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Abstract: As the level of greenhouse gas emissions increases, so does the importance of the energy
performance of buildings (EPB). One of the main factors to measure EPB is a structure’s heating load
(HL) and cooling load (CL). HLs and CLs depend on several variables, such as relative compactness,
surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution.
This research uses deep neural networks (DNNs) to forecast HLs and CLs for a variety of structures.
The DNNs explored in this research include multi-layer perceptron (MLP) networks, and each of
the models in this research was developed through extensive testing with a myriad number of
layers, process elements, and other data preprocessing techniques. As a result, a DNN is shown
to be an improvement for modeling HLs and CLs compared to traditional artificial neural network
(ANN) models. In order to extract knowledge from a trained model, a post-processing technique,
called sensitivity analysis (SA), was applied to the model that performed the best with respect to
the selected goodness-of-fit metric on an independent set of testing data. There are two forms
of SA—local and global methods—but both have the same purpose in terms of determining the
significance of independent variables within a model. Local SA assumes inputs are independent of
each other, while global SA does not. To further the contribution of the research presented within
this article, the results of a global SA, called state-based sensitivity analysis (SBSA), are compared
to the results obtained from a traditional local technique, called sensitivity analysis about the mean
(SAAM). The results of the research demonstrate an improvement over existing conclusions found in
literature, which is of particular interest to decision-makers and designers of building structures.

Keywords: artificial neural networks; deep neural networks; machine learning; energy performance
of buildings; heating load; cooling load; local sensitivity analysis; global sensitivity analysis

1. Introduction

Energy waste is a growing concern, given its negative effects on the environment. As a result,
decision-makers should pay close attention to energy efficiency. According to the International Energy
Agency (IEA) [1], buildings are the largest energy-consuming sector. In 2018, the International Energy
Agency (IEA) [2] reported a 3% annual increase in building energy demand, due to the continuous
increase in global access to energy, greater access to energy devices, and global growth in building floor
area. Recent studies indicate that the thermal load efficiency in buildings is 33%, buildings consume
more than 50% of the global energy, and carbon emitted by buildings accounts for 30% of the global
carbon emissions [3]. Given this impact, increasing the efficiency of energy performance buildings
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(EPB) has captured the attention of many researchers. Being able to accurately predict EPB has
significant consequences for the world, including being able to better reduce electricity consumption,
manage energy demand by keeping a better balance between energy production and demand, reduce
operational costs, and reduce carbon emissions ([4,5]). Domestic and international factors affect the
energy consumption of residual buildings [6]. The energy load of residential buildings is defined as the
amount of electricity or fuel that a building needs in order to ensure the residents’ comfort and safety.
Heating load (HL) is the heat transfer within the building and between the building and the external
environment when the building is cold. Similarly, cooling load (CL) is defined as the cold transfer
within the building and between the building and the external environment when the building is hot.
In addition to the temperature, the thermal load controls the moisture (e.g., latent heat) [3].

Estimating thermal load requires knowing a significant amount about a building’s characteristics
before it is evaluated. There are four significant tools mainly used to forecast EPB. These tools
include engineering calculations, simulation modeling, statistical modeling, and machine learning [7].
Engineering calculations apply laws and complex mathematics to estimate energy consumption.
Simulation tools have been widely applied in order to simulate energy performance with respect to a
pre-determined status; however, it requires specific knowledge and skills, and it is time-consuming.
Bagheri et al. [8] reviewed simulation techniques, software, and drawbacks in the area of energy
performance. Statistical methods frequently apply regression when modeling EPB. Machine learning is
mostly categorized as a subsection of statistical methods, but it does have the capability to learn from the
existing data in order to forecast the desired outputs. Machine learning provides options for designers
to quickly analyze the effects of modifying parameters and performing statistical analysis. Modeling
EPB with artificial intelligence and machine-learning methods has become more popular in recent
years, given the growing amount of EPB data that is available to the public. Machine-learning methods,
such as artificial neural networks (ANNs), support vector machines, Gaussian-based regression, and
clustering, have been applied to specific models of HL and CL [7].

Machine learning applies a specific algorithm to a dataset, and based on the methodology, the
algorithm can “learn” from the given data. Machine-learning algorithms are mainly classified into
two categories: supervised learning and unsupervised learning. In supervised learning, the expected
output variables are available. This is not like unsupervised learning since for the latter, a specific
labeled output does not exist. The focus of the current research is on supervised learning since the
available dataset is labeled. Among supervised learning techniques, ANNs have attracted attention
because of their capability to model non-linear relationships within data. In other words, activation
functions in ANNs can forecast outputs which have non-linear relationships with various inputs.
ANNs are a form of main machine learning that has been applied in EPB [7]. ANNs have many
structures. Three commonly used ANN architectures include feed-forward, radial basis function, and
recurrent networks. In this study, feedforward multi-layer perceptron (MLP) ANNs are applied. In
MLPs, data travels in multiple layers in a single direction. A simple MLP model includes an input
layer, a hidden layer, and an output layer. In this structure, the model consists of neurons that act
as weighted transfer functions. Even though simple MLP designs are quite powerful, increasing the
number of hidden layers can help model more complex data. ANNs including a significant number of
hidden layers are referred to as deep neural networks (DNNs), and the process of training the model is
called deep learning (DL).

An ANN is a powerful tool for handling large and complex datasets, although it has been criticized
by researchers due to a lack of model transparency [9]. In order to adequately examine the relationship
between variables, sensitivity analysis (SA) is widely applied. Eliminating insignificant inputs in
an ANN has been shown to increase forecasting accuracies, which also simplifies and improves the
knowledge that can be extracted from an accurate model [10]. One of the traditional techniques is
sensitivity analysis about the mean (SAAM), which is categorized as a local sensitivity technique. In
SAAM, the changing of dependent variables is captured while individual independent variables vary
across their sample range and the rest of the inputs are held to their sample means [11]. SAAM captures
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cause-and-effect relationships between dependent and independent variables. The advantages of
this method include easy implementation, simple interpretation, and application, along with quality
statistical analysis [12,13]. On the other hand, global SA techniques, such as state-based sensitivity
analysis (SBSA), take a different approach. For example, in SBSA, as independent variables are
individually varied, all other independent variables are simultaneously adjusted in order to capture
the resultant change in the dependent attribute [9].

