of the unit circle, and the 
stability margin weakens, while τi and τr increase. This indicates that the integral control enhances, 
and overshoot of the estimator increases. Thus, the proportional gain Kp should be selected as Kp < 
1.24. 

Therefore, the damping ratio is usually selected to be around 0.707 [40], and the overshoot of 
the estimator is configured below 10%. Then, parameters of the PIR controller were selected as Kp = 
0.5, Ki = 15, Kr = 10, and ωc = 4π rad/s. 

On the basis of the above analysis, it can be concluded that the proposed estimator has low 
magnitude attenuation and phase delay at the resonant frequency point. Rapid response can be 
achieved to ensure dynamic performance of the sensorless control system as well. 

Figure 11. Control block diagram of the proposed estimator.

The equivalent open loop transfer function of the estimator can be given by

Go(s) =
Kp(s3 + (2ωc + 2ωcτr + τi)s2 + (ω2

0 + 2ωcτi)s +ω2
0τi)

s2(s2 + 2ωcs +ω2
0)

, (22)

where Kp is the equivalent open-loop gain of the estimator, τr = Kr/Kp is the equivalent resonant
coefficient, and τi = Ki/Kp is relative to the integral time constant. In order to analyze the estimator
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stability and adjust the controller parameters, the sampling time is set to 10 µs, and Equation (22) is
transferred into discrete time domain. The root locus of the close-loop when Kp changes from zero to
infinite is shown in Figure 11. Obviously, while the ωc, τr, and τi changes, the closed-loop characteristic
roots can be located inside the unit circle boundary in the z plane, which indicates a stable system.

In Figure 12a, when τi =15 and τr =10, the root locus comes together with different ωc, such as
ωc = 0.2π rad/s, 4π rad/s, and 20π rad/s. Therefore, the ωc has less effects on the estimator system.
To eliminate unexpected harmonics, the bandwidth ωc must to be set small [17], and it can be designed
as 4π rad/s, which relates to the AC component in the estimated speed.Energies 2020, 13, x 12 of 27 
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In Figure 12b,c, the characteristic roots move toward to the outside of the unit circle, and the stability
margin weakens, while τi and τr increase. This indicates that the integral control enhances, and overshoot
of the estimator increases. Thus, the proportional gain Kp should be selected as Kp < 1.24.

Therefore, the damping ratio is usually selected to be around 0.707 [40], and the overshoot of the
estimator is configured below 10%. Then, parameters of the PIR controller were selected as Kp = 0.5,
Ki = 15, Kr = 10, and ωc = 4π rad/s.

On the basis of the above analysis, it can be concluded that the proposed estimator has low
magnitude attenuation and phase delay at the resonant frequency point. Rapid response can be
achieved to ensure dynamic performance of the sensorless control system as well.

4. Simulation and Experimental Results

In order to verify the effectiveness of the proposed control method, simulation and experiments
were both carried out. Figure 13 shows grid input voltage and current sample circuits. The motor
and the system parameters are listed in Table 1. The experimental hardware is shown in Figure 14.
The load motor was used as a generator and consumed power at a load resistor. A position encoder
TS5700N8401 was installed on the motor to detect the actual position and speed of the motor for
comparison. The inverter was realized by Mitsubishi module PS21767. The proposed control method
was implemented with a Texas Instruments TM320F28075 floating-point digital signal processor.
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Table 1. Drive and system parameters.

Parameters Values Parameters Values

Rate power 1.0 kW Flux linkage 0.104 Wb
Rate speed 2000 r/min Switching frequency 10 kHz
Pole pairs 4 Film capacitor 8 uF

dq-axis inductance 4.94/10.74 mH Grid voltage 220 Vrms
Stator resistance 0.845 Ω Grid frequency 50 Hz
Line inductance 0.2 mH Line resistance 0.5 Ω
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In the system, the DC-link capacitor Cdc was only 8 µF, the speed and current controller adopted
the PI regulator, and the bandwidth was set lower than the electronic capacitor drives to ensure the
stability of the system. A power controller was cascaded between the speed and current controllers to
control the grid power factor and suppress the input current harmonics [21]. Therefore, the proposed
SMO control method in this system should not only reduce the position estimation error, but also
shape the estimated speed to track the actual speed as much as possible. This would improve the grid
input performance of the small DC-link capacitor drive system. In this paper, the average voltage
constraint in [16] was applied for such system to obtain a high power factor. The average DC-link
voltage can be calculated as follow [43]:

Uav =
1
π

∫ π

0
Ug sin(θg)dθg =

2
π

Ug = 197V (23)

Since the maximum speed of motor is about 3900 r/min, the maximum average speed is about
3900 × 2/π = 2500 r/min. Similarly, according to Equation (7), the ideal output torque of the motor can
be obtained by:

Te ≈ 3.2 + 3.2 sin(2θg) (24)

The average torque is 3.2 Nm; all of these simulations and experiments were at 3.2 Nm and
2000 r/min. Detailed analysis of the results is illustrated as follows. Figures 15 and 16 show the
simulation and experimental results for the conventional SMO estimated method. The red curves
are actual speed and position of the motor shaft, while the blue curve is the estimated speed and
position. Obviously, the motor speed was sinusoidal, with two times the grid voltage frequency,
and the estimated speed delay to the actual speed was about 3 ms, so that the position estimated error
was also sinusoidal and changed from −8◦ to −5◦. Under a low estimation bandwidth, the amplitude
was only half of the actual speed, and the bandwidth of speed estimation was low. On the grid side,
the power factor was 99.48%. In Figure 13, the grid input current oscillates when crossing zero, causing
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higher harmonics than experimental result. In Figure 15c, the grid input current is smooth, because the
hall sensor and low pass filter (RC) shown in Figure 13 filter out a lot of higher order harmonics, such as
the switching noise of IGBT. The distribution of the harmonics complied with the simulation result.Energies 2020, 13, x 14 of 27 
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Figure 15. Simulation result of the conventional SMO estimate method with a PI controller: (a) Motor
Speed; (b) Position and estimated error; (c) DC-link voltage and grid current; (d) Motor output torque;
(e) FFT analysis of grid current.
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as feedforward compensation for the estimated speed. As shown in Figure 16, the phase delay time 
behind the estimated speed is about 2 ms, the amplitude can reach the actual speed, the dynamic 
error of the estimated position reduces. In Figure 17, the experimental speed cannot be completely 
consistent with the simulation due to the changes and disturbances of the loads. Therefore, the speed 
and current control gain should be set lower to ensure the stability of the system, and that the 
estimated time delay is bigger than the simulation result. 
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Figure 16. Experimental results of the conventional SMO estimate method with a PI controller: (a) Motor
Speed; (b) Position and estimated error; (c) DC-link voltage and grid current; (d) FFT analysis of
grid current.

In the small DC-link capacitor drive system, the conventional SMO estimate method generates
a lot of problems. As shown in Figures 17 and 18, the PI controller in software PLL is replaced by a
PIR controller. The resonant frequency, width and gain were set as 100 Hz, 3 Hz and 6, respectively.
When the frequency of the actual speed is a constant value, the resonant controller can be regarded
as feedforward compensation for the estimated speed. As shown in Figure 16, the phase delay time
behind the estimated speed is about 2 ms, the amplitude can reach the actual speed, the dynamic error
of the estimated position reduces. In Figure 17, the experimental speed cannot be completely consistent
with the simulation due to the changes and disturbances of the loads. Therefore, the speed and current
control gain should be set lower to ensure the stability of the system, and that the estimated time delay
is bigger than the simulation result.
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Figure 18. Experiment with conventional SMO only with a PIR controller: (a) Motor Speed; (b) 
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Figures 19 and 20 show the FSMO estimation method with a PI controller. The execution time 
was only 10 us, which means SMO is executed 5 times in one current control cycle. Consequently, 
the sample time of the motor phase currents and the DC-link voltage can be reduced. On the other 
side, the back EMF voltage eα and eβ estimation became more smooth. Hence, the low-pass filter, 
which aimed at smoothing estimated back EMF, could be eliminated. The delay of the estimated 
speed decreased, the estimated position could actually be tracked well, and the steady-state error of 
position estimation was reduced to 0°–3°. The input current oscillation at the grid side was reduced, 
and the harmonic component could basically meet the EN61000-3-2 standards. 

