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Abstract: In this paper, a novel porous media permeability model is established by using particle model,
capillary bundle model and fractal theory. The three-dimensional irregular spatial characteristics
composed of two ideal particles are considered in the model. Compared with previous models,
the results of our model are closer to the experimental data. The results show that the tortuosity
fractal dimension is negatively correlated with porosity, while the pore area fractal dimension is
positively correlated with porosity; The permeability is negatively correlated with the tortuosity
fractal dimension and positively correlated with the integral fractal dimension of pore surface and
particle radius. When the tortuosity fractal dimension is close to 1 and the pore area fractal dimension
is close to 2, the faster the permeability changes, the greater the impact. Different particle arrangement
has great influence on porous media permeability. When the porosity is close to 0 and close to 1,
the greater the difference coefficient is, the more the permeability of different arrangement is affected.
In addition, the larger the particle radius is, the greater the permeability difference coefficient will
be, and the greater the permeability difference will be for different particle arrangements. With the
increase of fractal dimension, the permeability difference coefficient first decreases and then increases.
When the pore area fractal dimension approaches 2, the permeability difference coefficient changes
faster and reaches the minimum value, and when the tortuosity fractal dimension approaches 1,
the permeability difference coefficient changes faster and reaches the minimum value. Our research
is helpful to further understand the connotation of medium transmission in porous media.

Keywords: porous media; fractal theory; particles model; permeability; tube bundle model

1. Introduction

Fibrous and reservoir rocks are porous media with complex microstructure. It is very important to
reasonably characterize the pore structure and predict the permeability of porous media for industrial
application and petroleum exploration and development [1–3]. Pore structure plays an important role
in the properties of porous media. However, due to the complexity of microstructure and irregularity
of pore structure, it is always a challenging task to predict permeability [4–8]. The microstructures of
oolitic graintone and dolograinstone can be found in previous study [9,10]. There are plenty of rounded
particles that make up the skeleton of the rock and the blue areas represent random pores or micropores
between particles. These pores are randomly distributed in space, with sizes spanning several orders
of magnitude and connecting with each other through thick channels, forming a complex network of
pores. In order to achieve qualitative research, many researchers use this particle model (see Figure 1a)

Energies 2020, 13, 510; doi:10.3390/en13030510 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2883-2234
http://dx.doi.org/10.3390/en13030510
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/3/510?type=check_update&version=2


Energies 2020, 13, 510 2 of 17

to construct rock space, with the purpose of reconstructing the complex pore structure of the rock, so
as to more accurately describe the properties of the rock [11]. Gebart [12] regards the cross section of
fibrous porous media as the cross section of circles of equal diameter arranged in a fixed geometry
(I and II in Figure 1a), and deduces the permeability model of the fluid flowing along the fiber and
perpendicular to the fiber direction. The model establishes the relationship between the permeability
and particle size and the volume fraction of the fiber. Since the randomness and complexity of pore
space distribution are not considered in this model, the permeability of porous media with low porosity
predicted by this model is quite different from the experimental results [13]. Therefore, fractal theory
was introduced to study the relationship between pore structure and permeability of porous media
from a more realistic perspective.
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Figure 1. Schematic diagram of porous media model.