There are many factors that can affect the HL and the CL in residential buildings. For example,
user behavior profiles would inevitably yield high variations of HLs and CLs within structures. Thus,
inputs related to the use of structures could play a critical role when trying to build predictive models
for HLs and CLs. However, the focus of this study specifically involves relative compactness, surface
area, wall area, roof area, overall height, building orientation, glazing area, and glazing distribution.
Tsanas and Xifara [14] identified these factors by simulating different building shapes in order to
forecast EPB. According to Tsanas and Xifara [14], simulation tools play a critical role in facilitating the
design of structures. Moreover, simulation can often accurately reflect actual measurements [15]. This
paper applies and compares ANN and DNN techniques to the available dataset in order to forecast the
energy performance of residential buildings. To date, the capability of DNNs in forecasting EPB has
not been thoroughly explored. In this regard, DNNs make an ideal choice to forecast HL and CL, due
to highly non-linear relationships observed in the dataset. Experiments are conducted by considering
ANNs, implementing different numbers of layers in the DNN, using different numbers of processing
elements, and using data preprocessing techniques that include normalization, randomization, and
moving averages (MAs). ANN models were developed to forecast HLs and CLs individually, as
well as predict HLs and CLs simultaneously within a single ANN structure. In order to evaluate the
performance of the proposed models, a prediction interval analysis was performed. Consequently,
after identifying the best-performing model on an independent testing dataset, both SAAM and
SBSA were conducted. The significance of this research can help engineers understand key structural
considerations so that they can construct more energy-efficient buildings.

The organization of this paper includes a description of both background literature and related
work on EPB and the applied machine-learning techniques in Section 2. Section 3 discusses the
methodological approach by describing the characteristics of the dataset and the framework used to
process the data. Section 4 shows the results after applying the developed framework, local and global
SA, and statistical analysis. Section 5 focuses on the conclusion.

2. Literature Review

In the literature reviewed for this research, buildings are often categorized into four main groups:
commercial, educational, residential, and mixed-use. One discovery showed that residential buildings
incorporate 30% of the literature on building energy models [16]. Forecasts for thermal load in residual
buildings can be made for both short-term and long-term periods of time [17]. In order to forecast HL
and CL in residual buildings in the long-term, Tsanas and Xifara [14] simulated 12 different building
shapes in a software program called Ecotects. When considering all the different combinations of
input variables, 768 building shapes were created. Heating, ventilation, and air conditioning (HVAC)
regulations were followed while simulating building shapes. This dataset has become popular in the
area of EPB, and different machine-learning techniques have been applied for accurate forecasting.
Table 1 summarizes the literature that is based on the influential contributions from Tsanas and
Xifara [14]. Though the dataset is based on simulated data and lacks certain inputs related to the
use of the structures that might be included in other datasets, the dataset is publicly available and
has been widely used within the research community that explores data-driven applications within
energy studies. Given the significance that simulation plays within designing building structures, the
significance of this dataset should not go unrecognized. The table categorizes the literature that has
used this dataset by identifying the applied machine-learning method, the applied method to identify
significant inputs, whether HL and CL were considered combined or separated when forecasting
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EPB, and performance measures used to indicate the accuracy of the machine-learning method. The
nomenclatures used in Table 1 are summarized below in Table 1.

Table 1. Literature Review.

Related Studies Machine Learning
Method

Variable Importance
Method

Combined
Outputs Evaluation Criteria

Tsanas and
Xifara [14] IRLS, RF

Spearman rank
correlation coefficient

and p-value, MI
- MAE, MSE, MRE

Chou and Bui [18] Ensemble approach (SVR +
ANN), SVR - - RMSE, MAE, MAPE, R, SI

Cheng and Cao [19] EMARS MARS - RMSE, MAPE, MAE, R2

Ahmed et al. [20] ANN and cluster analysis - 3 Silhouette Score

Sonmez et al. [21]

ABC-KNN
GA-KNN
GA-ANN

ABC-ANN

- - MAE, SD

Alam et al. [22] ANN ANOVA - RMSE
Fei et al. [23] ANN - - MSE

Regina and
Capriles [24] DT, MLP, RF, SVR - -

MAE,
RMSE,
MRE,

R2

Naji et al. [25] ANFIS - - RMSE, r, R2

Naji et al. [26] ELM - 3 RMSE, r, R2

Nilashi et al. [27] EM, PCA, ANFIS PCA - MAE, MAPE, RMSE

Nwulu [28] ANN - - RMSE, RRSE, MAE, RAE,
R2

Duarte et al. [29] DT, MLP, RF, SVM - - MAE, RMSE, MAPE, R2

Roy et al. [3]

multivariate adaptive
regression splines, ELM, a

hybrid model of MARS
and ELM

MARS - RMSE, MAPE, MAE, R2,
WMAPE, Time

Kavaklioglu [30] OLS, PLS - - RMSE, R2, Goodness of fit

Kumar et al. [31] ELM, Online Sequential
ELM, Bidirectional ELM - - MAE, RMSE

Al-Rakhami
et al. [32]

Ensemble Learning using
XG Boost - - RMSE, R2, MAE, MAPE

Sekhar et al. [4] DNN, GRP, MPMR - -
VAF, RAAE, RMAE, R2,

MAPE, NS, RMSE,
WMAPE

Table 1 shows the publications that applied machine-learning techniques to the dataset created
by Tsanas and Xifara [14]. Tsanas and Xifara [14] performed a comprehensive statistical analysis that
consisted of density plots and scatter-plots. The result of the statistical analysis indicates the non-linear
nature of the problem and the necessity of applying machine-learning algorithms that capture this
nature. For this reason, an ANN is one of the most appropriate machine-learning methods for the
current dataset. According to Table 1, some papers specifically applied ANN to the dataset (Ahmed et
al. [20]; Nwulu [28]), while others applied the ensemble approach by incorporating ANNs (Chou and
Bui [18]; Sonmez et al. [21]; Naji et al. [25]; Nilashi et al. [27]). To the best of the authors’ knowledge,
Sekha et al. [4] is the only paper that applied DNNs to forecast HL and CL. The performance of DNNs
is compared with other machine-learning algorithms, including Gaussian process regression (GPR)
and minimax probability machine regression (MPMR). It was concluded that the overall performance
of GPR and MPMR surpasses that of the other methods. However, Sekhar et al. [4] did not discuss the
characteristics of the applied DNN models, such as the number of layers, the number of processing
elements, and activation functions.

