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Abstract: Accurate, real-time estimation of battery state-of-charge (SoC) and state-of-health 
represents a crucial task of modern battery management systems. Due to nonlinear and battery 
degradation-dependent behavior of output voltage, the design of these estimation algorithms 
should be based on nonlinear parameter-varying models. The paper first describes the experimental 
setup that consists of commercially available electric scooter equipped with telemetry measurement 
equipment. Next, dual extended Kalman filter-based (DEKF) estimator of battery SoC, internal 
resistances, and parameters of open-circuit voltage (OCV) vs. SoC characteristic is presented under 
the assumption of fixed polarization time constant vs. SoC characteristic. The DEKF is upgraded 
with an adaptation mechanism to capture the battery OCV hysteresis without explicitly modelling 
it. Parameterization of an explicit hysteresis model and its inclusion in the DEKF is also considered. 
Finally, a slow time scale, sigma-point Kalman filter-based capacity estimator is designed and inter-
coupled with the DEKF. A convergence detection algorithm is proposed to ensure that the two 
estimators are coupled automatically only after the capacity estimate has converged. The overall 
estimator performance is experimentally validated for real electric scooter driving cycles. 

Keywords: electric vehicle; lithium-ion battery; estimation; Kalman filter; state-of-charge; state-of-
health; resistance; open-circuit voltage; battery capacity 

 

1. Introduction 

Modern battery management systems (BMSs), among other functionalities, include a number of 
algorithms for estimating key battery state variables such as state-of-charge (SoC) and remaining 
available charge capacity, and model parameters such as internal resistance [1]. The SoC estimate can 
be used for predicting the current vehicle range, as well as for identification of current battery 
operating point which is important from the standpoint of ensuring battery safety. On the other hand, 
the internal resistance and capacity estimates are the main indicators used for tracking the battery 
degradation level, i.e. estimation of battery state-of-health (SoH) [2]. Furthermore, almost every 
battery model parameter is changing with battery degradation, so that for robust SoC and SoH 
estimation, those changes should be accurately tracked, as well. 

Battery state and parameter estimation algorithms are often based on Kalman filters (KF), which 
in its basic linear version represent an optimal recursive solution for estimating hidden states of a 
linear, time-varying Gaussian system (i.e., probabilistic inference) [3]. While the Gaussian 
assumption holds in many cases based on the central limit theorem, the battery model is inherently 
nonlinear, which calls for application of nonlinear KF forms. Two of the most widely used nonlinear 
KFs are extended Kalman filter (EKF) and sigma-point Kalman filter (SPKF) [3]. The EKF relies on 
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analytical linearization of the model around a time-varying operating point (i.e., an expected value 
of the estimated random state), while SPKF statistically linearizes the model around several operating 
points (depending on the number of states that are estimated). 

Topic of state and parameter estimation of Li-ion battery cells has been addressed by many 
previous studies. One of the first implementations of dual extended Kalman filter-based (DEKF) 
estimator of SoC and resistance parameters can be found in [4]. Researchers have been upgrading the 
estimators ever since, e.g. using an adaptation mechanism for process noise variance recalculation 
[5], or applying more advanced filters such as SPKF [6] or particle filter (PF) [7]. These approaches 
are based on the assumption of constant model parameters/characteristics such as the SoC-dependent 
open-circuit voltage (OCV) characteristic 𝑈𝑜𝑐(𝑆𝑜𝐶)  or battery remaining capacity. Since those 
parameters are in fact dependent on SoH [8] and temperature [9], they should be estimated as well, 
for accurate and robust overall estimation. 

There are several studies that account for 𝑈௢௖(𝑆𝑜𝐶) variation with SoH by implementing the 
offline identified response surface model of 𝑈𝑜𝑐 with respect to SoC and remaining capacity [10–12]. 
Authors in [13] use the model migration method to adapt an offline trained model. An obvious 
disadvantage of this approach is related to the need of having a large data set from previously 
conducted aging experiments on the same cell type, as well as lack of temperature dependency in the 
response surface model. This disadvantage is tackled in this paper by describing the characteristic 𝑈𝑜𝑐(𝑆𝑜𝐶)  with a model whose parameters are estimated along the rest of model states and 
parameters within the DEKF structure. Moreover, this approach includes an adaptation mechanism 
of 𝑈𝑜𝑐(𝑆𝑜𝐶) which allows for identification of 𝑈𝑜𝑐(𝑆𝑜𝐶) hysteresis profile. 

Remaining capacity estimators based on EKF and PF can be found in [14], while a recursive 
approximate least-squares approach is proposed in [15]. In both cases the characteristic 𝑈𝑜𝑐(𝑆𝑜𝐶) is 
again considered as a constant-parameter dependence. Dual estimation of SoC and capacity can be 
found in [16], where authors use multiscale estimation with the online identified model, which can 
be regarded as a next step towards complete estimator. Certain weaknesses of that approach include: 
(i) Still an offline identified 𝑈𝑜𝑐(𝑆𝑜𝐶)  map is used, (ii) capacity estimate shows considerable 
variations in steady state, and (iii) the capacity estimator needs to be turned on manually after 25 min 
in order to ensure overall estimator stability. The multiscale estimator presented in this paper 
improves the capacity estimation accuracy and flexibility by using a more accurate SPKF and 
automated turning on the capacity estimator by means of applying a convergence detection 
algorithm. 

