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Abstract: Various industrial applications require a voltage conversion stage from DC to AC. Among
them, commercial renewable energy systems (RES) need a voltage buck and/or boost stage for
islanded/grid connected operation. Despite the excellent performance offered by conventional
two-stage converter systems (dc–dc followed by dc–ac stages), the need for a single-stage conversion
stage is attracting more interest for cost and size reduction reasons. Although voltage source inverters
(VSIs) are voltage buck-only converters, single stage current source inverters (CSIs) can offer voltage
boost features, although at the penalty of using a large DC-link inductor. Boost inverters are a good
candidate with the demerit of complicated control strategies. The impedance source (Z-source)
inverter is a high-performance competitor as it offers voltage buck/boost in addition to a reduced
passive component size. Several pulse width modulation (PWM) techniques have been presented in
the literature for three-phase Z-source inverters. Various common drawbacks are annotated, especially
the non-linear behavior at low modulation indices and the famous trade-off between the operating
range and the converter switches’ voltage stress. In this paper, a modified discontinuous PWM
technique is proposed for a three-phase z-source inverter offering: (i) smooth voltage gain variation,
(ii) a wide operating range, (iii) reduced voltage stress, and (iv) improved total harmonic distortion
(THD). Simulation, in addition to experimental results at various operating conditions, validated the
proposed PWM technique’s superior performance compared to the conventional PWM techniques.

Keywords: Z-source inverter; impedance source inverter; pulse width modulation; PWM; simple
boost; maximum boost; constant boost; space vector; discontinuous PWM and dc–ac converter

1. Introduction

The world’s increasing energy consumption, depleting fossil fuels, and environmental problems
encourage the development of power electronic-based converters. The voltage source inverter (VSI)
and the current source inverter (CSI) are commonly the main power inverters utilized in various
industrial applications. However, both have the drawback of a limited voltage range operation. VSIs
offer an inherited output voltage buck feature, whereas CSIs can present voltage boost capability. In
order to obtain an additive ability such as boosting the VSI output or bucking the CSI output voltage,
a separate stage of the DC–DC converter must be implemented [1–8]. Inserting a DC–DC converter
stage before the inversion stage adds more control complexity in addition to increasing system cost
and size. Consequently, boost inverters were introduced [9,10]. They have the capacity for voltage
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buck-boost in addition to DC to AC inversion using single-stage topology. However, they suffer
complex control strategies.

Impedance source inverters (ZSIs) provide an enhanced power conversion capability with a
similar functionality as boost inverters without inserting any extra active elements and with simple
control strategies [11]. The concept of impedance source converters has been implemented for (i)
AC–AC converters [12–16], (ii) DC–DC converters [17–20], (iii) AC–DC rectifiers [21–24] and (iv)
DC–AC inverters [25–34]. Based on these merits, ZSIs start to penetrate various industrial application
markets, such as electric vehicles [35–40], renewable energy-distributed generation [41–46], battery
energy storage [47,48], and uninterruptable power supply (UPS) [49,50]. The basic ZSI topology
introduced by Peng et al. [11] has an impedance network of linear energy storage elements (two
capacitors and two- nductors) forming the X-shape network, as shown in Figure 1. Figure 1 represents
a basic conventional z-source inverter. The topology is simply a three-phase inverter with an X-shaped
passive circuit at its front. The added passive network alongside the adequate modulation technique
adds voltage buck/boost capabilities to the inverter stage by means of shoot-through periods.
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Adding nonlinear elements (diodes and switches) to the impedance network improves the
performance of the converter by extending its voltage boost ability [27–34] or enhancing the DC-bus
voltage and current profiles [25,26], with the penalty of increasing system cost, size and control
complexity. Navigating through ZSIs’ PWM control techniques, several techniques have been
introduced to coincide with various application requirements.

The Simple Boost ZSI PWM technique was the first z-source inverter PWM technique [11]. The
technique is based on a VSI conventional sinusoidal PWM with two added fixed envelopes with
magnitudes equal to or greater than the modulation index. The magnitude of those envelopes is
limited to the modulation index value. Despite its simple implementation, the Simple Boost PWM
technique has the major drawback of high voltage stresses across the inverter bridge power electronic
switches [11].