While applying machine-learning algorithms on a dataset, it is important to recognize the
significant and insignificant inputs. By eliminating insignificant inputs, the efficiency of the model
will improve. According to Roy et al. [3], multivariate adaptive regression splines (MARS) is a
non-parametric regression model that identifies the importance of each parameter before it is processed
by a machine-learning technique. MARS can be used along with hybrid models in order to improve



Energies 2020, 13, 571 5 of 23

efficiency. Another SA technique is principal component analysis (PCA), which identifies significant
inputs in a dataset, reduces the dimension of the data, and eliminates the problem of multi-collinearity.
Nilashi et al. [27] states that PCA has four objectives: extracting important information, compressing
data, simplifying the descriptions, and analyzing the structure of observations. According to Table 1,
most of the reviewed papers did not apply any SA techniques on the dataset.

Quantitative SA techniques are categorized as local and global [33]. Ardjmand et al. [9] criticized
local SAs because they did not capture non-linear relationships or multicollinearity, and they did not
assume input variables were independent of each other. In other words, changing the value of one of
the input variables will affect the value of other inputs; therefore, assuming fixed values for other inputs
in local SAs are not realistic. Global SA alters the value of the desired input while multidimensionality
takes the average of other inputs [34]. Depending upon the objective of the SA, Ardjmand et al. [9]
categorized global SA techniques into screening, regression-based, and variance-based approaches,
and extended traditional SA into SBSA, which is classified as a regression-based approach.

There are several decisions that affect the performance of a mathematical model. In order to
forecast EPB, HL and CL can be combined or separated outputs. Most of the reviewed articles
considered HL and CL separately, but none of them compared two scenarios in a single study. Another
important criterion to improve the quality of a predictive model is data pre-processing. By plotting the
EPB data, Kumar et al. [31] indicated that none of the inputs follow a normal distribution. Therefore,
normalizing inputs before processing them should improve the performance of the model. None of
the reviewed papers applied moving average (MA) or randomization as preprocessing techniques
in order to improve the predictive performances of a model. Table 1 summarizes the performance
measures that were found in the literature. Notably, R2, MAE, and RMSE were among the most popular
goodness-of-fit statistics used by researchers.

A review of the literature reveals different machine-learning techniques that were applied to
forecast HL and CL for the dataset created by Tsanas and Xifara [14]. The main oversight found in the
literature was the lack of attention to the capability of DNNs to forecast CL and HL. This study evaluates
the performance of DNNs by exploring different characteristics of a network structure, including the
number of hidden layers and the number of processing elements. The second gap that was identified
was the lack of preprocessing methods that were used to model HL and CL. In fact, very little of the
cited literature used normalization techniques, and none of the previous research included the use of
MAs or randomization when preprocessing data. This study used normalization, randomization, and
MAs as data preprocessing techniques. The third area overlooked was the possibility of combining or
separating outputs of the model, which is fulfilled in this research paper. Finally, the lack of application
of SA techniques to identify the importance of each input and examine the effect of those inputs on
forecasting accuracy motivated the authors to apply and compare the performance of SAAM as well as
SBSA. In addition to improving forecasting accuracy, SA provides a deeper insight with respect to
the knowledge that can be extracted from an accurate model, and which later can be considered by
building designers in order to construct energy-efficient buildings.

3. Methodology

3.1. Description of the Dataset

The characteristics of the dataset used for this research are identical to that of Tsanas and
Xifara [14]. Using elementary cubes, 12 building forms were simulated, each of which contained
18 cubes. The buildings’ total volume was 771.75 m3. Building forms have the associated relative
compactness (RC) Relative compactness is calculated by comparing the areas of the building shapes to
the area of a reference shape when the volumes of the building and the reference shapes are equal [18].
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Similar materials were evaluated as U-values and provided for each building. A U-value
measures heat transfer and indicates the quality of insulation. The unit for a U-value is
Watts-Per-Meter-Square-Kelvin (W/m2 K). Architecture characteristics and associated U-values included
walls (1.780), floors (0.860), roofs (0.500), and windows (2.260). The dataset consisted of residential
buildings that are located in Athens, Greece. The internal design characteristics included 0.6 clo (c.f.
amount of clothing required by a person in a comfortable condition with a temperature of 21 ◦C—One
clo is thermal insulation which is comfortable for a resting man in a specific weather condition) for
clothing, 60% of humidity, 0.3 m/s airspeed, and a 300 Lux lighting level. The thermal properties had a
95% efficiency with a thermostat range of 19–24 ◦C and were operating for 15–20 h on weekdays and
10–20 h on weekends. Three types of glazing areas were used according to what percentage they took
up of the total floor area, with 10%, 25%, and 40% being used. There were five different scenarios for
the glazing area. These scenarios included: (1) uniform, with 25% glazing on each side, (2) north, with
55% glazing on the north side and 15% glazing on each of the other sides, (3) east, with 55% glazing on
the east side and 15% glazing on each of the other sides, (4) south, with 55% glazing on the south side
and 15% glazing on each of the other sides, and (5) west, with 55% glazing on the west side and 15%
glazing on each of the other sides. Furthermore, there were some buildings with no glazing area at all.
There are four orientations represented by 2, 3, 4, and 5, which indicate north facing, south facing, east
facing, and west facing, respectively.

The dataset included twelve building forms with three glazing areas, five glazing area distributions,
and four orientations, which equated to 720 samples. However, if we included the twelve buildings
that did not have glazing with four orientations, the dataset consisted of 768 buildings with their
respective HL and CL values. The dataset is freely available at the Center of machine-learning and
intelligent systems repository [35].

Table 2 summarizes the characteristics of the input and output variables. The dataset contained
eight attributes as inputs and two response variables as outputs. The table shows each variable’s
observed range of values.

Table 2. Description of the energy performance buildings (EPB) dataset.