Finally, a fully-electric scooter-based experimental verification of the proposed battery 
estimators is conducted, including consideration of different temperature operating points. 

2. Experimental Setup 

The experimental setup includes the fully-electric scooter Govecs S2.6+, powered by the 3.3 kW 
BLDC electric motor and the battery pack of 400 Li-Ni0.33Mn0.33Co0.33O2 (Li-NMC) cells, connected in 
the 20 x 20 matrix [17], with the total nominal voltage of 72 V, and the total energy capacity of 4.1 
kWh. Battery pack is equipped with BMS which provides basic battery measurements and estimates 
accessible through the scooter CAN bus. 

Electric scooters became an attractive transportation solution in urban areas with mild climate 
conditions, thus contributing to the current transport electrification effort aimed at reducing traffic 
congestion, and air and noise pollution. There are already several strong electric scooter 
manufacturers in the EU (and worldwide), e.g., Govecs, Ujet, Hrowin, Torrot, etc. NMC-type Li-ion 
batteries represent a preferred energy storage solution in scooter applications [17], because they offer 
favorable energy density, while not experiencing high loads (in terms of battery C-rate) and not 
operating in extreme, particularly low temperature conditions, in those applications. 

For the research purposes, the scooter has been equipped with the measurement and telemetry 
system illustrated in Figure 1. The system is built around the Artronic SkyTrack telemetry module, 
custom-programmed for the acquisition and storage of measurement data, as well as for 
communication with the server through GPRS connection in real time. The measurement system 
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consists of voltage and current measurement on battery output nodes, and acquisition of data 
available from the scooter CAN bus. The battery current is measured by using a precise, low-offset 
current transducer (LEM CAB 300, [18]), while the battery voltage is measured through a 12-bit 
analogue input of the telemetry module. Those two measurement values are sampled every 0.1 s and 
stored in the module. Selected values from the scooter internal CAN bus, such as battery voltage, 
current and temperature, vehicle’s distance travelled, motor on/off flag, as well as the vehicle’s 
current GPS coordinates and longitudinal velocity are stored with the sample rate of 1 s. GPRS 
connection is used to send data relevant for real-time tracking of scooter, such as its GPS coordinates, 
battery SoC, and other diagnostic parameters. The whole measurement dataset, including the fast 
current and voltage measurements, is stored in the telemetry module memory card and can be 
occasionally downloaded through USB connection to a local PC. 

 
Figure 1. Scooter measurement and telemetry system. 

3. Battery Pack Model 

This section first presents a battery mathematical model used as a basis for SoC estimator design. 
Next, models employed for estimation of battery internal parameters used by the SoC estimator are 
presented. Finally, two offline identification experiments are described, which have been conducted 
to determine battery model parameters that are considered as constant or used in estimator 
verification. 

3.1. Mathematical Model 

The battery model used in this research is based on the equivalent-circuit model (ECM) showed 
in Figure 2, which consists of (i) a voltage source dependent on the battery SoC, i.e. the OCV 
characteristic 𝑈𝑜𝑐(𝑆𝑜𝐶), (ii) an ohmic resistance 𝑅𝑜ℎ𝑚 which models voltage drops in the electrolyte 
and electrical contacts, and (iii) a single polarization RC term (𝑅𝑝 and 𝐶𝑝) which models the slow 
battery dynamics, i.e. diffusion process. It should be noted that the diffusion process is more 
accurately modelled with the Warburg element [19] which is here avoided due to the complexity, but 
it can be approximated by a single or more RC elements connected in series (a single RC element is 
usually used as a good trade-off between simplicity and accuracy [20]). Moreover, note that the 
polarization resistance 𝑅௣ in Figure 2 models all voltage drops that are not related to the ohmic one, 
including that related to charge transfer. 
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Figure 2. Battery equivalent circuit model used in the DEKF. 

The above ECM can be described by the following discrete-time time-varying state-space 
mathematical model [4]: 

൤𝑆𝑜𝐶(𝑘)𝑖௣(𝑘) ൨ = ቈ1 00 𝑒ି ೠ்ఛ೛(ௌ௢஼(௞ିଵ))቉ ൤𝑆𝑜𝐶(𝑘 − 1)𝑖௣(𝑘 − 1) ൨ + ൦ − 𝑇௨𝐶௡1 − 𝑒ି ೠ்ఛ೛൫ௌ௢஼(௞ିଵ)൯൪ 𝑖௕(𝑘 − 1) (1) 

𝑈௕(𝑘) = 𝑈௢௖൫𝑆𝑜𝐶(𝑘)൯ − 𝑅௢௛௠(𝑘)𝑖௕(𝑘) − 𝑅௣(𝑘)𝑖௣(𝑘) (2) 

where 𝑇𝑢 is the filter sampling time, 𝐶𝑛 is the battery capacity, 𝜏𝑝 = 𝑅𝑝𝐶𝑝 is the polarization term 
time constant, and 𝑘 is discrete sample step. 