Maximum Boost PWM (MBPWM) utilizes the instantaneous maximum/minimum of the three
phase references as the upper and lower envelopes. A large reduction in voltage stresses is noticed,
thanks to the enhanced boosting factor [51]. On the contrary, the unfixed envelopes’ difference exerts
higher-magnitude low-frequency voltage ripples in the DC-link voltage six times the fundamental
frequency. As a result, the Maximum Boost ZSI PWM technique features reduced voltage stresses with
the penalty of increased cost and size of the impedance network [51].

The Constant Boost ZSI PWM technique was introduced to achieve a compromised voltage stress
and impedance network cost and size [52]. The constant-difference variable-envelopes aid the Constant
Boost PWM technique to achieve low DC-link voltage ripples with reasonable voltage stresses.
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The Modified Space Vector ZSI PWM technique extends the operating range of the inverter with
reduced voltage stresses, especially at high-voltage gain [53,54]. The utilized shoot-through state with
evenly distributed active states succeeded in THD and switching losses’ reduction.

The previously mentioned PWM techniques attempt to improve ZSI performance by reducing the
inverter bridge power electronic switches voltage stresses in addition to the size of the impedance
network. Those techniques share common limitations such as:

• Only offering one degree of freedom from the control strategy point of view.
• A highly nonlinear performance at high-gain operating conditions.
• High sensitivity at low-modulation index operation.
• A common trade-off between extended operating conditions and voltage stresses.

In 2016, a PWM Technique for the high-voltage gain operation of three-phase Z-source inverters
based on the discontinuous PWM technique for three-phased ZSI was introduced [55,56]. This enhanced
performance technique overcomes several conventional ZSI PWM techniques’ problems. The core of
the discontinuous PWM technique relies on separating the relation between the modulation index and
the boosting factor, with a limited fixed modulation index at 1/

√
3 to avoid over-modulation [57].

Several review articles of z-source PWM techniques can be found in the literature for interested
readers [58–60].

In this paper, an enhanced performance ZSI PWM technique is proposed based on the recently
evolved discontinuous PWM for three-phase ZSI. The proposed technique has the advantages of a
smoother voltage gain variation with the privilege of a wide range of operations, reduced %THD
and voltage stresses. The presented paper is organized into six sections. Following the introduction,
common ZSI-PWM techniques are discussed in detail. The proposed PWM technique is presented in
the third section. A detailed mathematical analysis of the proposed technique is carried out in the
fourth section. In the fifth section, a MATLAB/SIMULINK®-based simulation comparison between
the proposed and conventional ZSI PWM modulation techniques is performed. Finally, the sixth
section validates the proposed technique through experimental study.

2. Conventional ZSI-PWM Techniques

ZSI uses an impedance network coupled between the DC source and the inverter bridge, as shown
in Figure 1. The impedance network allows the inverter to operate in a new state (shoot-through state)
at which two switches of the same leg are turned ON at the same time, causing a short circuit across
the load. For conventional VSI, the shoot-through state destroys the converter switches. However,
for ZSI, the shoot-through state helps to charge capacitors and inductors of the impedance network,
increasing the DC-link voltage to values higher than the input, which gives ZSI its unique ability of
voltage buck, boost, and inversion without using any extra switches/stages.

ZSI’s operation can be separated into two operating regions: (i) the first region during normal
active states and zero states of VSI, where the actions of inversion and voltage buck occur; (ii) the
second region during the shoot-through state, where the boosting operation is achieved. The output
peak phase voltage of ZSI is

V̂an = MB
Vi
2

(1)

where (M) is the modulation index of the VSI, (Vi) is the input DC voltage and (B) is the boosting factor
of the impedance network. The boosting factor (B) depends on the shoot-through time (TST), which
can be expressed as

B =
1

1− 2 TST
T

≥ 1 (2)

where (T) is the switching time and (
TST
T ) is the shoot-through duty ratio Do.