Variable
Type Description Parameters #Possible

Values
Type of

Parameter Units Min Max Average

Input
Variables

Relative
Compactness (X1) 12 Real None 0.62 0.98 0.76

Surface Area (X2) 12 Real m2 514.50 808.50 671.71
Wall Area (X3) 7 Real m2 245.00 416.50 318.50
Roof Area (X4) 4 Real m2 110.25 220.50 176.60

Overall Height (X5) 2 Real M 3.50 7.00 5.25
Orientation (X6) 4 Integer None 2 5 3.50

Glazing Area (X7) 4 Real None 0 0.40 0.23
Glazing Area
Distribution (X8) 6 Integer None 0 5 2.81

Output
Variables

Heating Load (Y1) 586 Real kWh/m2 6.01 43.10 22.31
Cooling Load (Y2) 636 Real kWh/m2 10.90 48.03 24.59

Actual and randomized measurements of HL and CL for training records are plotted in Figure 1.
As shown in Figure 1a,b, output variables were highly correlated with each other both before and after
randomization. Figure 1c shows the correlation in a scatter plot. In other words, HL and CL follow
similar trends. For instance, if a specific configuration of inputs results in a high HL, it will also result
in a high CL.
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Figure 1. Training Records: (a) Actual output of heating load (HL) and cooling load (CL);
(b) Randomized output of HL and CL; (c) Scatter plot.

3.2. Experimental Characteristics

The research presented in this article utilizes the dataset created by Tsanas and Xifara [14].
As noted, this particular dataset has been used by other researchers that have explored the use of
predictive analytics for studies within energy systems. Since various sensitivity analysis techniques
are being explored in this article, it is critical that an accurate model is developed. By analyzing
a dataset that has been explored by others in the research community, comparisons related to the
quality-of-fit can be made in order to ensure that the model generated for this research is as accurate as
what others have produced from the research community. In order to evaluate the accuracy of the
proposed framework, various experiments were designed. In each experiment, 55% of the records
were randomly selected for training, 15% were randomly selected for validation, and the remaining
30% of the records were held out for independent testing. Cross-validation (CV) is an important
part of determining how well the model will perform when it encounters data that was not a part of
training or even testing data. In other words, it is useful to see how a model generalizes data it has
never seen before. Normalization, MA, and randomization are preprocessing procedures that were
applied to the dataset in order to improve generalizability. The number of training runs for each model
developed was set to 30, with 30,000 epochs. If the model did not experience improvements within
100 epochs for the validation data, the training routine was terminated, and the next model repeated
the training process. Finding the most accurate model when it comes to the performance measures of
the test records can be an arduous task. Next, statistical analysis was implemented to compare the
performance of different experiments. Finally, both the local and global SA techniques were applied
in order to rank the inputs according to their ability to forecast HL and CL. ANN and DNN models
were developed in NeuroSolutions 7 software (NeuroSolutions, Inc., Denver, Colorado, USA). Figure 2
indicates the procedure implemented to forecast EPB.
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In the experiments that were performed in this study, all of the models were developed with
hyperbolic tangent neurons, which were represented in the software as TanhAxon, and momentum was
used for the learning method. Since TanhAxon was used, the range of each neuron varied between −1
and 1. Equation (1) shows the calculation for a TanhAxon. In this equation, xi is the record associated
with input i, wi is the weight associated with the bias vector, and xlin

i is the scaled term adapted from a
Linear Axon.

f (xi, wi) = tanh
[
xlin

i

]
(1)

The momentum leaning rule produced a value between 0 and 1, and the weight was applied
within the objective function to avoid achieving a local-optimal solution. In other words, momentum
helped to avoid sub-optimal results. In general, a large value for momentum translated into faster
convergences and required a smaller learning rate. A small value of momentum generally decreased
training time but did not guarantee optimal local results.
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Table 3 shows the characteristics of the empirically designed experiments that were conducted.
Empirical designs that explore machine learning methods for energy studies are commonly used by the
research community. For example, Sekhar et al. [4], Alam et al. [22], Fei et al. [23], and Nwulu [28] have
all used an empirical design for their design procedure. In terms of Table 3, the first experiment involved
creating a single ANN that consisted of two outputs (i.e., HL and CL). This particular experiment
used a single hidden layer and five processing elements. Likewise, experiments 2 and 11 were ANNs
that consisted of single hidden layer network designs with five processing elements; however, unlike
with experiment 1, the ANN had only one output. In order to identify the appropriate number of
layers and processing elements, considerably more experiments were conducted. For example, in
experiments 3 through 10, HL was forecasted with DNNs. Likewise, in experiments 12 through 19,
CL was forecasted with DNNs. Moreover, in order to explore the effects of randomization and MA,
additional experimental configurations were considered.

Table 3. Characteristics of experimental models. “PEs” stand for processing elements

Experiment Output Hidden
Layer

PEs per
Layer Randomization MA Neural

Network

1 HL and CL 1 5 - - ANN
2 HL 1 5 - - ANN
3 HL 2 5,4 - - DNN
4 HL 3 5,4,4 - - DNN
5 HL 3 10,8,8 - - DNN
6 HL 4 10,8,8,8 - - DNN
7 HL 2 5,4 3 - DNN
8 HL 3 5,4,4 3 - DNN
9 HL 3 10,8,8 3 - DNN
10 HL 3 30,24,24 3 - DNN
11 CL 1 5 - - ANN
12 CL 2 5,4 - - DNN
13 CL 3 5,4,4 - - DNN
14 CL 3 10,8,8 - - DNN
15 CL 4 10,8,8,8 - - DNN
16 CL 2 5,4 3 - DNN
17 CL 3 5,4,4 3 - DNN
18 CL 3 10,8,8 3 - DNN
19 CL 3 30,24,24 3 - DNN
20 HL 3 10,8,8 3 3 DNN
21 CL 3 10,8,8 3 3 DNN

Figure 3a represents the network for experiment 1 in which HL and CL were forecasted by a
single model. This type of neural network in experiment 1 used an ANN and consisted of one hidden
layer with five processing elements. Figure 3b visualizes the DNN network for experiments 3 and 12,
which forecasted HL and CL in separate models, respectively. Each of the models consisted of two
hidden layers. The number of processing elements in the first and the second hidden layers were five
and four, respectively.
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3.3. Performance Measures

This section summarizes goodness-of-fit metrics which were useful in evaluating the performance
of the developed models. Two main dimensions—trend fit and location fit—were important in
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presenting the given data. Trend fit specifies whether the displayed data captures the data trends, while
location fit evaluates whether it is possible to easily evaluate the accuracy of the model by following
the location of the predicted points [36]. Among the performance measures presented in this section,
the coefficient of determination (R2) is representative of trend fit, while the root mean square error
(RMSE), mean absolute error (MAE), prediction interval (PI), and score are representative of location
fit. Low values for RMSE and MAE indicate high model accuracy. R2 values close to 1 and score values
close to 100% show predicted outputs that are similar to the actual output values. PI depends upon the
prediction level identified by the user.