3.2. OCV Model 

Since the battery OCV is a nonlinear function of SoC, and to a lower extent temperature [9] and 
SoH [8], it is desirable to describe it using a parametric model such as the one used in [4]: 
 𝑈௢௖(𝑆𝑜𝐶) = [𝐾଴ 𝐾ଵ 𝐾ଶ 𝐾ଷ 𝐾ସ] ൤1 − 1𝑆𝑜𝐶 −𝑆𝑜𝐶 𝑙𝑛(𝑆𝑜𝐶) 𝑙𝑛(1 − 𝑆𝑜𝐶)൨்

= 𝒌𝒐𝒄𝒙𝒐𝒄 
(3) 

where vector 𝒌𝑜𝑐 contains 𝑈𝑜𝑐-model parameters that need to be estimated. 

3.3. Model of Internal Resistance Parameters 

The presented ECM has two resistance parameters in its model. Both of those resistances are 
known to depend on SoH and temperature [21]. So, it is important to have them estimated along with 
the model states. Since there is no resistance model feasible for online estimator implementation, 
resistances are modelled as random-walk variables: ൤𝑅௢௛௠(𝑘)𝑅௣(𝑘) ൨ = 𝑰 ∙ ൤𝑅௢௛௠(𝑘 − 1)𝑅௣(𝑘 − 1) ൨ + 𝒓 (4) 

where 𝑰 is the identity matrix, and 𝒓 is the vector containing variances of both resistances. Other 
variable model parameters, such as those from Equation (3), can be modelled using this approach, as 
well. 

3.4. Identification Experiments 

The battery model parameters that are assumed to be constant or used in estimator verification 
should be determined by means of specific (targeted) offline identification tests. 
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3.4.1. Battery OCV Curve 

The curve 𝑈𝑜𝑐(𝑆𝑜𝐶) has been identified during low- and constant-load experiments (during 
which the vehicle was in rest, while only considerable battery load was scooter headlight), in which 
case any voltage drop in the battery can be neglected due to the low current (~𝐶/50), so that the 
measured voltage 𝑈𝑏 can be taken as the OCV 𝑈𝑜𝑐. The SoC was estimated by Coulomb counting, 
i.e. by integrating the measured current. The battery capacity was also identified in this experiment 
by integration of measured current during the process of full battery discharge, which gave 𝐶𝑛 =49.57 Ah. Graphical illustration of the identification experiment and related results are shown in 
Figure 3. The identified curve 𝑈𝑜𝑐(𝑆𝑜𝐶) has been used in validation of 𝑈𝑜𝑐 estimation results (see 
next sections). 

 
Figure 3. (a) Low- and constant-load experiment: Current, voltage, and SoC responses, and 
illustration of (b) capacity and (c) 𝑈𝑜𝑐(𝑆𝑜𝐶) identification. 

Polarization Time Constant 

This parameter can be identified during the battery relaxation periods, i.e. parts of driving cycle 
where current has dropped to zero and remained equal to zero for at least 15 min. The relaxation 
transients to be identified were extracted from the voltage response (see Figure 4a,b) and 
approximated with the ECM model shown in Figure 4c. 

The identified values of relaxation time constant 𝜏𝑝(𝑆𝑜𝐶) are shown in Figure 4d. These values 
were then approximated with a 3rd-order polynomial in dependence on SoC, and that polynomial 
was later used for calculation of 𝜏𝑝 at every estimator step based on the current, slowly changing 
SoC working point. 

It is important to note that the polarization time constant can also vary with battery temperature 
and aging [22,23]. These effects are neglected in the estimator problem formulation in this paper, i.e. 
parameters of the characteristic 𝜏௣(𝑆𝑜𝐶) are not estimated online. This is motivated by the following 
main reasons: i) 𝜏௣ is not directly involved in the ECM voltage equation (see Equation (2)), thus 
making it weakly observable in the proposed estimator design; ii) error in 𝜏௣ will cause an error in 
voltage modelling during the transient periods (i.e., before voltage has relaxed), so that the 
polarization dynamics may influence estimator accuracy only in transient conditions. As needed, the 
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slow temperature- and aging-influenced polarization dynamics can be accounted for in the estimator 
design either by extending the 𝜏௣  characteristic with the temperature and SOH inputs or by 
considering 𝜏௣ as an additional parameter to be estimated, which is a subject of future work. 

 

Figure 4. Illustration of 𝜏𝑝  identification procedure: (a) Measured battery voltage responses, (b) 
extracted voltage relaxation periods, (c) illustration of typical Li-ion cell voltage response after the 
current steps with the approximation equation, taken from [1], and (d) 𝜏𝑝(𝑆𝑜𝐶) identification results. 