In order to increase the boosting factor, the shoot-through duty ratio must be increased. However,
increasing the shoot-through time over the zero-state time causes a distortion in the output waveform.
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Therefore, the shoot-through state is limited to be within zero state, only preserving the active state
duration. Conventional VSI sinusoidal PWM (SPWM) can be reshaped to control the gain of ZSI
by inserting the new shoot-through state during the zero-state. Inserting the shoot-through can be
performed using two envelopes (upper and lower). If the carrier signal is either greater than the upper
envelope or lower than the lower envelope, the circuit turns into shoot-through state. Otherwise,
it operates as a conventional SPWM. Figure 2 shows the main signal generation block diagram for
carrier-based ZSI PWM techniques.
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Figure 2. General signal generator block diagram for three-phase ZSI carrier-based PWM techniques.

Simple Boost PWM (SBPWM) was the first proposed PWM technique to control ZSI’s output
voltage. It adds two fixed envelopes to the SPWM with magnitudes equal to or greater than the
modulation index. However, to reduce voltage stresses, the envelopes magnitude is limited to the
modulation index value, as shown in Figure 3a [11].
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Figure 3. Three-phase ZSI PWM modulation schemes for: (a) SBPWM, (b) MBPWM, (c) MBPWM
with the third harmonic injection, (d) CBPWM, (e) CBPWM with the third harmonic injection, (f) d-q
representation of MSVPWM; at Modulation index (M = 0.8), fundamental frequency (f = 50 Hz), (g)
ZSI-DCPWM at Modulation index (M = 1

√
3

), fundamental frequency (f = 50 Hz), DC-offset (K = 0.5).

Maximum Boost PWM (MBPWM) uses the instantaneous maximum and instantaneous minimum
of the three phase references as the upper and lower envelopes, as shown in Figure 3b, turning all zero
states into a shoot-through state. Consequently, the boosting factor is maximized for a wide range of
modulation index variations, which causes a large reduction in voltage stresses [51]. However, due
to the unfixed envelopes’ difference over one cycle of the fundamental frequency, higher-magnitude
low-frequency voltage ripples are remarkable across the DC-link voltage with a frequency equal to six
times the output fundamental frequency, increasing the impedance network cost and size.

MBPWM with a third harmonic injection can be utilized to extend the modulation index range of
operation up to (M = 2

√
3

), as illustrated in Figure 3c [51].
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Constant Boost PWM (CBPWM) features two variable envelopes with a fixed-level difference,
leading to low DC-link voltage ripples with reasonable voltage stresses, as shown in Figure 3d. CBPWM
with third harmonic injection can be used to simplify the envelopes’ generation and extend the control
region up to (M = 2

√
3

), as shown in Figure 3e [52].
Modified space vector PWM (MSVPWM) reshapes conventional SVPWM by inserting the

shoot-through state with a time (T_ST) inside conventional zero states. The shoot-through state must
be distributed around active states to reduce %THD and switching losses, keeping in mind that the
active states time is untouchable, as shown in Figure 3g [53,54]. MSVPWM has a wide range of
operations with relatively smoother relations and lower stresses compared to SBPWM.

Recently, in late 2016, a discontinuous PWM technique for three-phase ZSI (ZSI-DCPWM) was
introduced, achieving a separation between the boosting factor and the modulation index, as shown in
Figure 3f [57]. The ZSI-DCPWM technique offers an extended stable range of operation, low sensitivity
for variation of control gain, a higher degree of freedom for control variables, moderate voltage stress
and reduced %THD at high-gain points.

3. Proposed Modified Discontinuous ZSI-PWM Techniques

ZSI-DCPWM utilizes discontinuous references that can be expressed as [57](
v∗az, v∗bz, v∗cz

)
=

(
v∗ao, v∗bo, v∗co

)
− vzs (3)

where (v∗ao, v∗bo, v∗co) are the three-phase references

v∗ao = M sin(ωt)
v∗bo = M sin

(
ωt− 2π

3

)
v∗co = M sin

(
ωt + 2π

3

) (4)

and (vzs) is a zero-sequence component; the added zero sequence term equals [57]:

vzs =
1
2

(
1− sgn

(
d
dt

max
(
v∗a, v∗b, v∗c

)))
max

(
v∗a, v∗b, v∗c

)
+

1
2

(
1 + sgn

(
d
dt

min
(
v∗a, v∗b, v∗c

)))
min

(
v∗a, v∗b, v∗c

)
(5)

where “sgn” is the sign function which yields “1” for positive values and “−1” for negative values.
The upper and lower envelopes are extracted from the instantaneous maximum and minimum of the
generated references, respectively. To control the boosting factor of ZSI-DCPWM, A DC-offset (K) is
used to shift the zero periods of the upper and lower envelopes up/down, leading to shoot-through
time decrease/increase. The references’ magnitude has a maximum allowable value of M = 1

√
3

to
prevent over-modulation [57].