RMSE calculates the average square error of prediction and is useful when capturing large
differences between predicted and actual outputs. RMSE is calculated using the following equation:

RMSE =

√√(1
n

)
×

n∑
i=1

[pi − yi]
2 (2)

MAE indicates the average absolute value of the magnitude of the error, and is calculated using
the following equation:

MAE =
1
n
×

n∑
i=1

(∣∣∣pi− yi
∣∣∣) (3)

R2 measures the proportion of variance in the dependent variable that is predictable via the
independent variables. The following equation calculates R2:

R2 = 1−
SSE
SST

= 1−

∑n
i=1(yi − pi)

2∑n
i=1(yi − y)2 (4)

In Equations (2) to (4), pi identifies the predicted value for sample i, yi identifies the actual value
for sample i, n is the sample size, y indicates the mean of the predicted values, SSE indicates the
residual sum of squares, and SST indicates the total sum of the square.

PI is designed to capture the fluctuations of the dependent variable in future observations and is
calculated using the following equation:

PI = Ŷ ± t∗
∝,n−2 sy

√√
1 +

1
n
+

(x∗ − x)2

(n− 1)s2
X

. (5)

where Ŷ indicates the estimated response value, t∗n−2 represents the t distribution with a prediction
level of 1− ∝ and n−2 degrees of freedom, n refers to the number of rows in the dataset, sy is the
residual standard error in regression output, x∗ is the given data for an independent variable, x is
the sample mean, and s2

X is the residual standard error in regression input. This score measures the
accuracy of the model based on its statistics, which include the normalized root mean squared error
and the normalized mean absolute error for regression models.

4. Results

4.1. Comparison of ANN and DNN Performance

This section applies the proposed methodology and summarizes the results of the experimental
procedure. The outputs of the ANN and DNN models are summarized in Table 4 for the testing
dataset and in Table 5 for the training dataset. Experiments 7 to 10 and 16 to 19 adopted randomization,
while experiments 20 and 21 adopted MA as data preprocessing techniques. According to Table 4
the best performance found for HL was experiment 9, and the best-performing model for CL was
experiment 18. Experiments 9 and 18 consisted of three hidden layers, where the first, second, and third
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layers consisted of 10, 8, and 8 processing elements, respectively. Comparing the performance measures
in experiments 5 and 9 indicated that, by applying randomization as a data preprocessing technique,
RMSE was improved by 44.37%. The same comparison for CL shows an improvement of 50.07% in
RMSE. Applying MA as a data preprocessing technique improved RMSE for HL by 16.34%; however,
it did not improve the performance measures of CL. Different periods of MA were tested, and the
results of the best MA period equaled 5. As noted, the first experiment forecasted HL and CL as
outputs in a single ANN model. Comparing the results of experiment 1 with experiment 2 shows
that, when HL and CL were forecasted in a single model, the accuracy of HL was 26.51% higher than
if we were to consider HL in a separate model; however, comparing experiments 1 and 11 showed
that the same conclusion was not applicable for CL since RMSE in experiment 11 was improved by
14.95%. Models using DNNs significantly increased forecasting accuracy. For example, comparing the
results of experiment 2 (in which an ANN was applied) to experiment 3 (in which a DNN was applied)
yielded an improvement of 28.69% in RMSE when it came to forecasting HL. Comparing the results
of experiment 11 to experiment 12 showed that, by adding an additional hidden layer, RMSE for CL
forecasting improved by 14.47%.

Table 4. Testing Results.

Exp. Output Neural
Network RMSE (kW) MAE (kW) R2 Score (%)

1 HL and CL ANN (1.9269,
2.3491)

(1.6850,
2.0527)

(0.9906,
0.9535)

(96.3351,
95.0842)

2 HL ANN 2.4378 1.9611 0.9892 95.9005
3 HL DNN 1.7384 1.5378 0.9930 96.5646
4 HL DNN 1.8653 1.4783 0.9892 96.3879
5 HL DNN 1.2079 1.0305 0.9918 97.0908
6 HL DNN 2.2209 1.8576 0.9777 95.7743
7 HL DNN 0.7116 0.5846 0.9958 97.8955
8 HL DNN 1.0217 0.7694 0.9912 97.3968
9 HL DNN 0.6719 0.4828 0.9960 97.9669

10 HL DNN 0.9261 0.66341 0.9936 97.5763
11 CL ANN 1.998 1.5461 0.9649 95.7065
12 CL DNN 1.7088 1.1785 0.9647 96.0625
13 CL DNN 3.009 2.0288 0.9114 93.6079
14 CL DNN 2.117 1.5439 0.9671 95.6793
15 CL DNN 2.2232 1.6871 0.9663 95.5631
16 CL DNN 1.6808 1.1572 0.9704 96.2431
17 CL DNN 1.7466 1.1809 0.9667 96.0941
18 CL DNN 1.057 0.7644 0.9880 97.2973
19 CL DNN 1.5461 1.0251 0.9773 96.5457
20 HL DNN 0.5621 0.4012 0.9987 97.9999
21 CL DNN 1.3929 1.0696 0.9859 96.8377

Table 5 shows the results of the experiments with respect to the training dataset.
The best-performing model was associated with experiment 10 when it came to forecasting HL
and experiment 18 when it came to forecasting CL. Applying MA improved the forecasting accuracy
of HL by 7.18% and the forecasting accuracy of CL by 6.63%. Analysis of the improvements in the
performance measurements of these training records showed the same results obtained from the testing
records. More specifically, separating HL and CL into individual models improved the forecasting
performance of CL, but decreased the accuracy in forecasting HL. However, in both cases of HL
and CL prediction, the DNN models showed an improvement over the ANN models. In addition,
randomization and MA also improved the forecasting of HL and CL.
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Table 5. Training Results.