4. State and Parameter Estimator 

This section deals with design, parametrization, and verification of the SoC estimator. It is 
designed as a dual state and parameter estimator, thus allowing for accompanying estimation of 
selected ECM parameters (i.e., the battery internal resistances and OCV parameters). A special 
attention is devoted to estimation of battery OCV hysteresis based on two complementary 
approaches (adapting the OCV parameters to current sign change or using an explicit hysteresis 
model). 

4.1. DEKF-Based State and Parameter Estimator 

States and parameters of the ECM are estimated with the DEKF, as a well-known approach in 
the model-based estimation problems where model states and slowly varying model parameters are 
to be estimated simultaneously [1]. The DEKF equations are not listed here due to paper size 
constraints, and they can be found in [24]. DEKF consists of two filters operating in parallel based on 
the state and parameter models: 

State estimator state-space model: Parameter estimator state-space model:  𝒙(𝑘) = 𝒇(𝒙(𝑘 − 1), 𝒖(𝑘 − 1), 𝒘(𝑘 − 1)) 𝜽(𝑘) = 𝜽(𝑘 − 1) + 𝒓(𝑘 − 1) 
(5) 𝒚(𝑘) = 𝒉(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘), 𝒗(𝑘)) 𝒚(𝑘) = 𝒉(𝒙(𝑘), 𝒖(𝑘), 𝜽(𝑘), 𝒗(𝑘)) 

where 𝒙 and 𝒖 are the vectors of model states and inputs, respectively, 𝒘 is the vector of state 
variances (with the corresponding covariance matrix 𝑸𝒙), 𝜽 is the vector of model parameters with 
their variances contained in vector 𝒓 (with the corresponding covariance matrix 𝑸𝜽), 𝒉 is the model 
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output function (the same output function is used in both state and parameter models), 𝒚 is the 
measured model output vector with measurement noise and corresponding covariance matrix 
denoted by 𝒗 and 𝑹, respectively. The complete, discrete-time state-space model for simultaneous 
state and parameter estimation then reads (cf. Equations (1)–(4)): 

𝒙ෝ = ൤𝑆𝑜𝐶(𝑘)𝑖௣(𝑘) ൨ = ቈ1 00 𝑒ି ೠ்ఛ೛൫ௌ௢஼(௞ିଵ)൯቉ ൤𝑆𝑜𝐶(𝑘 − 1)𝑖௣(𝑘 − 1) ൨ + ൦ − 𝑇௨𝐶௡1 − 𝑒ି ೠ்ఛ೛൫ௌ௢஼(௞ିଵ)൯൪ (𝑖௕(𝑘 − 1) + 𝑤) (6) 

𝜽෡ = ቎𝑅௢௛௠(𝑘)𝑅௣(𝑘)𝒌𝒐𝒄் (𝑘) ቏ = 𝑰 ∙ ቎𝑅௢௛௠(𝑘 − 1)𝑅௣(𝑘 − 1)𝒌𝒐𝒄் (𝑘 − 1) ቏ + 𝒓 (7) 

𝑦(𝑘) = 𝑈௕(𝑘) = 𝒌௢௖𝒙௢௖ − 𝑅௢௛௠(𝑘)𝑖௕(𝑘) − 𝑅௣(𝑘)𝑖௣(𝑘) + 𝑣 (8) 

The state estimator model, given by Equations (6) and (8), is considered linear in state equation 
under the assumption that the nonlinearity of function 𝜏𝑝(𝑆𝑜𝐶)  can be neglected. The only 
nonlinearity resides in the output equation of the state estimator, related to the 𝒙𝑜𝑐  term (see 
Equation (3)), so that an EKF is finally used as a model state estimator. On the other hand, the 
parameter estimator model, given by Equations (7) and (8), is linear, so that the estimator reduces to 
KF. 

4.2. Estimator Parametrization 

The DEKF needs to be properly parametrized. For instance, appropriate statistic parameters 
such as process and output noise covariances 𝑸 and 𝑅 should be determined offline. Polarization 
time-constant 𝜏𝑝  was assumed to be degradation-invariant and used as the identified SoC-
dependent profile (see previous section), while battery capacity was in this case taken as a constant 
value that was measured as described in the previous section. This section also describes an estimator 
adaptation mechanism that indirectly compensates for the influence of unmodelled hysteresis of 
curve 𝑈𝑜𝑐(𝑆𝑜𝐶). 

4.2.1. DEKF Covariance Matrices Parametrization 

The measurement variable in the DEKF model is the battery output voltage 𝑈𝑏 (see Equation 
(8)). Its measurement noise has been estimated by approximating the voltage measurement error 
histogram with normal distribution, as shown in Figure 5a. The parameter 𝜇 identified in Figure 5a 
is the voltage noise mean value (expectation), while 𝜎 is the standard deviation which, after being 
squared, yields the measurement covariance 𝑅 = (53 ∙ 10ିଷ)ଶ mV2. The parameter 𝐿𝑠𝑡𝑎𝑡 in Figure 5a 
is the result of Lilliefors normality test. Further in this paper, we calculate 𝐿𝑠𝑡𝑎𝑡 for estimator voltage 
residuals and compare it to the calculated 𝐿𝑠𝑡𝑎𝑡 = 0.0436 of voltage sensor noise (see Figure 5a) to 
check how similar they are, i.e. how accurate is the estimator. 

