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Abstract: Finding optimal panel tilt angle of photovoltaic system is an important matter as it would
convert the amount of sunlight received into energy efficiently. Numbers of studies used various
research methods to find tilt angle that maximizes the amount of radiation received by the solar panel.
However, recent studies have found that conversion efficiency is not solely dependent on the amount
of radiation received. In this study, we propose a solar panel tilt angle optimization model using
machine learning algorithms. Rather than trying to maximize the received radiation, the objective is
to find tilt angle that maximizes the converted energy of photovoltaic (PV) systems. Considering
various factors such as weather, dust level, and aerosol level, five forecasting models were constructed
using linear regression (LR), least absolute shrinkage and selection operator (LASSO), random forest
(RF), support vector machine (SVM), and gradient boosting (GB). Using the best forecasting model,
our model showed increase in PV output compared with optimal angle models.

Keywords: solar panel; machine learning; solar irradiance

1. Introduction

Recently, research and use of photovoltaic power generation have been increasing worldwide.
With issues such as depletion of natural resources and environmental pollution, securing sustainable
green energy and using it more effectively became important. In particular, photovoltaic power
generation has attracted a great deal of attention by using semi-permanent energy sources such as solar,
but efficient development has been limited due to factors such as location, climate, and installation type.

There have been numerous efforts to implement the photovoltaic systems in South Korea. The
country relied heavily on the imports of fossil fuels as its source of energy and its energy-consumption
rate is among world’s top 10 [1]. Nonetheless, due to the negative effects the fossil fuels generate to the
environment, the Korean government plans to build rural-area photovoltaic (PV) systems. Following
the trend, numerous studies have been conducted by Korean researchers in terms of PV systems
including topics such as the regional differences of optimal orientation of PV systems and optimal PV
model under residential conditions to minimize the cost [2,3].

Solar energy gets converted into electricity using photovoltaic (PV) technology, which receives
solar irradiance from its panel as a source of energy. Roman [4] noted that how much of electricity a
solar system produces depends on how much sunshine it receives. Therefore, the more a PV collects,
the more energy it produces. Accordingly, previous studies have focused on estimating solar radiation
and the optimal tilt angle of the solar panel to maximize the amount of solar irradiation. Jamil et al. [5]
estimated availability of solar radiation for south-facing flat surfaces in humid subtropical climatic
region of India, and monthly, seasonal, and annual optimum tilt angles were estimated. Benghanem [6]
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analyzed the optimal choice of the tilt angle for the solar panel in order to collect the maximum solar
irradiation for Madinah, Saudi Arabia. Wei [7] constructed forecasting models to estimate surface solar
radiation on an hourly basis and the solar irradiance received by solar panels at different tilt angles, to
enhance the capability of PV systems in Tainan City, Taiwan.

Nevertheless, amount of sunlight reaching at PV panel is not a sole factor in expecting maximum
power generated. Although not as impactful as solar radiation, factors such as elevation, humidity, and
weather condition were found to be other important variables in determining solar power generation [8].
Dinçer and Meral [9] found that factors such as cell temperature, MPPT (maximum power point
tracking), and energy conversion efficiency affect solar cell efficiency. Since each PV module consists
of different solar cell structures, materials, and technologies, it is difficult to expect a unified spectral
response when equal amount of solar radiation was given.

As such, finding the optimal tilt angle of a solar panel to receive maximum sunlight does not
guarantee the PV module to exploit it fully. Martin and Ruiz [10] analyzed the angular loss of the
incident radiation and the surface soil. They calculated the optical losses under a certain field condition
relative to the normal incidence situation, of which electrical characteristics of a PV module is applied
with a clean surface. They found that dust influenced the angular loss meaningfully. This finding
suggests that the angle where maximum sunlight could reach the PV module is not necessarily the
angle, but a complex entanglement of a wide variety of factors. Therefore, the objective of this study
is to construct a forecasting model to estimate the solar power generation and derive an angle that
can maximize it through simulation considering various conditions such as weather, dust level, and
aerosol level. PV data from 22 solar power plants in Daegu city, South Korea, weather data ranging
from January 2016 to March 2018, and sun location data were used as input variables. The rest of
this paper is organized as follows: Section 2 describes about the studying site and data. Section 3
introduces the proposed methodology of PV panel optimization based on the machine learning
algorithm. Section 4 evaluates the result of the proposed model and compares the predicted solar
power based on the optimized panel angle against the original angle. Finally, Section 5 discusses the
conclusion of this study.