Experiment Output Neural
Network Type RMSE (kW) MAE (kW) R2 Score (%)

1 HL and CL ANN (0.7070,
1.8612)

(0.5486,
1.3954)

(0.9946,
0.9590)

(97.8051,
95.6846)

2 HL ANN 0.9752 0.7453 0.9896 97.3294
3 HL DNN 0.5088 0.3692 0.9972 98.1863
4 HL DNN 0.7535 0.5707 0.9939 97.7245
5 HL DNN 0.408 0.2947 0.9982 98.3921
6 HL DNN 0.5118 0.3294 0.9972 98.1916
7 HL DNN 0.4055 0.3050 0.9980 98.4461
8 HL DNN 0.4825 0.3600 0.9974 98.2921
9 HL DNN 0.3786 0.285 0.9984 98.5026
10 HL DNN 0.2633 0.2001 0.9999 98.8582
11 CL ANN 1.5687 1.0936 0.9708 96.2696
12 CL DNN 1.6140 1.0993 0.9720 96.3331
13 CL DNN 3.2281 2.5404 0.8889 92.8027
14 CL DNN 1.6289 1.1313 0.9686 96.1579
15 CL DNN 1.5931 1.0604 0.9700 96.2362
16 CL DNN 1.6149 1.1165 0.9708 96.3094
17 CL DNN 1.58 1.06503 0.9724 96.3901
18 CL DNN 0.7386 0.5601 0.9936 97.8248
19 CL DNN 1.0359 0.7151 0.9916 97.4158
20 HL DNN 0.3514 0.2491 0.9987 98.5635
21 CL DNN 0.6896 0.4846 0.9944 97.8871

Figure 4 shows the learning curve associated with experiment 9, which represents the
highest-performing model for HL. The learning curve plots the square difference between the actual
values and the network output (MSE) as a function of time measured as an epoch. During the training
phase, the network learned from the training records while the error decreased and reached zero
exponentially. The stopping criteria are important factors when training an ANN or DNN. For example,
training was terminated when MSE performance did not improve by a predetermined amount over a
defined number of iterations. In experiment 9, the best training network was obtained in run 21 at
30,000 epochs.
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Table 6 and Table 7summarize the performance measures of HL and CL in training and testing
results, respectively. The results found in recent literature were compared with the results obtained from
the research conducted and presented in this article. One observation that was made while reviewing
the literature was that some of the previous research conducted did not consider cross-validation;
therefore, as a result, it is possible that some of these models might exhibit over-fitting. Tables 6 and 7
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summarize these studies by stating the goodness-of-fit statistics that were reported in the related
studies. Moreover, the normalized or non-normalized values of MSE and RMSE were reported,
depending upon the availability of the information presented in the literature published at the time of
this investigation. Thus, some of the information appears to be incomplete; however, this is simply
due to the fact that not all of the information was reported.

Table 6. Comparison of performance measures in training data. “NMAE” stands for normalized MAE
and “NRMSE” stands for normalized RMSE.

Paper

Train

NMAE MAE NRMSE RMSE R2

HL CL HL CL HL CL HL CL HL CL

Tsanas and Xifara [14] - - - - - - - - - -
Chou and Bui [18] - - - - - - - - - -

Cheng and Cao [19] - - 0.34 0.68 - - 0.46 0.97 1 0.99
Sonmez et al. [21] - - - - - - - - - -

Alam et al. [22] - - - - - - - - - -
Regina and Capriles [24] - - - - - - - - - -

Naji et al. [25] - - - - - - 40.85 40.85 0.99 0.99
Naji et al. [26] - - - - - - - - - -

Nilashi et al. [27] - - - - - - - - - -
Nwulu [28] - - - - - - - - - -

Duarte et al. [29] - - - - - - - - - -
Roy et al. [3] - - - - - - - - - -

Kavaklioglu [30] - - - - - - 2.859 3.204 - -
Kumar et al. [31] - - 0.132 0.127 - - 0.312 0.636 - -

Al-Rakhami et al. [32] - - - - - - - - - -
Sekhar et al. [4] - - - - - - - - - -
Current paper 0.005 0.013 0.2 0.485 0.007 0.019 0.263 0.69 1 0.994

Table 7. Comparison of performance measures in testing data. “NMAE” stands for normalized MAE
and “NRMSE” stands for normalized RMSE.

Paper

Test
Cross-Validation

NMAE MAE NRMSE RMSE R2

HL CL HL CL HL CL HL CL HL CL

Tsanas and Xifara [14] - - 0.51 1.42 - - - - - - 3

Chou and Bui [18] - - 0.236 0.89 - - 0.346 1.566 - - 3

Cheng and Cao [19] - - 0.35 0.71 - - 0.47 1 1 0.99 3

Sonmez et al. [21] - - 0.61 1.25 - - - - - -
Alam et al. [22] - - - - - - 0.19 1.42 - -

Regina and Capriles [24] - - 0.246 0.39 - - 1.094 1.284 0.99 0.98 3

Naji et al. [25] - - - - - - 74.02 74.02 0.99 0.99
Naji et al. [26] - - - - - - 98 85 0.99 0.95

Nilashi et al. [27] - - 0.16 0.52 - - 0.26 0.81 - - 3

Nwulu [28] - - 0.977 1.654 - - 1.228 2.111 0.99 0.97 3

Duarte et al. [29] - - 0.315 0.565 - - 0.223 0.837 0.99 0.99 3

Roy et al. [3] - - 0.037 0.127 - - 0.053 0.195 0.99 0.964 3

Kavaklioglu [30] - - - - - - 3.16 3.122 - - 3

Kumar et al. [31] - - 0.138 0.134 - - 0.321 0.646 - - 3

Al-Rakhami et al. [32] - - 0.175 0.307 - - 0.265 0.47 0.99 0.99 3

Sekhar et al. [4] - - - - - - 0.059 0.079 0.99 0.99
Current paper 0.018 0.03 0.2 0.485 0.025 0.039 0.263 0.69 1 0.994 3

In order to obtain additional insight into the performance of the proposed model, prediction
intervals for experiment 9 were constructed. Figure 5 shows the 95% prediction intervals for experiment
9, which obtained the highest forecasting accuracy among HL models in the experiments conducted
with respect to the testing data. As Figure 5 indicates, there are six observations that fall outside of the
prediction intervals. This proportion is 6.96%, which is close to the theoretical value of 5% (with the
associated 95% prediction level).
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4.2. Local and Global SA

The objective of this section is to apply SA in order to determine how variations in the output
variables can be explained by variations in the input parameters. Both SAAM and SBSA attempt to
capture the relationships between dependent and independent variables. SAAM is an automated
process and is also a feature available in NeuroSolutions 7. Using this technique, one variable is
changed at a time, and the difference in output is recorded. Each variable is changed over a range of
50 step sizes with a range of ±3 standard deviation of the attribute’s mean, while all other variables
are held at their sample mean. SAAM examines the influence of each attribute independent from the
other attributes. However, local SAAM ignores the lack of multicollinearity among database variables.
Independence among multiple input variables is typically not a valid assumption and reduces the
ability to accurately predict a response variable. For example, if two variables are highly correlated,
analyzing the model’s predictive ability for a given variable while keeping the value of the other
variable static (as an average), is neither appropriate nor logical. The assumption of independence and
non-association between these two inputs is incorrect.