The proposed modified ZSI-DCPWM (MDCPWM) targets to increase the level of the modulation
index without over-modulating the references. This increment is expected to reduce voltage stresses,
improve %THD, offer more stable, less sensitive linear voltage gain variation with a wider range of
operation and lower sensitivity. In order to extend the modulation index, a third harmonic component
is proposed to be added to the generated references

(
v∗az, v∗bz, v∗cz

)
, hence increasing the maximum

allowable modulation index by 15% of its original value to be
(
M = 2

3

)
. The proposed references are

v∗a = v∗ao − vZS + v3rd
v∗b = v∗bo − vZS + v3rd
v∗c = v∗co − vZS + v3rd

(6)
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where (v3rd) is the third harmonic component with the proposed equation:

v3rd =
M
√

3
6

sin
(
3ωt +

π
2

)
(7)

Figure 4 illustrates the reference signals for both the conventional and the proposed modified
ZSI-DCPWM. It must be noted that the instantaneous difference between any two references is a pure
sinusoidal waveform, representing the line voltage, as shown in Figure 4 for both the conventional and
proposed ZSI-DCPWM.
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Extracting the instantaneous maximum and minimum values of the generated references(
v∗a, v∗b, v∗c

)
was performed to generate the upper and lower envelopes (Vp&Vn) respectively. The

boosting factor is controlled by shifting the shaded area shown in Figure 5b up or down with offset
value (K) without changing the modulation index value.
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where Vp and Vn are the upper and lower envelopes, respectively, in the interval (π6 toπ2 ).

Vp=
√
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π
6
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+

√
3 M
6

sin
(
3θ+

π
2

)
(9)

Vn= −K +

√
3 M
6

sin
(
3θ+

π
2

)
(10)

Then,

D0 =
2−

[√
3 Msin

(
θ+ π

6

)
+ K

]
2

= 1 −

[√
3 Msin

(
θ+ π

6

)
+ K

]
2

(11)
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The average shoot-through duty ratio over the interval (π6 to π
2 ) is

(D0)ave =
1
π
3

π
2∫

π
6

1−

√
3 Msin

(
θ+ π

6

)
2

−
K
2

 dθ =
π (2−K) − 3

√
3 M

2π
(12)
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Consequently, the boosting factor (B) is obtained as follows:

B =
1

1− 2D0
=

π

3
√

3M−π(1−K)
(13)

The overall voltage gain (G) can be calculated as

G = MB =
πM

3
√

3M−π(1−K)
(14)

Equation (14) describes the voltage gain of the proposed modified ZSI-DCPWM technique, which
is the same equation as the conventional ZSI-DCPWM voltage gain [57]. However, the proposed
technique can operate at a higher modulation index, with maximum modulation index being extended
to (M = 2

3 ).

G =
2
3π

2
√

3−π(1−K)
(15)

The increment in the modulation index causes a reduction in the voltage stresses by 15% less than
conventional ZSI-DCPWM voltage stresses:

Vs = BVi =
G
M

Vi =
3
2

GVi (16)

Figure 7a shows the voltage gain behavior of the proposed modified ZSI-DCPWM compared
to conventional ZSI-PWM techniques. The proposed modified ZSI-DCPWM exhibits more linear



Energies 2020, 13, 578 10 of 19

stable relations at high-gain points. Moreover, Figure 7b,c illustrate a comparison between the
performance of each the conventional ZSI-DCPWM and the proposed modified ZSI-DCPWM at
different modulation indices.
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Table 1 gives a breakdown of the governing equations for the proposed and conventional
PWM techniques.
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Table 1. ZSI modulation techniques relations.

PWM Technique Shoot-Through
Duty Ratio D0

Boosting Factor
B= 1

1−2D0
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√
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√
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5. Simulation Analysis

In this section, extensive simulation studies are carried out using the MATLAB/SIMULINK
®software package to verify the theoretical principle of the proposed modified ZSI-DCPWM technique.
The simulated model has the same parameters as shown in Table 2.