2. Study Site and Data

The study site is in Daegu city, South Korea. The collected data are from 22 PV modules out of 246
present in Daegu city.

2.1. Solar Power Generation Data Set

173,568 records of solar power generation data were acquired from 22 PV modules. Collected
period of the data ranges from January 2016 to March 2018. The data consists of relevant features such
as module capacity, installation location, module azimuth angle, and panel angle. The panels’ angles
were all fixed as shown in Table 1.

Table 1. Solar power generation dataset.

Module
ID

Y
Coordinate

X
Coordinate

Capacity
(W)

Azimuth
Angle (◦)

Panel Angle
(◦) Data Range

S02-01 35.83 128.696 200 180 30 2016.1–2018.3
S02-02 35.83 128.696 250 180 30 2017.1–2018.3
S03-01 35.85 128.55 250 180 30 2016.1–2018.3
S05-01 35.854 128.425 250 180 20 2016.1–2018.3
S06-03 35.846 128.462 254.8 180 15 2016.1–2018.3
S07-02 35.885 128.539 250 180 25 2016.1–2018.3
S07-03 35.885 128.539 250 180 25 2017.1–2018.3
S07-04 35.885 128.539 260 180 25 2016.1–2018.3
S07-05 35.884 128.531 250 180 25 2017.1–2018.3
S09-01 35.822 128.496 260 180 25 2017.1–2018.3
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Table 1. Cont.

Module
ID

Y
Coordinate

X
Coordinate

Capacity
(W)

Azimuth
Angle (◦)

Panel Angle
(◦) Data Range

S09-02 35.822 128.496 260 180 25 2016.1–2018.3
S09-04 35.822 128.496 250 180 25 2016.1–2018.3

S10-01_1 35.91 128.594 250 180 25 2016.1–2018.3
S10-01_2 35.91 128.594 250 180 25 2016.1–2018.3
S10-01_3 35.91 128.594 250 180 25 2016.1–2018.3

S12-01 35.829 128.62 250 180 20 2016.1–2018.3
S13-01 35.847 128.462 260 180 15 2016.1–2018.3
S13-02 35.873 128.45 260 180 15 2016.1–2018.3
S13-03 35.861 128.5 260 180 15 2016.1–2018.3
S13-04 35.94 128.54 260 180 15 2016.1–2018.3
S13-05 35.915 128.591 260 180 15 2016.1–2018.3
S20-01 35.823 128.494 300 180 20 2016.1–2018.3

2.2. Meteorological Data

The meteorological data of Daegu Metropolitan City was collected through Meteorological
Agency’s Open Weather Portal. The meteorological office operates single meteorological observatory in
the city and collects time data such as temperature, precipitation, wind speed, humidity, and sunshine.
Synoptic meteorological observations are ground observations that are performed at the same time on
all observatories at a fixed time in order to determine the weather of the synoptic scale. The size of the
scale refers to the spatial size and longevity of high and low pressures expressed in weather map. The
attributes of the collected dataset are shown in Table 2.

Table 2. Meteorological data attributes.

Attribute Data Range Location Unit

Temperature

2016.1–2018.3
Latitude: 35.87797

Longitude: 128.65296
Altitude Above Sea: 54 m

Celsius
Precipitation millimeter
Wind Speed m/s

Wind Direction 16 Cardinal Points
Humidity Percentage

Vapor Pressure hectopascal
Dew Point Temperature Celsius

Local Air Pressure hectopascal
Barometric Pressure hectopascal

Sunshine Hour
Insolation milliJoule per square meter

Snow Cm
3 hour snow Cm

Total Cloud Amount 10 Quartile
Mid Cloud Amount 10 Quartile

Lowest Cloud Height 100 m
Visibility Km

Ground Temperature Celsius
5 cm Underground Temperature Celsius
10 cm Underground Temperature Celsius
20 cm Underground Temperature Celsius
30 cm Underground Temperature Celsius

The mass concentrations of aerosols, the microdust (µm/m3), were collected using dust monitor
(PM10) placed in Daegu Metropolitan City. The dust monitor is a device that continuously measures
the concentration of particles having a diameter of 10 µm/m3 or less among aerosols floating in the
atmosphere.