 
Figure 5. (a) Estimated voltage sensor noise, (b) amplitude of current sensor noise with respect to 
measured current, taken from [18]. 
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The process noise relates to the current sensor noise, as can be seen from Equation (6). The 
current is in this case measured with LEM CAB 300 sensor, whose datasheet specifies a linear relation 
between measured current and magnitude of its measurement error (see Figure 5b). The standard 
deviation of current sensor noise can be estimated as a value three times lower than the noise 
magnitude, and covariance matrix is then the diagonal matrix of current sensor noise variances: 𝜎௫ = 1.75350 ∙ 13 ∙ 𝑖௕ → 𝑸௫ = 𝑑𝑖𝑎𝑔(𝜎௫ଶ, 𝜎௫ଶ) = 𝑑𝑖𝑎𝑔 ቆ൬ 𝑖௕600൰ଶ , ൬ 𝑖௕600൰ଶቇ (9) 

4.2.2. Adaptation Mechanism 

The relatively simple battery model given by Equations (1) and (2) does not take into account 
some secondary, but generally influential effect such as the hysteresis of OCV curve 𝑈𝑜𝑐(𝑆𝑜𝐶) [25]. 
Since the hysteresis cannot be directly measured in this case, an adaptation mechanism is introduced 
in the form of single-step increase of the elements of parameter covariance submatrix 𝑸𝜽[3,7; 3,7] 
when the start or end of charging is detected. This approach allows faster convergence of the 𝑈𝑜𝑐 
parameters (written in 𝒌𝑜𝑐 ), which abruptly change when the sign of battery current (or SoC 
derivative) occurs due to the existence of hysteresis of 𝑈𝑜𝑐(𝑆𝑜𝐶) curve. Note that the battery current 
for the given scooter changes its sign only when the scooter is exposed to change from normal driving 
to charging or vice versa, because it does not incorporate regenerative braking. 

4.3. Estimation Results 

The presented DEKF was validated based on the recorded scooter real city driving cycle data 
consisting of seven load cycles (i.e., charge/discharge cycles) lasting for 150 hours in total. The 
obtained estimation results are shown in Figure 6. Since the battery SoC cannot be measured, and 
there is no fully reliable SoC estimate available, the DEKF accuracy is evaluated by analyzing a 
posteriori voltage residual, i.e. difference between the recorded voltage 𝑈𝑏 and the voltage calculated 
from output Equation (8) using a posteriori estimated states and parameters. The perfectly accurate 
filter would reduce the voltage residual to the voltage sensor noise, i.e. the residual mean value, 
standard deviation, and 𝐿𝑠𝑡𝑎𝑡 would be close to the values from Figure 5a. 

Figure 6a shows the voltage residuals histogram including the corresponding normal 
distribution fit and its parameters. Residual mean value is low, while standard deviation and 𝐿𝑠𝑡𝑎𝑡 
are larger than those of the voltage sensor noise. The estimated values of resistances 𝑅𝑜ℎ𝑚 and 𝑅𝑝 
are shown in Figure 6b,d, respectively, vs. SoC and color-mapped with respect to battery 
temperature. These results point out that both resistances show negative correlation with respect to 
temperature (note: 𝜌𝑋,𝑌 stands for correlation coefficient between vectors 𝑋 and 𝑌, and are obtained 
by using the MATLAB function corrcoef), which is expected for the Li-ion cell resistances [21]. As 
of the correlation with respect to SoC (based on visual inspection of Figure 6b,d), both 𝑅𝑜ℎ𝑚 and 𝑅𝑝 
do not seem to be correlated with SoC, which is an expected result for the particular SoC range, based 
on the estimator results from the available literature [16,21,26] in which resistances more significantly 
depend on SoC only at the very low and very large SoC bands. The estimated 𝑈𝑜𝑐 curves during 
charging and discharging intervals are shown in Figure 6c, along with the “measured” one adopted 
from Figure 3c. Evidently, the estimated and “measured” curves are in good agreement, and a 
relatively small hysteresis is apparent (i.e., the charging and discharging curves do not overlap). 

The two sets of estimated 𝑈𝑜𝑐(𝑆𝑜𝐶) curves from Figure 6c have been averaged and shown as 
dotted lines in Figure 7a. Half of the difference between those two curves yields the estimate of 
battery hysteresis voltage which is shown in Figure 7b. The estimated hysteresis voltage trend is in 
line with the results from the literature (e.g., [25]), except in the low-SoC region (𝑆𝑜𝐶 < 20%), where 
the estimated hysteresis is larger than what would be expected based on the literature. 
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Figure 6. DEKF verification results: (a) Voltage residual histogram including normal distribution fit, 
(b) and (d) estimated resistances 𝑅𝑜ℎ𝑚 and 𝑅𝑝, (c) estimated and recorded 𝑈𝑜𝑐(𝑆𝑜𝐶) curves for a 
long set of real-life discharging and charging cycles. 