On the other hand, SBSA incorporates the presence of the multivariate relationships amongst all
the variables. For example, the value of all variables changes when just one input attribute is varied.
For each variable, a few intervals are defined with respect to the mean and standard deviation of the
sample population. These intervals were assigned to a “state” (± standard deviation value). The range
wherein every “state” was equivalent to a predetermined standard deviation of that distribution.
This allowed the predictor influences to represent themselves as input probability density functions
by averaging the correlations among multiple inputs. Table 8 indicates the correlation matrix for
the studied problem. For example, X2 has a negative correlation to Y1 and Y2, while X5 has a
positive correlation.

Table 8. Correlation matrix.

X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2

X1 1.00000
X2 −0.99190 1.00000
X3 −0.20378 0.19550 1.00000
X4 −0.86882 0.88072 −0.29232 1.00000
X5 0.82775 −0.85815 0.28098 −0.97251 1.00000
X6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
X7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
X8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.21296 1.00000
Y1 0.62227 −0.65812 0.45567 −0.86183 0.88943 −0.00259 0.26984 0.08737 1.00000
Y2 0.63434 −0.67300 0.42712 −0.86255 0.89579 0.01429 0.20750 0.05053 0.97586 1.00000
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Adjusting both predictor variables to their respective states allows for a calculation of the overall
effects that more accurately determines the output variable. The higher the standard deviation, the more
important an input attribute is to a model. This implies that small changes for a sensitive attribute
result in large changes to the output variable. Likewise, an insensitive attribute implies that large
changes of an input can be made with very little effect on the output of a model. This is the main
advantage of global over local (SAAM) methods. Ardjmand et al. [9] provided a detailed analysis of
SBSA. Figure 6 shows the result of applying SAAM and SBSA for experiment 9, where the Y-axis shows
the standard deviation of HL with respect to each of the inputs which are shown along the X-axis.
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Y2 0.63434 −0.67300 0.42712 −0.86255 0.89579 0.01429 0.20750 0.05053 0.97586 1.00000 
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more important an input attribute is to a model. This implies that small changes for a sensitive 
attribute result in large changes to the output variable. Likewise, an insensitive attribute implies that 
large changes of an input can be made with very little effect on the output of a model. This is the 
main advantage of global over local (SAAM) methods. Ardjmand et al. [9] provided a detailed 
analysis of SBSA. Figure 6 shows the result of applying SAAM and SBSA for experiment 9, where the 
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Figure 6. Comparison of local and global sensitivity for Heating Load (HL).

As Figure 6 indicates, both SAAM and SBSA show that the least significant input is X6 (orientation)
for HL. The low influence of X6 is also expected according to the associated correlation in Table 8.
SAAM shows X3 (wall area) is the most significant input for HL, while SBSA shows that the most
significant attribute for HL is X4 (roof area). Though Figure 6 is useful in determining which input
attribute is the most and least sensitive, it does not show how the output variable changes with respect
to changes in input. In Figure 7, the change of HL is shown as a function of X4 and X6 for both
the SAAM and the SBSA techniques. Figure 7a shows that the orientation of the building (X6) is
insignificant since changing the value of the orientation from −3 to +3 standard deviation does not
change the output of HL. This result is consistent in both the SAAM and SBSA. However, the results in
Figure 7b show that the SAAM and SBSA produce different behaviors in terms of how the output reacts
to a change in X4. In other words, SAAM suggests that increasing the roof area (X4) requires more heat
within the building when the building is cold (HL). However, the SBSA suggests that increasing the
roof area (X4) ultimately requires less HL within buildings.

At first glance, the idea that as roof area increases, the HL would have a lower requirement may
not seem intuitive, but let us look at the interaction of 2 variables with respect to HL. First, as the roof
area increases, the ratio of the outside exposure with the exterior wall area decreases. The exterior
wall area has a smaller impact on the overall energy requirements (cold outside temperatures) due
to this lower ratio of square footage exposure to the total area being heated. This is mainly because
exterior walls (typically those with windows) have a much higher energy loss transfer compared to
roofs [37]. This is confirmed by an analysis completed by Agarwal [38] on the current dataset, in which
the relationship between roof areas and heating and cooling loads is discussed.
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Figure 7. Network output (HL) for varied (a) orientation (X6) and (b) roof area (X4).

Figure 8 shows the results of SAAM and SBSA associated with X1 (relative compactness). The figure
shows that the distribution of change is unimodal since the values of mean, mode, and median are
approximately the same for each of the seven different state values. The value of R2 shows a low
accuracy in terms of the trend found with SBSA. Both SAAM and SBSA represent a continuous increase
in HL when relative compactness increases. However, SBSA shows a more dramatic increase in HL
when the relative compactness changes. Notice that in the correlation shown in Table 8, the correlation
of X1 was very positive with respect to HL (Y1), which supports the SBSA relationship.Energies 2020, 13, 571 18 of 24 
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Figure 8. Network output (HL) for varied relative compactness (X1).

Figure 9 shows the variation of CL after applying SAAM and SBSA for experiment 18. Similar
insights that were obtained for HL (in regards to the significance of the input variables) are also
applicable for CL. For example, both SAAM and SBSA show that the least significant input is X6
(orientation). However, in terms of the most significant input attribute for CL, the results are inconsistent.
For example, SAAM suggests that X3 (wall area) is the most significant input, while SBSA suggests
that X4 (roof area) is the most significant input. As discussed previously, the literature supports the
fact that the roof area typically has more of an impact than the wall area. In addition, the correlation
for X4 is twice as much as X3 regarding both CL and HL.
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Figure 9. Comparison of local and global sensitivity for HL.