In addition, aerosol data were collected (Table 3). Aerosols are solid or liquid particles floating
in the air and usually have a size of about 0.001–100 µm/m3 and are caused by natural factors such
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as dust, ash, and sea salt, as well as by artificial factors such as emissions from urban and industrial
facilities, incineration, and automobiles. It affects climate change by flooding in the atmosphere to
block or absorb solar radiation coming into the surface, or by changing cloud formation and physical
properties. The Meteorological Agency observes the aerosol water concentration by particle size from
0.5 to 20 µm/m3 at the Anmyeon Island Climate Change Monitoring Center as part of the World
Meteorological Organization’s Global Atmosphere Monitoring (GAW) program.

Table 3. Aerosol data attributes.

Attribute Data Range Measure Location Unit

Microdust 2016.1–2018.3
Latitude: 35.87797

Longitude: 128.65296
Altitude Above Sea: 54 m

µm/m3

Aerosol 2016.1–2018.3
Latitude: 36.540

Longitude: 126.330
Altitude Above Sea: 47 m

µm/m3

2.3. Sun Position Data

The hourly solar position for Daegu City during the 2016–2018 period was calculated using a
theoretical equation. The declination angle, the hour angle, the zenith angle, the elevation angle, and
the azimuth angle were the variables for the solar position used in this study. In addition, the ratio of
beam radiation and diffuse radiation on tilted surface were also calculated.

The declination angle, which is denoted by δ, has a seasonal variance due to the tilt of the earth
on its axis of rotation and the rotation of the earth around the sun. The equation of declination is
calculated as:

δ = 23.45◦ sin((
360(nd − 80)

365
), (1)

where nd is the day of a year. The hour angle, which is denoted by ω, is the hourly angle of the sun’s
movement from the east to the west on the celestial sphere of the Earth. Sun’s positional change is 15◦

per hour since it takes 24 hours for sun to have a full rotation on its axis. The equation of hour angle is
calculated as:

ω = 15◦(H − 12), (2)

where H is time in 24-hour format. The zenith angle, denoted by θ, is the angle between the sun and
the direct overhead point at a measuring location. The equation is calculated as:

θ = cos−1(sinλ· sin δ+ cosλ· cos δ· cosω
)
, (3)

where λ is the latitude of a measuring location. The elevation angle, denoted by α, is the angle from
the sun to the observation point and the horizontal plane. The equation is calculated as:

α = 90◦ − θ. (4)

The azimuth angle, denoted by ξ, is the angle between the Earth’s orbit around the sun and
its horizon.

The equation is calculated as:

ξ = sin−1(cos δ· sinω/ sinθ). (5)

The ratio of the average daily beam radiation on a tilted surface and the ratio of the average daily
diffuse radiation on a tilted surface was calculated by using equations proposed by Liu and Jordan [11].
The equation of the ratio of the average daily beam radiation on a tilted surface (Rb) depends on the
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point of observation’s geographic location. Since the observation point of this study is located in the
northern hemisphere, we used the corresponding equation:

Rb =
cos(φ− β) cos δ sinωss +ωss sin(φ− β) sin δ

cosφ cos δ sinωss +ωss sinφ sin δ
, (6)

where φ is the latitude, β is the solar panel’s tilt angle, and the ωss is the sunset hour angle. Lastly, the
ratio of the average daily diffuse radiation on a tilted surface (Rd) was calculated as:

Rd =
1 + cos β

2
. (7)

3. Methodology

3.1. Procedures

The procedure of this study is as shown in the Figure 1.
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Figure 1. Procedure of the proposed methodology.