 

Figure 7. (a) Replot of Figure 6c with added average values of estimated 𝑈𝑜𝑐(𝑆𝑜𝐶) curves for charge 
and discharge periods, (b) estimated hysteresis voltage. 

Now, when the hysteresis voltage is known, the adaptation mechanism may be omitted, and the 
hysteresis can be accounted for directly through a proper 𝑈𝑜𝑐(𝑆𝑜𝐶) model extension. A complex, 
dynamic hysteresis model [27] is not necessary in this case, because the particular scooter does not 
support regenerative breaking (i.e., its battery is not exposed to often changes of current sign). A 
simple, instantaneous hysteresis model can be described by introducing an auxiliary variable 𝑠 
described as [4]: 

𝑠(𝑘) = ൞ 1, 𝑖௕(𝑘) > 3ඥ𝑄௫ −1, 𝑖௕(𝑘) < −3ඥ𝑄௫𝑠(𝑘 − 1), 𝑖௕(𝑘) < ห3ඥ𝑄௫ห  (10) 

(where 3ඥ𝑄௫ is the current sensor noise amplitude calculated using the current sensor variance from 
Equation (9)) and using it to modify the output equation (cf. Equation (8)): 
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𝑦(𝑘) = 𝑈௕(𝑘) = 𝑈௢௖൫𝑆𝑜𝐶(𝑘)൯ − 𝑅௢௛௠(𝑘)𝑖௕(𝑘) − 𝑅௣(𝑘)𝑖௣(𝑘) + 𝑠(𝑘)𝑀଴(𝑘) + 𝑣 (11) 
where 𝑀0 is the hysteresis voltage value obtained from data shown in Figure 7b by means of 10th-
order approximation polynomial. Described hysteresis is used instead of the adaptation mechanism 
in the rest of the paper. 

5. Battery Capacity Estimation 

This section presents the battery remaining charge capacity estimator, and its integration into 
the overall SoC and capacity estimation algorithm. The capacity estimator is supplemented with a 
convergence detection algorithm to perform automatic coupling of the capacity estimator with the 
SoC estimator after the capacity estimate has converged. Finally, the complete estimation algorithm 
is verified for real driving battery load cycles. 

5.1. Capacity Estimation Model 

Since the battery capacity parameter is not directly involved in the model output equation (i.e., 
Equation (8)), it is not convenient to estimate it as another random-walk parameter in the DEKF [15]. 
Instead, the model for capacity estimation could be defined as [15]: 𝐶(𝑘) = 𝐶(𝑘 − 𝐿) + 𝑟஼ (12) 𝑆𝑜𝐶(𝑘 − 𝐿 + 1) − 𝑆𝑜𝐶(𝑘) = 𝑇௨𝐶(𝑘) ෍ 𝑖௕(𝑗)௞௝ୀ௞ି௅ାଵ + 𝑣ௌ௢஼(𝑘) (13) 

where 𝐶(𝑘)  is capacity, 𝑟𝐶  is random walk noise for capacity parameter model with the 
corresponding covariance 𝑄𝐶, 𝐿 is the number of basic (DEKF) sampling steps between two capacity 
estimates, and 𝑣𝑆𝑜𝐶 is measurement noise of SoC signal difference with the corresponding covariance 𝑅𝑆𝑜𝐶. 

The model output is the SoC difference between two capacity estimates, while its input is the 
cumulative sum of battery current between those time instances. The SoC, as an output term, cannot 
be measured, but can be estimated by using the previously designed DEKF (both, estimates of SoC 
mean value and its variance are available). By looking at Equation (13) it can be seen that capacity 
estimate cannot be updated at the same rate as DEKF, because the signal-to-noise ratio of SoC 
estimate would be too low for the SoC dynamics being much slower than the current dynamics. The 
capacity estimator is therefore executed every 𝐿 time steps, where 𝐿 is in the range of 600–6000, i.e. 
1 to 10 min. The overall estimator, i.e. the previously discussed DEKF extended with the capacity 
estimator, is shown in Figure 8. 

 

Figure 8. Overall algorithm for dual SoC and remaining charge capacity estimation. 

5.2. SPKF-Based Capacity Estimator 

Since the battery capacity model output equation is distinctively nonlinear, the EKF-based 
estimator application has been found to give too noisy estimates with slow convergence rate. This is 
an expected result since EKF uses analytic linearization through Taylor series expansion around the 
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current operating point, i.e. around the state variable (in this case capacity 𝐶) mean value. Another, 
more coherent approach to this problem is statistical linearization which linearizes the model at 
multiple points drawn from prior distribution of 𝐶. The estimator derived using this approach is 
called SPKF [3]. There is a couple of SPKF versions which differ in calculation of sigma-points for 
linearization; in this paper, the method called central-difference Kalman filter (CDKF) is used because 
it provides simple parametrization without compromising accuracy [3]. Comparison between EKF- 
and SPKF-based capacity estimation, shown in Figure 9, clearly illustrates the benefits of using SPKF 
when compared to EKF. 