Figure 10 shows the behavior of CL when changing X1 (relative compactness). SAAM suggests
that, by increasing the relative compactness, CL remains fairly stable until, at one point, the value
of CL gradually decreases. This is much different than the results of SBSA. For example, the SBSA
technique suggests that, for the most part, a constant increase of CL is obtained when the relative
compactness increases. It should be noted that Figure 8 shows that SAAM and SBSA both suggest that
increasing the relative compactness also results in an increase in the value of HL. Sharizatul et al. [39]
reinforce this relationship in which the more compact the form of a building, the lower the cooling
load will be. Another interesting observation regarding relative compactness (X1) in this study is the
step increase after a value of about 0.75. It seems there are two different clusters of buildings. Figure 11
supports this observation since all relative compactness above 0.75 are two-story buildings. All of the
two-story buildings will have considerably higher ratios of wall-area-to-roof-area, which will result in
higher HL and CL.Energies 2020, 13, 571 19 of 24 
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Figure 10. Network output (CL) for varied relative compactness (X1).
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Figure 11. (a) Different states of relative compactness (X1); (b) different states of surface area (X2).

Readers of this article might be asking which SA should be trusted or is more accurate. This,
of course, is a difficult question to answer. However, the evidence would suggest that SBSA represents
true system dynamics more accurately. For example, Figure 11a shows that X1 consists of 10 states.
This figure also shows the mean of each state for the X1 variable. Likewise, Figure 11b shows that
X2 also has 10 states, and the respective mean for each state is also shown. State graphs like the ones
shown in Figure 11 help us to understand what one input attribute’s value is likely to be when another
variable is a certain value. For example, when X1 is at its lowest state value (highlighted in Figure 11a),
X2 is likely to be at its highest state value, which is highlighted in Figure 11b. This means that when
X1’s value is around 0.6, it is likely that X2’s value will be around 800. Furthermore, state graphs like
the ones presented below provide evidence that SAAM, although a popular technique, fails to capture
the true multivariate nature of complex system dynamics. For example, the average value of X2 is just
above 600. In SAAM, the average value for X2 (approximately 600) would be used for all value ranges
in X1 (approximately 0.6 to 1.0). As shown in Figure 11, this is not the case and will build inaccuracies
when estimating the value of the output variable. SBSA suggests that while X1 is valued at around 0.6,
the value of X2 should be much higher, at around 800.

Though two-dimensional (2D) plots are useful when it comes to understanding the underlying
behavior of the data being modeled, a deeper analysis can be conducted. Figure 12 shows a
three-dimensional (3D) relationship between X1 (relative compactness), X2 (surface area), and the
model’s forecasted value of HL, given that SBSA is employed. Based on this analysis, the relationships
that occur when X1 and X2 are varied simultaneously can be more easily understood. For example, as
X1 and X2 both decrease, so does the value of HL. Likewise, higher values of HL are the result of high
values of both X1 and X2. From a design perspective, the three-dimensional SBSA could help building
designers achieve more desirable building characteristics. For example, if a minimum value of HL is
desired, this can be obtained by minimizing both X1 (relative compactness) and X2 (surface area). The
problem with this relationship is that the correlation between X1 and X2 have opposite impacts on HL
and CL. In this scenario, some of the areas on the graph will not be achievable. This 3D graph can be
fitted to an equation, and then the designer can vary characteristics of the building in order to optimize
the HL and CL (while still keeping in mind other factors).
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5. Conclusions

Residential buildings consume a considerable proportion of total energy consumption, which
results in environmental pollution. This paper evaluated the application of both machine-learning and
deep-learning techniques in order to forecast the HL and CL of the residential buildings for a specific
dataset. Comparing the results of ANNs and DNNs showed that DNNs outperform ANNs in terms
of forecasting accuracy for HL and CL. Therefore, the results of this study support the application of
deep learning in the area of EPB. Though the experimental design focused on within this research
suggests that forecasting HL and CL in a combined or separated manner results in different predictive
accuracies, by adding an MA component as a preprocessing step, the quality of the models improved.
In addition to this step, the data used in this investigation was also normalized and randomized into
training, testing, and cross-validation data partitions. These simple yet effective steps were shown to
improve predictive capabilities when comparing the best model found in this study to other reported
models in the literature. Additional statistical analysis was performed on the models that performed
the best on independent testing data. This analysis included the development of a 95% prediction
interval, which gives practitioners additional information in terms of how well the model generalized
the dynamics within the mined data. The study presented in this article applied SAAM, which is a
local SA, as well as a global SA called SBSA. These techniques were invoked in order to analyze the
impact of each independent variable. In addition, these methods were compared and contrasted with
a few variables of interest. SA provided insight as to the effect each input had on predicting HL and
CL. In some cases, the analysis showed conflicting results. However, when certain input variables can
be correlated with certain other input variables, global sensitivity methods like SBSA provide more
realistic results than local SA approaches like SAAM. From a data-mining perspective, identifying and
eliminating less significant inputs can decrease the overall complexity of the system being modeled, as
well as lessen the time needed to develop a machine-learning method such as DNNs. By knowing the
most sensitive variables of a model, it is possible to leverage that model from a design standpoint,
especially in the field of EPB.
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Nomenclature

Abbreviation Description Abbreviation Description

EMARS
Evolutionary Multivariate

Adaptive Regression Splines
OLS Ordinary Least Squares

MARS
Multivariate Adaptive Regression

Splines
PLS Partial Least Squares

MI Mutual Information GPR Gaussian Process Regression

IRLS
Iteratively Reweighted Least

Squares
MPMR

Minimax Probability
Machine Regression

RF Random Forest MAE Mean Absolute Error
DT Decision Tree RMAE Root Mean Absolute Error

SVR Support Vector Machine MAPE
Mean Absolute Percentage

Error

ABC-KNN
Artificial Bee Colony-Based

K-Nearest Neighbor
WMAPE

Weighted Mean Absolute
Percentage Error

GA-KNN
Genetic Algorithm-Based

K-Nearest Neighbor
MSE Mean Square Error

GA-ANN
Adaptive Artificial Neural

Network with Genetic Algorithm
RMSE Root Mean Square Error

ABC-ANN
Adaptive ANN with Artificial Bee

Colony
R2 Coefficient of Determination

SVR Support Vector Regression VAF Variance Accounted For

ANOVA Analysis of Variance RAAE
Relative Average Absolute

Error

ANFIS
Adaptive Neuro-Fuzzy Inference

System
NS Nash-Sutcliffe

ELM Extreme Learning Machine MRE Mean Relative Error

SD Standard Deviation r
Pearson Correlation

Coefficient
SI Synthesis Index RRSE Root Relative Square Error

EM Expected Maximization RAE Relative Absolute Error
PCA Principal Component Analysis
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