3.2. Data Collections

As mentioned in the previous section, the PV module data, meteorological data, and the sun
position data were the required data for this study. As each PV module’s collection period differed
within the range of January 2016 through March 2018, the meteorological data and sun position data
were collected for this whole period.

3.3. Data Preprocessing

All collected data were recorded on an hourly base. As our proposed model predicts each
PV module’s monthly and annual output, collected data were aggregated accordingly to match the
unit. Additionally, for every PV site, we calculated average daily beam radiation (Rb) and average
daily diffuse radiation (Rd) of all possible panel tilt angles ranging between 0 and 90 degrees using
the equations stated in the previous section. There were originally 69 PV sites data collected from
Daegu-city but we only chose 22 of them because others had missing data.
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3.4. Correlation Analysis

In the data preprocessing stage, we performed correlation analysis on 22 PV sites and calculated
correlation between the input features and PV output to select relevant features for our forecasting
model. From 31 of the available features, 14 were selected as shown in the resulting Table 4.

Table 4. Correlation analysis result.

Variable Correlation

Ratio of Beam Radiation on Tilted Surface 0.75
Ratio of Diffuse Radiation on Tilted Surface 0.59

Humidity 0.41
Total Cloud Amount 0.34
Ground Temperature 0.33

Visibility 0.20
Wind Speed 0.19

Wind Direction 0.18
Lowest Cloud Height 0.14

Micro dust 0.09
Precipitation 0.08
Temperature 0.06

Snow 0.03
Aerosol 0.02

3.5. Modeling

In machine learning, predictive methods serve different objectives depending on which type of
prediction problem a researcher works on. Since our objective is to construct a model, which can
successfully learn from the data to predict the PV output, which is a continuous variable, regression
learners were considered for our predictive method candidates.

In this work, gradient boosting was used as our model’s base algorithm. Gradient boosting
machine is an ensemble method, which constructs base learners to maximally correlate it with the
negative gradient of loss function, associated with the whole ensemble [12]. Ensemble methods often
improve predictive performance for its generalization power and computational advantage [13]. More
specifically, Gradient boosting machine constructs a sequence of regression trees, where each tree
predicts the residual of preceding tree, and the machine aggregates the predictions additively to
minimize the loss [14]. Compared to other machine learning algorithms, Gradient Boosting is proven
to be very successful in experimental comparisons of learning algorithms [15,16]. It is also successfully
applied in industrial applications [17,18]. Considering optimization, the gradient boosting algorithm
has relatively few parameters to tune.

In order to verify that gradient boosting algorithm is a good fit for our study, we compared the
predictive performance of different algorithms. For comparison, we randomly selected one of the 22
PV modules (S07-04) and trained each model on the subset (January 2016–December 2017). Trained
models were then validated using the remaining portion of the PV dataset (January 2018–March 2018).
Root-mean-square error (RMSE), which represents the difference between the predicted output and
the actual output, was calculated for each model as shown in Table 5. From the result, we verified
that the gradient boosting (GB) model showed the lowest RMSE (train: 2.5152, test: 5.5122). Thus,
we chose the trained gradient boosting model for our simulation model after tuning the model using
grid-search algorithm.
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Table 5. Train and test RMSE of different models.

Model Train RMSE Test RMSE

Linear Regression 6.4595 6.4630
LASSO 6.5977 6.5978

Random Forest 5.7135 6.3703
Support Vector Machine 4.9068 5.5943

Gradient Boosting 2.5152 5.5122

3.6. Model Simulation for Monthly/Annual PV Optimal Tilt Angle

For every PV module, monthly optimal tilt angles were derived by simulating our trained model.
We defined the optimal tilt angle as an angle that maximizes the PV output. Simulation period was
January 2017–December 2017 and simulated angles ranged from 0 to 90 degrees. Among the simulated
angles, an angle that produced the highest PV output was recorded as a monthly optimal tilt angle,
and the corresponding PV output was recorded as well. Similarly, simulation of 2017 as a whole was
done for the annual PV optimal tilt angle and a single angle that produced the highest PV output for
the entire year was recorded as optimum.