Table 2. Simulation parameters.

Symbol Definition Value

Vi Input DC voltage 30 V

L1, L2 Z-network first and second inductor 5 mH

C1.C2 Z-network first and second capacitor 3300 µF

f Fundamental frequency 50 Hz

fs Switching frequency 10 kHz

ZL Load impedance (10 + j3.1415) Ω

The target of the simulated model is to produce three-phase line voltage of 60 Vrms. The input

to this module is 30 V DC. The required gain for this system is G =

(
65
√

3

)
∗
√

2

( 30
2 )

= 3.3. Using (15), the

corresponding offset must be (K = 0.1015).
Figure 8 illustrates the simulation results of the investigated ZSI with the parameters listed in

Table 2. At K = 0.1015, the expected gain of 3.3 is validated, as shown in Figure 8a, where the DC-link
voltage achieves a value of 150 V from a 30 VDC input. Figure 8b shows that the Z-network inductor
current oscillates at a frequency equal to six times the output fundamental frequency. For illustration
purposes, the ZSI output voltage is filtered as shown in Figure 8c, showing the fundamental phase
and line voltages. Figure 8d illustrates the output line voltage as a pure sinusoidal wave due to
the inductive nature of the load impedance. In order to effectively illustrate the superiority of the
proposed technique, a comparison is carried out with all the conventional ZSI PWM techniques stated
in the literature. Specific benchmarks are tracked to test the ZSI performance under the investigated
PWM techniques, mainly, voltage gain, converter switches, voltage stress and %THD. The system
performance is simulated at a wide range of gain variations to examine the range of stability as well.
Figure 9a shows that for conventional PWM techniques, lower values of modulation index exert a
sudden increase in the voltage gain with limited allowable modulation index variation. Among all
the investigated ZSI PWM techniques, the third harmonic injection is applicable for MBPWM and
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CBPWM, which extends the modulation index beyond unity without violating the over-modulation
restriction. However, MBPWM offers the most limited allowable modulation index variation. In
contrast, the proposed modified ZSI-DCPWM technique provides the widest operating range with a
smoother relation between voltage gain and the control gain (K), with the privilege of stable operation
even for zero control gain (K = 0), where the maximum obtainable voltage gain is limited to (G =

6.5). Regarding the voltage stress aspect, it can be concluded from Figure 9b,c that for voltage gain
(G < 2), the proposed modified ZSI-DCPWM technique has a moderate voltage stresses lower than
the conventional ZSI-DCPWM stresses and higher than other conventional techniques stresses, while
for voltage gain (2 < G < 4.3), the proposed technique voltage stress is lower than (conventional
ZSI-DCPWM, MSVPWM and SBPWM) voltage stress, and voltage gain (4.3 < G < 6.5). The proposed
technique has lower stresses than all other PWM control techniques except for MBPWM. However,
at (G = 6.5), the voltage stresses of both MBPWM and the proposed technique are equal. Figure 9d
illustrates the steady-state voltage ripples across the Z-network capacitor, which is minimized for
both SBPWM and CBPWM due to the fixed shoot-through duty ratio. For MBPWM, MSVPWM,
conventional ZSI-DCPWM and the proposed modified ZSI-DCPWM techniques, capacitor voltage
ripples are high due to the variable shoot-through duty ratio over one fundamental cycle, which
increases the Z-network cost and size. Exploring the variation of the %THD in Figure 9e,f, harmonic
distortion of conventional PWM techniques is dependent on voltage gain variation as well as the
%THD, which is increased for high-gain requirements. ZSI-DCPWM strategies show a unique ability of
fixed %THD regardless of the required gain which reduces filter effort. For a wide range of modulation
index variations (from 0 to 0.65), the proposed modified ZSI-DCPWM shows the lowest %THD among
the investigated ZSI PWM techniques.
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Figure 9. Simulation-based comparison between the discussed PWM control techniques: (a) Voltage
gain versus modulation index (M), DC-offset (K) for conventional and ZSI-DCPWM techniques
respectively, (b) per-unit voltage stress versus voltage gain, (c) per unit voltage stresses/voltage gain
versus voltage gain, (d) percentage capacitor voltage ripples for the discussed and the proposed ZSI
PWM techniques at different gain points (e)%THD versus control variable (M), (K) and (f) %THD
versus voltage gain.