Fractal theory describes a natural phenomenon, which allows the self-similarity of objects
to represent the properties of objects or scale invariance, and is an effective method to describe
the complexity and irregularity of pores in porous media and their related macroscopic transport
characteristics [14–17]. The application of fractal theory to the study of porous media is actually to use
an appropriate method or model to characterize the structural characteristics of porous media, and
then analyze its properties such as transmission and strain [18,19]. At present, there have been many
research achievements that use fractal theory and technology to characterize the structure of porous
media and analyze its permeability. According to the characterization models of porous media, there
are mainly permeability models based on fractal capillary bundle model, fractal improvement for the
limitations of the classical Kozeny-Carman (KC) permeability equation, random and deterministic
mass fractal porous media permeability model, and fractal effective permeability models based on the
Bautista Manero Puig (BMP) model [20–23]. Based on the fractal characteristics of fibrous porous media,
Yu et al. [24] used the fractal capillary bundle model to put forward the fractal plane permeability model
applicable to various fibrous media earlier. Studies have shown that fiber preforms mainly depends on
the fiber bundles of macro pore permeability. Based on Yu’s research, Xu and Yu [25] introduced the
cross-sectional area of the unit and developed a fractal permeability model for homogeneous porous
media. The model is not limited to fiber materials, but also applicable to other fractal porous media.
Combining the maximum hydraulic diameter with filament diameter, Xiao et al. [26] expressed the
maximum pore diameter as the relationship between porosity and particle size, fractal dimension,
and further obtained the dimensionless permeability expression of porous fiber gas diffusion layer.
The original fractal permeability model is based on the fractal power law distribution of pore size
and Hagen-Poiseuille (H-P) flow equation of circular curved capillary. Xu and Yu, and Xiao et al.’s
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research is based on the same conditions and assumptions [25–28]. Their models can well fit the
permeability test results of the existing high-porosity fiber materials, but the permeability of the
low-porosity porous media is not well fitted. Considering the discreteness and discontinuity of fractal
geometry, Shou et al. [29] proposed a differential permeability model of fiber porous media, which
can fit the permeability results of fiber porous media with a wider porosity range. According to the
theory of fluid mechanics, H-P flow is dominant in pore media only when the Knudsen number is
less than 0.01. When the Knudsen number is greater than 10, the Knudsen number is dominant.
Considering these factors, Zhang et al. developed a new fractal gas permeability model for porous
fiber films [30]. Considering electro kinetic phenomena, Zhu et al. studied the flow behavior of porous
fibrous media using fractal technique, and derived a fractal permeability model [31]. Using similar
methods and theories, Zhu et al. also studied the heat and mass transfer characteristics of fibrous
porous media and took capillary force into consideration. However, none of the above fractal studies
considered the influence of this factor [32]. Costa, Othman et al. established the porosity permeability
model based on the fractal hypothesis of porous media particles and pore area, improved the classic
Kozeny Carman permeability equation, and re-verified its validity [13,33]. Considering the porosity
connectivity probability, Cihan et al. developed a three-dimensional solid mass fractal porous media
permeability model [34]. According to the classic Sierpinski carpet quality fractal model [35–38], Pia
and Sanna proposed a new combination of structural units, formed a intermingled fractal units model
(IFU), and studied the transmission characteristics of porous media such as permeability and thermal
conductivity [39–41]. Subsequent researchers have proposed new pore media models through this
method. Similar to the above fractal study on permeability of fibrous porous media, on the basis of
Yu’s study [24], Turcio et al. studied the effective permeability of non-Newtonian by using the fractal
capillary bundle model, and calculated the effective permeability by using the Bautiista Manero Puig
(BMP) model [42,43].

With the development and application of fractal theory, more and more factors are considered
into the permeability model, and the fit between model results and experimental results is getting
higher and higher. However, in researches on porous media permeability based on particle model,
most permeability models are still based on two-dimensional particle model, which cannot fully reflect
the three-dimensional influence of pore geometry space [44]. In addition, most of the modified KC
equations are more applicable to porous media with large porosity, while there are few research results
on porous media with small porosity [45–47]. In this paper, the pore space is considered to be randomly
distributed and its size spans over two orders of magnitude, which satisfies the scaling law of fractals.
In this paper, the matrix structure of porous media is composed of spherical particles (as show in
Figure 1b), and then the three-dimensional irregular pore space composed of equal-diameter particles
according to ideal geometric model is approximately transformed into capillary bundle model. Finally,
the relationship between permeability and pore structure parameters, pore area fractal dimension
and capillary tortuosity fractal dimension is established by using fractal principle. In addition, the
permeability models of the two particle combination modes were deduced, and finally the permeability
models of the loose mode and the compact mode were obtained. Compared with the experimental
data and the results of existing analytical formulas, our model is reliable and accurate.