4. Results

The estimation result of the 2017 PV outputs is shown in Table 6. The estimated PV output is
the annual PV output predicted by our forecasting model. Original panel angles were applied for
the estimation.

Table 6. Estimation result of the 2017 annual photovoltaic (PV) outputs.

PV Module Tilt Angle Original Output (kWh) Estimated Output (kWh)

S02-01 30 136,805 136,630
S02-02 30 100,820 100,700
S03-01 30 94,686 94,771
S05-01 20 119,539 119,801
S06-03 15 134,778 134,535
S07-02 25 119,227 119,025
S07-03 25 127,931 127,742
S07-04 25 129,927 129,552
S07-05 25 143,626 143,454
S09-01 25 73,678 73,458
S09-02 25 74,057 73,859
S09-04 25 286,132 286,473

S10-01-1 25 48,581 48,352
S10-01-2 25 47,839 47,802
S10-01-3 25 46,677 46,723
S12-01 20 139,726 139,531
S13-01 15 145,356 145,196
S13-02 15 140,310 140,045
S13-03 15 142,010 142,138
S13-04 15 135,904 136,465
S13-05 15 131,698 131,317
S20-01 20 149,661 149,929

The trained model successfully simulated the annual PV output with identical parameters given
as the original condition.

The simulation result of the 2017 PV outputs is shown in Table 7. Here, our trained model
simulates each PV module’s annual output by applying: (1) the computed yearly optimal angle and (2)
the computed monthly optimal angles. The comparison was made based on the model’s estimated PV
output shown in previous result.
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Table 7. Simulation Result of 2017 PV modules.

PV Module Original Output
(kWh)

Yearly Optimal
Output (kWh)

Year Optimal
Angle

Monthly Optimal
Output (kWh)

S02-01 136,630 139,240 (1.91%) 18 143,735 (5.20%)
S02-02 100,700 101,405 (0.70%) 26 104,909 (4.18%)
S03-01 94,771 95,122 (0.37%) 25 99,557 (5.05%)
S05-01 119,801 120,041 (0.20%) 25 125,708 (4.93%)
S06-03 134,535 134,576 (0.03%) 14 138,598 (3.02%)
S07-02 119,025 119,191 (0.14%) 22 124,071 (4.24%)
S07-03 127,742 129,696 (1.53%) 6 132,200 (3.49%)
S07-04 129,552 134,760 (4.02%) 1 134,605 (3.90%)
S07-05 143,454 143,841 (0.27%) 29 152,520 (6.32%)
S09-01 73,458 73,958 (0.68%) 19 75,721 (3.08%)
S09-02 73,859 74,553 (0.94%) 16 76,370 (3.40%)
S09-04 286,473 288,392 (0.67%) 11 295,554 (3.17%)

S10-01-1 48,352 49,183 (1.72%) 4 49,474 (2.32%)
S10-01-2 47,802 48,839 (2.17%) 1 49,164 (2.85%)
S10-01-3 46,723 47,428 (1.51%) 1 48,227 (3.22%)
S12-01 139,531 139,908 (0.27%) 11 143,019 (2.50%)
S13-01 145,196 145,371 (0.12%) 1 148,274 (2.12%)
S13-02 140,045 140,857 (0.58%) 1 142,692 (1.89%)
S13-03 142,138 142,294 (0.11%) 1 145,734 (2.53%)
S13-04 136,465 138,880 (1.77%) 1 139,876 (2.50%)
S13-05 131,317 131,540 (0.17%) 1 134,889 (2.72%)
S20-01 149,929 150,873 (0.63%) 1 154,262 (2.89%)

The yearly optimal angles of the PV modules were 1–29◦. Most of the modules had a small increase
in PV output at the yearly optimum angle. S06-03 module showed the least improved output rate (0.03%)
while S07-04 module showed the most (4.02%). In terms of angular difference, S06-03 module required
least amount of angular change and S07-04 module required the maximum angular change. Similarly, we
could see that other modules’ rate of improvement and rate of angular change were positively correlated.
This pattern partially suggests the level of efficiency in currently applied angles for all PV modules.