Figure 18. Experiment with conventional SMO only with a PIR controller: (a) Motor Speed; (b) Position
and estimated error; (c) DC-link voltage and grid current; (d) FFT analysis of grid current.

Figures 19 and 20 show the FSMO estimation method with a PI controller. The execution time was
only 10 us, which means SMO is executed 5 times in one current control cycle. Consequently, the sample
time of the motor phase currents and the DC-link voltage can be reduced. On the other side, the back
EMF voltage eα and eβ estimation became more smooth. Hence, the low-pass filter, which aimed at
smoothing estimated back EMF, could be eliminated. The delay of the estimated speed decreased,
the estimated position could actually be tracked well, and the steady-state error of position estimation
was reduced to 0◦–3◦. The input current oscillation at the grid side was reduced, and the harmonic
component could basically meet the EN61000-3-2 standards.
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Figure 19. Simulation result of the FSMO estimate method with a PI controller: (a) Motor Speed; (b) 
Position and estimated error; (c) DC-link voltage and grid current; (d) Motor output torque; (e) FFT 
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Figure 19. Simulation result of the FSMO estimate method with a PI controller: (a) Motor Speed;
(b) Position and estimated error; (c) DC-link voltage and grid current; (d) Motor output torque; (e) FFT
analysis of grid current.
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position estimated error is minimized from 0 to 3°. The grid power factor is as high as 99.65%. The 
input current harmonics are smaller than the FSMO method in Figure 19, especially the higher 
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Figure 20. Experimental result of the FSMO estimate method with a PI controller: (a) Motor Speed;
(b) Position and estimated error; (c) DC-link voltage and grid current; (d) FFT analysis of grid current.

According to the above analysis, the PLL based on PIR controller can reduce the position dynamic
error, and FSMO can reduce the position steady-state error. The combination of these two methods is
shown in Figures 21 and 22. The estimated amplitude can track the actual speed, and the position
estimated error is minimized from 0 to 3◦. The grid power factor is as high as 99.65%. The input
current harmonics are smaller than the FSMO method in Figure 19, especially the higher harmonic
component. This meets the EN61000-3-2 standards better.
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Figure 21. Simulation result of the FSMO estimate method with a PIR controller: (a) Motor Speed; (b) 
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To verify parameter robustness of the proposed control method, the observer parameters were 
changed to simulate variation of the motor parameters. As shown in Figure 23, the resistance 
decreased 25% and inductance increased 10%. When the observer parameters vary, the observer and 
estimator can operate stably, and the position as well as speed estimations do not deteriorate visibly. 
That is to say, the proposed control system has a good robustness to the parameters. 
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To verify parameter robustness of the proposed control method, the observer parameters were
changed to simulate variation of the motor parameters. As shown in Figure 23, the resistance decreased
25% and inductance increased 10%. When the observer parameters vary, the observer and estimator
can operate stably, and the position as well as speed estimations do not deteriorate visibly. That is to
say, the proposed control system has a good robustness to the parameters.
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In the simulation and experimental results, it can be seen that the IPMSM drive with the proposed
sensorless vector control method exhibits satisfactory performance, adopting a DSP control scheme.

5. Conclusions

In this paper, an improved sensorless vector control method for an IPMSM drive has been
proposed in the small DC-link capacitor drive system. For reduced capacity at the DC-link bus,
the traditional SMO can’t meet the position and speed estimation performance, and also affects
the grid power factor and input current harmonics. The FSMO reduced the position-estimated
steady-state error, and the dynamic error has been reduced by replacing the PI with a PIR regulator in
the software quadrature PLL. When controller stability is analyzed utilizing the root locus diagram,
the estimated speed is closer to the actual speed. The power factor can reach 0.996, and the total
harmonic distortion of the gird current can meet the recommendations of EN61000-3-2. Experimental
results demonstrated that the proposed improved sensorless vector control method not only effectively
reduces the position error, but also improves grid input performance for small DC-link capacitor drive
systems. Nevertheless, different loads resulted in different speed fluctuation ranges, worsening the
system performance and causing power grid pollution because of the increased harmonics. Thus, future
work involves expanding the drive system to different loads, the acoustic noise of the motor, and
focusing on the estimator error caused by other harmonics in the back EMF.
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