2. Mathematical Model

2.1. Fractal Characteristics of Spherical Particles Matrix

In this paper, the matrix is assumed to be composed of spherical particle clusters, each cluster
is composed of particles with the same radius, and the matrix particle radius between clusters is
randomly distributed, so there are pores of different sizes in the porous media, and these pore Spaces
satisfy the fractal scale theorem [13,48]. As shown in Figure 2, there are two types of clusters: loose
mode I cluster (Figure 2a) and compact mode II cluster (Figure 2d). Type I cluster is the structural
combination of particles that can form the largest pore space, while type II cluster is the structural
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combination of particles that can form the smallest pore space. Type I clusters (Figure 2a) consist of
eight spherical particles forming a matrix particle cluster. The central point connecting each particle
can form a cube. Cutting along the cube surface can form a matrix cube unit as shown in Figure 2b.
From Figure 2b,c, eight one eighth of the matrix particles constitute an irregular matrix pore space,
which can maximize the matrix pore space. Type II clusters (Figure 2d) consist of four matrix particles,
which can form rhombohedrons by connecting the central points of the particles. Cutting along the
surface of the rhombohedron can form a unit as shown in Figure 2e,f.
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Figure 2. Schematic diagram of structural model of ideal pore space. (a) Arrangement of loose particles;
(b) Ideal loose arrangement; (c) Conventional loose arrangement; (d) Compact particles arrangement;
(e) Ideal most compact arrangement; (f) Regular compact permutation.

For matrix units composed of type I clusters according to ideal geometry, they are mainly
composed of matrix particles and pore space, as shown in Figure 3a. The porosity can be expressed as
the relationship between cube volume and matrix particle volume [13]:

ϕ =
Vc −

4
3πr3

Vc
(1)

where ϕ is the effective reservoir porosity; Vc represents the volume of the cluster cube; r is the radius
of the matrix particle.

Through Equation (1), the cubic unit volume can be deduced as follows:

Vc =
4πr3

3(1−ϕ)
(2)

It can be seen from Equation (2) that the volume of cubic unit is related to particle radius and
porosity. Since Vc represents the cube space formed by cluster matrix particles, there is:

Vc = L3
0 (3)

where l0 is the side length of a matrix cubic unit.
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Combining Equations (2) and (3), the expression can be obtained:

L0 = r× 3

√
4π

3(1−ϕ)
(4)

The maximum matrix pore volume Vp,max can be expressed as:

Vp,max = Vc −
4πr3

3
=

4πr3

3
ϕ

1−ϕ
(5)

When the fluid flows through the matrix element, it mainly passes through the three sections
shown in Figure 4, which not only passes through the maximum section of the ideal geometric square
pore in the middle, but also passes through the minimum section of the ideal geometric irregularity on
both sides [13]. The rationality of pore space is considered. Therefore, the irregular matrix pore space
composed of solid particles is approximately equivalent to capillary bundle, and the capillary diameter
on the equivalent cross section satisfies the fractal scale law, then:

Vp = Lt
πD2

4
(6)
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where D is the diameter of the capillary bundle section; Lt is the actual length of tortuous bundle, and
the ratio of its value to the characteristic length of the external surface can be expressed as:

τ =
Lt

L0
(7)

Formula (7) is the traditional definition of tortuosity, whose value can be taken as average
tortuosity. Yu and Li, Yun et al. and Kou et al. studied the tortuousness model of two-dimensional,
three-dimensional porous media and mixed porous media composed of square and circular
particles [49–52]. A series of relationships between tortuosity and porosity were established.

Combined with Equations (4)–(7), the maximum tortuous capillary bundle cross-section diameter
obtained by cubic element approximation can be derived:

Dmax = 4
3

√
1
9

6

√
1

4π

√
ϕ

τ
3

√
1

(1−ϕ)
r (8)

For type II clusters, the porosity in this structure can also be expressed as the relationship between
rhombohedral volume and matrix particle volume:

ϕe =
Vc −

2
9πr3

Vc
(9)

The pore volume expressed in terms of effective porosity, cementing ratio and particle radius can
be obtained from Equation (9):

Vc =
2πr3

9(1−ϕ)
(10)

Rhombohedron is a regular tetrahedron. According to its geometric characteristics, its volume
can be expressed as:

Vc =

√
2

12
L3

0 (11)

Side length of rhombohedron can be obtained by combining Equations (11) and (10):

L0 = r× 3

√
24π

9
√

2(1−ϕ)
(12)

According to Equation (10), the maximum matrix pore volume of rhombohedron with porosity of
ϕ can be obtained as:

Vp,max = Vc −
2πr3

9
=

2πr3

9
ϕ

1−ϕ
(13)

By combining Equations (6), (7), (12) and (13), the maximum sectional diameter of tortuous bundle
approximately obtained by rhombohedron can be obtained as follows:

Dmax =
2
√

2
3

6

√
9
√

2
24π

√
ϕ

τ
3

√
1

(1−ϕ)
r (14)

It can be seen from Equations (8) and (14) that the two equations have the same form, and the
capillary diameter is a function of particle radius, porosity and tortuosity. According to Yu and Li [49],
tortuosity is also a function of porosity. Therefore, the key parameters to determine the equivalent
capillary diameter are particle radius and porosity.
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Figure 4. Fluid flow through the pore section diagram.

2.2. Fractal Capillary Bundle Model for Porous Media

The capillary bundle model is often used to simulate the flow and transport characteristics of
porous media. The pore size distribution and the fractal scale relationship of curved streamline
constitute the basis of fractal capillary bundle model. Most natural rocks have fractal characteristics in
a certain range. For example, sandstone, shale and carbonate rocks are self-similar in a range of 3 to 4
orders of magnitude. Fractal dimension can be used to quantitatively describe the characteristics of
pore size distribution [53]. In fractal porous media, the cumulative number of pores with diameters
larger than the scale N follows the scaling law relationship:

N(≥ D) =
(Dmax

D

)Dp

(15)

where Dp is pore area fractal dimension. When the value is 0 < Dp < 2, it denotes two-dimensional
space, and when 0 < Dp < 3, it denotes three-dimensional space. According to Yu’s research, the fractal
dimension of pore area can be expressed as [24,49]:

Dp = d−
lnϕ

ln Dmin
Dmax

(16)

where Dmin is the smallest diameter of capillary tube. d is equal to 2 (two-dimension) or 3
(three-dimension).

If the pore diameter ranges from Dmin to Dmax, the total number of medium pores under the
condition D > Dmin can be obtained. So we know from Equation (15):

Np(D > Dmin) =

(
Dmax

Dmin

)Dp

(17)

Differentiating Equation (15), we can get:

− dN = DpD
Dp
maxD−(Dp+1)dD (18)

Equation (18) gives the number of pores in the interval D and D + dD, and −dN > 0 indicates that
the number of pores decreases with the increase of pore diameter. Divide Equations (17) and (18) to get:

−
dN
Np

= DpD
Dp

minD−(Dp+1)dD = f (D)dD (19)

where f (D) = DpD
Dp

minD−(Dp+1) is the probability density function of pore distribution, which should
meet the normalization condition:
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∫ +∞

−∞

f (D)dD =

∫ Dmax

Dmin

f (D)dD = 1−
( Dmin

Dmax

)Dp

= 1 (20)

The condition for Equation (20) to be true must be:( Dmin

Dmax

)Dp

= 0 (21)

Curved capillary or curved streamline of fluid flow also has fractal characteristics. Tortuosity
depends on measurement scale and fractal dimension of streamline, which can better reflect the
characteristics of curved capillary streamline. The tortuosity fractal dimension is considered to be a
more fundamental parameter than permeability. The scaling relationship between the length of curved
streamline and the characteristic length of the medium in porous media can be expressed as [48,54]:

Lt(D) = LDt
0 D1−Dt (22)

Dt = 1 +
ln τav

ln L0
Dav

(23)

where Dt is the tortuosity fractal dimension. Average capillary diameter Dav and average tortuosity
τav can be expressed as [49,55]:

Dav =

∫ Dmax

Dmin

D f (D)dD =
Dp

Dp − 1
Dmin

[
1−

( Dmin

Dmax

)Dp−1]
(24)

τav =
1
2
[1 +

1

2
√

1−ϕ
+

√
1−ϕ

√(
1√
1−ϕ
− 1

)2

+ 1
4

1−
√

1−ϕ
] (25)

2.3. Fractal Permeability Model for Porous Media

The flow of fluid in porous media is regarded as the flow in a curved capillary. The size distribution
of the capillary channel satisfies the fractal distribution. According to the modified Hagen-Poiseulle
equation, the flow rate q of a fluid passing through a curved capillary can be expressed as [56,57]:

q(D) =
π

128
∆p

Lt(D)