The result of PV output difference was even more significant when angles were monthly adjusted
using monthly optimum angles. For every PV module, the result of PV output for the monthly adjusted
case was significantly better than the yearly adjusted case. S13-02 module showed the least improved
rate (1.89%) and S07-05 module showed the most improved rate (6.32%). Although costly, the result
suggests that it is advisable to adjust the panel angle in monthly fashion to expect high efficiency.
Samples of monthly optimum angles and outputs are shown in the Appendix A.

As shown in Table 8, when all other conditions are same and only the angle of the PV panel was
adjusted as suggested by our model, we could expect a total of 0.83% (22,452 kWh) increase in overall
PV output when adjusted with yearly optimum angle, and 3.32% (91,662 kWh) increase when adjusted
with monthly optimum angles.

Table 8. 2017 yearly generated energy estimation for different tilt angles.

Condition Generated Energy Total (kWh)

Original tilt angle 2,667,498
Yearly optimum tilt angle 2,689,950

Monthly optimum tilt angle 2,759,160

To gain a realistic insight of these results, we used LCOE value (levelized costs of electricity)
for the solar energy conversion value [19]. In Korea, the LCOE value for 100 kW facilities was 147.1
Korean Won (KRW)/kWh. By converting additional power generated, we saved 3302 thousand KRW
(147.1 × 22,452) by yearly optimum angle and 13,483 thousand KRW (147.1 × 91,662) by monthly
optimum angles for the 22 sites annually.

5. Conclusions

In this paper, forecasting model based on the gradient boosting algorithm was proposed to predict
the amount of solar power generated by PV modules on both a monthly and yearly basis, which then
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simulated the energy generation of PV modules to derive the monthly/yearly panel tilt angles that
could maximize them. The study site was in Daegu city in South Korea. The model used the solar
power generation data, the meteorological data, and the sun position data.

Compared to the originally fixed angles, the amount of solar energy generated by PV modules
when the panel angles were fixed with yearly optimal angle brought slight increase (0.83%) in overall
energy generation. The performance change of each PV modules varied from 0.03% to 4.02%, suggesting
that actually applied angles of these modules differed in efficiency. When the optimal angle of each PV
module was calculated and adjusted on a monthly basis, the overall energy generation had an even
higher increase (3.32%) to that of original angles. The performance change of each PV modules varied
from 1.89% to 6.32%. Although all modules were located in a single city and share similar geometrical
attributes, the optimal angles differed to some degrees.

We calculated how much of economic efficiency we gained when we applied these changes to
the real-world in annual basis. In order to produce additional kWh with the original tilt angles, the
studied PV modules would cost additional 3302 thousand KRW for the amount of energy that could be
produced with yearly optimum tilt angles applied, and 13,483 thousand KRW for the monthly optimum
tilt angles applied.

The sun positional data were calculated from data collected by a single meteorological observatory.
Although studied PV modules were located in a same city and would not show significant difference
in sun positional data between the modules, we could expect more precise and reliable outcome in
both modeling and simulation stage if we could measure the sun related data for each module.

We acknowledged a limitation of generalizing our finding to different PV modules of various
geographical conditions since the experiment was done on PV modules located within a single city.
In our future study, we plan to collect PV modules data from different cities in order to improve the
generalization of our approach. In addition, since our studies collectively combined different factors
and applied for machine learning techniques, it was a little difficult to single out individual feature’s
effect. Future studies could address issues like ‘rain effect of clearing dust level for increasing PV
output’ using feature engineering or statistical techniques.

Author Contributions: Data curation, G.Y.K.; Formal analysis, G.Y.K.; Methodology, G.Y.K.; Supervision, Z.L.;
Validation, Z.L.; Visualization, D.S.H.; Writing—original draft, D.S.H. and G.Y.K.; Writing—review and editing,
D.S.H. All authors have read and agreed to the published version of the manuscript.
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Appendix A

This section presents the monthly optimum angles and corresponding PV outputs of some of the
PV modules to visualize the monthly optimum case.
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Figure A1. Cont.
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