6. Experimental Validation

An experimental prototype was built with the same simulation parameters as those shown in
Table 2, with two values of load impedance: ZL = 50 Ω (pure resistive) and ZL = 50 + j95 Ω (highly
inductive). The PWM control signals with the shoot-through states were generated by high-performance
DSP TMS320F28335 Delfino™ Texas Instruments. The hardware implementation is shown in Figure 10.
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Figure 10. X-shaped impedance source inverter test reg.

The proposed modified ZSI-DCPWM technique was tested by setting the gain point to produce
an output line voltage of 60 Vrms from an input of 30VDC. The required gain was G = 3.3 and the
equivalent offset K = 0.1015, while the modulation index is constant at (M = 2

3 ). For a pure resistive
load ZL = 50 Ω, the DC side voltages are shown in Figure 11a, where the input voltage is boosted
from 30 V to 150 V across the inverter bridge. Figure 11b illustrates the Z-network inductor current,
which oscillates with a frequency equal to six times the fundamental frequency due to shoot-through
variation of the proposed modified ZSI-DCPWM. Figure 11c,d shows the output line and phase voltage
with the achieved RMS value, while Figure 11e shows the output line current. Figure 11f illustrates
output three-phase voltages.
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Figure 11. Experimental results outpt waveforms for the proposed modified ZSI-DCPWM with resistive
load ZL = 50 Ω: (a) DC side voltages (input, Capacitor and DC Link voltages), (b) inductor current, (c)
line voltage, (d) phase voltage, (e) line current, (f) three-phase voltages.

The same gain point was tested with highly inductive load impedance ZL = (50 + j95)Ω. The
load filters the output line current as shown in Figure 12 to be a near-sinusoid.
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The voltage gain variation with the control variable, modulation index (M) or offset (K) and the
inverter switches voltage stresses are the main aspects considered in this comparison. The first aspect
gives the scope of the applicability of the PWM technique in various operating regions, while the
second one focuses on how much the inverter voltage rating should be enlarged for a wide range of
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operations. A comparison between the investigated ZSI PWM techniques is presented based on the
experimental data results obtained. Figure 13a illustrates the voltage gain for a given modulation
index (M) or envelopes offset (K) for the conventional and the proposed modified ZSI-DCPWM
techniques, respectively.

It has been noted that the proposed modified ZSI-DCPWM has the privilege of the smoothest
relation, which allows for acquiring a high voltage gain without the fear of sudden over voltage
stresses. On the other hand, MBPWM has the steepest relation for voltage gain variation, which
reduces the control region to be limited within modulation indices (M = 0.75 to M = 1.15). Furthermore,
MBPWM, CBPWM and MSVPWM offer an extended modulation index up to (M = 1.15), while SBPWM
modulation index is limited to only unity. Moreover, the conventional ZSI-DCPWM and the proposed
modified ZSI-DCPWM have a limited modulation index below (M = 1

√
3

) and (M = 2
3 ) respectively.

Figure 13b,c highlights a comparison between the investigated modulation techniques regarding
voltage stresses across the switches. It can be seen that the proposed modified ZSI-DCPWM has
moderate voltage stresses compared to other techniques, especially for high-gain points, where it
becomes the third lowest in voltage stresses after MBPWM and CBPWM. Moreover, it must be pointed
out that both DCPWM-based techniques have constant voltage stresses per voltage gain for a wide
range of voltage gain variation due to the merit of the separation between the modulation index and
the boosting factor.

7. Conclusions

Z-source inverters can be considered as a promising solution for grid/islanded RES with the
privilege of voltage buck/boost capabilities via single-stage conversion. This paper presents a modified
discontinuous PWM (MDCPWM) technique for three-phase Z-source inverters. Rigorous simulation
results in addition to experimental validation were utilized to illustrate the superior performance
of the proposed technique over the entire operating range, comparing it to all the available PWM
techniques dedicated to a Z-source inverter. The presented technique offers a smooth voltage gain
variation, avoiding undesired steep response at low modulation indices. The proposed MDCPWM
technique offers fixed THD over the entire range of operation. In addition, minimized voltage stress
can be achieved under the proposed MDCPWM technique for a wide range of operations.
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