D4

µ
(26)

Equation (26) is obtained by considering the capillary tube as a circle. Since the size distribution of
capillary channels satisfies the fractal distribution, the total flow rate Q can be obtained by integrating
the flow rate in a single root canal from the minimum pore diameter Dmin to the maximum pore
diameter Dmax:

Q = −

∫ Dmax

Dmin
q(D)dN(D) =

π
128µ

∆p

LLDt−1
0

Dp

3 + Dt −Dp
D3+Dt

max

[
1−

( Dmin

Dmax

)Dp( Dmin

Dmax

)3+Dt−2Dp
]

(27)

Because 1 < Dt < 2 and 1 < Dp < 2, the exponent satisfies 3 + Dt − 2Dp > 0. And there is

0 <
( Dmin

Dmax

)3+Dt−2Dp
< 1, according to the criterion

( Dmin
Dmax

)Dp
< 10−2 of Yu and Li [49], Equation (27) can

be simplified into:

Q =
π

128µ
∆p

LLDt−1
0

Dp

3 + Dt −Dp
D3+Dt

max (28)
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According to Darcy’s law, permeability can be expressed as:

K =
QµL
A∆p

(29)

where A represents the cross section area of capillary bundle passing through the fluid. If the
approximately equivalent capillary section is the flow section, and the surface porosity is assumed to
be equal to the volume porosity. Then according to the fractal principle, the total pore area and the
flow section area on the flow section can be expressed as [6]:

Ap = −
∫ Dmax

Dmin

1
4πD2dN =

∫ Dmax

Dmin

1
4πD2DpD

Dp
maxD−(Dp+1)dD

=
πDpD2

max

4(2−Dp)

[
1−

( Dmin
Dmax

)2−Dp
] (30)

A =
Ap

ϕ
=

πDpD2
max

4ϕ
(
2−Dp

) [1− ( Dmin

Dmax

)2−Dp
]

(31)

Because of ϕ =
( Dmin

Dmax

)2−Dp
, the cross-section area can be simplified to [11]:

A =
π(1−ϕ)DpD2

max

4ϕ
(
2−Dp

) (32)

The permeability expression of pore media can be obtained by combining Equations (28), (29)
and (32):

K =
1

32
ϕ

1−ϕ
1

LDt−1
0

2−Dp

3 + Dt −Dp
D1+Dt

max (33)

Substitute Equations (4) and (8) into Equation (33) to get the permeability expression of porous
media composed of clusters of type I:

KI =
1

128
ϕ

1−ϕ

 3

√
4π

3(1−ϕ)


1−Dt4

3

√
1
9

6

√
1

48

√
ϕ

τav

3

√
1

1−ϕ


1+Dp

2−Dp

3 + Dt −Dp
D2

f (34)

By substituting Equations (12) and (14) into Equation (33), the relationship between porous media
permeability formed by type II clusters and matrix particle size, porosity and fractal dimension can be
obtained:

KII =
1

128
ϕ

1−ϕ

 3

√
24π

9
√

2(1−ϕ)


1−Dt

2
√

2
3

6

√√√
9
√

2
24π

√
ϕ

τav

3

√
1

1−ϕ


1+Dp

2−Dp

3 + Dt −Dp
D2

f (35)

where Df is the diameter of particles.
If Equation (25) is substituted into Equations (34) and (35), the permeability under the two ideal

modes is a function of reservoir porosity, tortuosity fractal dimension, integral shape dimension of
pore surface and radius of solid particles. The dimensionless permeability can be obtained by dividing
Equations (34) and (35) by D2

f .