 

Figure 9. Comparison between EKF- and SPKF-based capacity estimation, where the estimated 
capacity is not fed back to DEKF-based state and parameter estimator. 

It is important to note that in the case shown in Figure 9 the capacity estimates were not fed back 
into the state model of the DEKF, i.e. into Equation (6). If this were the case, i.e. if the state model of 
DEKF was updated with capacity estimates every 𝐿 time stamps, the estimator would not converge 
to correct estimates, as shown in Figure 10a–c. This is because every model parameter is estimated in 
a coupled manner, so there are multiple parameter combinations where output voltage residual 
would be minimized. For instance, Figure 10d shows an estimate of 𝑈𝑜𝑐(𝑆𝑜𝐶) which is narrower 
than the actual curve, because the capacity is estimated higher than the actual one. 

 
Figure 10. SPKF-based capacity estimation with capacity adaptation of the DEKF from the start, i.e. 𝑡𝑠𝑡𝑎𝑟𝑡 = 0: (a) – (c) estimated capacity vs. time with zooms, (d) estimated and measured 𝑈𝑜𝑐(𝑆𝑜𝐶) 
curves. 

The capacity estimate feedback to the DEKF should be, therefore, turned on with some delay, 
i.e. until capacity estimate convergence is detected. For that purpose, capacity convergence detection 
algorithm has been designed, as presented in the next subsection. 
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5.3. Capacity Convergence Detection Algorithm 

The capacity convergence detection algorithm is based on monitoring of the normalized 
estimation error (NEE) [28]: 𝜖௬(𝑘) = ൫𝑦(𝑘) − 𝑦ො(𝑘)൯𝑃௬ି ଵ൫𝑦(𝑘) − 𝑦ො(𝑘)൯் (14) 

where 𝑦(𝑘) is the SoC estimate generated by the DEKF, 𝑦ො(𝑘) is the SoC calculated from the SPKF 
model output, and 𝑃𝑦 is the SPKF innovation matrix (which is regularly calculated as a part of SPKF; 
note that it is a scalar in the particular case of single estimated parameter—the capacity). The 
convergence algorithm monitors the NEE, and when it is lower than some predefined value during 
some predefined number of consecutive time steps, the convergence is claimed. 

5.4. Capacity Estimation Results 

Results of SPKF-based capacity estimation algorithm with delayed and automatically calculated 
(through capacity convergence detection algorithm) start of capacity update (i.e., 𝑡𝑠𝑡𝑎𝑟𝑡) within the 
DEKF state model (version with hysteresis model included was used) are shown in Figure 11. The 
capacity estimates plotted versus time are shown in Figure 11a along with the “measured” capacity 
(see Figure 3b for details about capacity identification). Capacity convergence has automatically been 
detected after 2.9 h and from that point on, SPKF has been coupled to the DEKF. Figure 11b shows 
capacity estimates during the discharge periods plotted versus SoC and color-mapped with respect 
to temperature. Capacity shows expected (based on the [29]) positive correlation with the 
temperature. 

 
Figure 11. SPKF-based capacity estimation with automatic convergence detection: (a) Capacity 
estimates vs. time, (b) capacity estimates vs. SoC and temperature. 

Figure 12 shows the same plots as in the case of Figure 6, but instead of using the adaptation 
mechanism the estimator relies on the explicit hysteresis model and has the capacity estimation 
included. The voltage residual is shown in Figure 12a together with the usual statistics. This residual 
has higher Lstat value than the one from Figure 6a, which may be explained by the influence of added 
capacity estimation. The estimates of 𝑅𝑜ℎ𝑚 and 𝑅𝑝, plotted in Figure 12b,d with respect to SoC and 
temperature, respectively, are similar to those from Figure 6b,d, but with slightly higher correlation 
with temperature for both resistances. Finally, it should be noted that there are no distinguishable 
sets of estimated 𝑈𝑜𝑐  curves in Figure 12c (unlike in Figure 6c), because estimated 𝑈𝑜𝑐(𝑆𝑜𝐶) now 
describes the central curve while the hysteresis is accounted for in the model (see Figure 7 and 
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Equations (10) and (11)). Estimated 𝑈௢௖(𝑆𝑜𝐶) is slightly larger than the recorded one (see Figure 3c 
for details about 𝑈௢௖(𝑆𝑜𝐶) identification) because the latter is discharge 𝑈௢௖(𝑆𝑜𝐶) curve while we 
estimate the average 𝑈௢௖(𝑆𝑜𝐶) since hysteresis is explicitly modelled in this case. 

 

Figure 12. DEKF verification results with added hysteresis model and capacity estimation: (a) Voltage 
residual histogram including normal distribution fit, (b) and (d) estimated resistances 𝑅𝑜ℎ𝑚 and 𝑅𝑝, 

(c) estimated and recorded 𝑈𝑜𝑐(𝑆𝑜𝐶) curves. 

6. Conclusion 

An algorithm for dual estimation of battery state-of-charge (SoC) and remaining charge capacity 
has been proposed, which is aimed to be accurate over the whole battery lifetime and real-driving 
conditions including varying ambient temperatures. This was achieved by simultaneous estimation 
of relevant battery degradation-dependent parameters such as internal resistances and parameters of 
open-circuit voltage vs. SoC characteristic, 𝑈௢௖(𝑆𝑜𝐶). 

To this end, the dual extended Kalman filter-based SoC estimation algorithm has been extended 
to estimate parameters of the characteristic 𝑈௢௖(𝑆𝑜𝐶) along with the resistance parameters. This 
extension allows the DEKF to adapt for 𝑈௢௖(𝑆𝑜𝐶)  variations and capture its hysteresis without 
explicitly modelling it. The latter can be useful in cases when the exact hysteresis profile is not known 
in advance or when it needs to be updated at the given state-of-health level without a specific 
identification experiment.  

Next, a battery capacity estimator has been designed as a separate estimator, as it is based on a 
different model than the one that has been used in the DEKF design. Moreover, capacity estimation 
is meant to be executed on a significantly slower time scale than the DEKF. It has been shown that 
the EKF-based capacity estimator gives rather inconsistent estimates with a slow convergence rate, 
which is explained by a distinctively nonlinear capacity model. Capacity estimator has, therefore, 
been designed by using a sigma-point Kalman filter (SPKF). Furthermore, it has been demonstrated 
that SoC and capacity estimators (i.e., DEKF and SPKF, respectively) cannot be started in a coupled 
manner, unless it is ensured that both estimators have converged. A capacity convergence detection 
algorithm has, therefore, been designed to automatically couple the two estimators. 

Finally, the overall estimator has been successfully verified based on real driving cycle data 
acquired by using a fully electric scooter equipped with a telemetry measurement system. The DEKF 
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output voltage estimation residual distribution was confirmed to be close to the voltage measurement 
noise, while resistance estimates showed expected correlations with temperature. The estimated 
capacity was shown to be close to the measured one and expectedly correlated with temperature, as 
well. 

Future work will be directed towards further extensions and verifications of the proposed 
estimator to account for temperature- and aging-dependent variations of the polarization time 
constant 𝜏௣ and further analyze the sensitivity of estimator for broader operating conditions (e.g., 
wider temperature range), respectively. The emphasis will be on using the estimator to track battery 
degradation features in support of modelling the battery degradation process. 
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Abbreviations 

List of used abbreviations is given in Table 1. 

Table 1. List of used abbreviations. 

Abbreviation Description Abbreviation Description 
BMS Battery management system OCV Open-circuit voltage 

DEKF Dual extended Kalman filter PF Particle filter 
ECM Equivalent circuit model SoC State-of-charge 
EKF Extended Kalman filter SoH State-of-health 
KF Kalman filter SPKF Sigma-point Kalman filter 

NEE Normalized estimation error   

Appendix A. Estimator parameters 

The overall estimation algorithm is parametrized as given in Table 2. 

Table 2. List of estimator parameters. 

Parameter description and its mathematical notation Value 
Variance of 𝑅௢௛௠ estimation, 𝑸𝜽[1,1] (0.85 ∙ 10ି଼)ଶ 

Variance of 𝑅௣ estimation, 𝑸𝜽[2,2] (0.85 ∙ 10ି଼)ଶ 
Variance of 𝑈௢௖(𝑆𝑜𝐶) estimation, 𝑸𝜽[3,7; 3,7] (0.85 ∙ 10ି଻)ଶ 

Initial SoC, 𝑆𝑜𝐶(0) 93 
Initial polarization current, 𝑖௣(0) 0 

Initial polarization resistance, 𝑅௢௛௠(0) 50 ∙ 10ିଷ 
Initial polarization resistance, 𝑅௣(0) 25 ∙ 10ିଷ 

Initial 𝑈௢௖ parameter, 𝐾଴ 69 
Initial 𝑈௢௖ parameter, 𝐾ଵ 78 ∙ 10ିଷ 
Initial 𝑈௢௖ parameter, 𝐾ଶ −10 
Initial 𝑈௢௖ parameter, 𝐾ଷ 0.87 
Initial 𝑈௢௖ parameter, 𝐾ସ −0.88 

Scaling factor of submatrix 𝑸𝜽[3,7; 3,7] bump in adaptation mechanism (see Section 4.2.2) 10ଵ଴ 
NEE threshold value (see Section 5.3) 100 

Consecutive time steps NEE has to be lower than the above threshold (see Section 5.3) 10 
Ratio between SPKF and DEKF sampling time, 𝐿 (see Section 5.1) 3000 
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