3. Model Validation

There have been many researches on porous media permeability model based on fractal theory,
the most classic one is the KC equation, although this equation is strictly applicable to homogeneous
media or actual random filled fiber media. Based on the fractal porous media pore space geometry



Energies 2020, 13, 510 10 of 17

hypothesis, Costa improved the KC equation and verified its validity [33]. The improved KC equation
can be expressed as

K = Ckc
ϕn+1

(1−ϕ)n (36)

where Ckc and n both are the empirical constant, which is related to particle shape and tortuosity.
Although appropriate parameters can be set through experience, so that Equation (36) can better match
experimental data, the significance of these parameters is not clear, which needs to be determined
through experiments. Xiao et al., Xu and Yu continued to improve the classical KC equation based on
the fractal bundle model [25,28]. The Xiao’s permeability model can be expressed as:

K =

(
4−Dp

Dp

)1/2
[
4
(
2−Dp

)](1+Dt)/2(
πDp

)(1−Dt)/2

128
(
3−Dp + Dt

)
ln2 ϕ

(
ϕ

1−ϕ

)(1+Dt)/2

D2
f (37)

According to Equations (36) and (37) and experimental data, we verified the model. As can be
seen from Figure 5, the permeability of model I and model II are also different due to the different
arrangement of particles, and the permeability of model I is relatively larger. In general, the permeability
of our model increases with the increase of porosity, and the permeability changes rapidly when the
porosity approaches 0 and 1. In order to verify the proposed model accurately, we made artificial
cores with an average porosity of 5% to 30% and measured the corresponding permeability. As shown
in Figure 5, our experimental permeability is very close to the proposed model permeability when
the porosity is between 5% and 30%. In addition, we also compared the Costa’s experimental data
with the model we proposed [33]. The comparison results show that when the porosity is between
30% and 60%, our model is closer to the experimental data of Costa than Xiao’s model. Therefore, the
comparison between our experimental data, Costa’s experimental data and the proposed model shows
that our model is more consistent with the experimental data of medium and low porosity (5%~60%),
while Xiao’s model is more consistent with the data of high porosity (>60%) [28]. Therefore, our model
is more suitable for predicting medium and low porosity porous media permeability. At the same time,
the accuracy of the model is proved by comparing the results.Energies 2020, 13, x FOR PEER REVIEW 11 of 17 
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4. Results Discussion and Analysis

Figure 6 shows the relationship between porosity and pore diameter of the largest bundle. It can
be seen from Figure 6 that the equivalent capillary bundle pore diameter increases with the increase of
porosity. And with the increase of porosity, the diameter difference between the two modes becomes
larger and larger. Due to the different arrangement of particles, the equivalent pore diameter is not
the same.
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By substituting Equations (4), (8), (24), and (25) into Equations (22) and (23), it can be known
that the tortuosity fractal dimension and the pore area fractal dimension are all functions of porosity.
Figure 7 shows the effect of porosity on fractal dimension. With the increase of porosity, the tortuosity
fractal dimension decreases, which means that the greater the porosity, the more bent the capillary
bundle is, and the longer the capillary bundle is. With the increase of porosity, the pore area fractal
dimension also increases, and the maximum pore area on the cross section also increases. In addition,
the arrangement of solid particles has little influence on fractal dimension. The pore area fractal
dimension and tortuous fractal dimension of type I arrangement are larger than those of type II
arrangement under different arrangement modes of solid particles.

Figures 8 and 9 respectively show the influence of the tortuosity fractal dimension on permeability
of porous media and the influence of pore area fractal dimension on permeability of porous media. The
permeability of porous media has a strong nonlinear relationship with the tortuosity fractal dimension
and the integral shape dimension of pore surface. Figure 8 shows that the permeability decreases with
the increase of tortuosity fractal dimension, and the permeability changes rapidly when the tortuosity
is close to 1. Figure 9 shows that the permeability of porous media increases with the increase of the
pore area fractal dimension, and the permeability changes faster when the pore area fractal dimension
approaches 2. By comparing the two figures, the tortuosity fractal dimension has the opposite effect
on permeability with the pore area fractal dimension. It can also be seen that the larger the radius of
particles, the greater the permeability.
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In order to analyze the influence of particle arrangement mode on permeability, the permeability
difference coefficient R caused by different particle arrangement mode is introduced. The connotation
of R is to reflect the influence degree of solid particle arrangement mode on permeability. The larger R
value is, the greater the influence degree of permeability is by solid particle arrangement mode. R can
be expressed as:

R =
KI −KII

KII
=

 3

√
3
√

2
6


1−Dt3

√

2
3

√
1
9

6

√
√

2π
36


1+Dp

− 1 (38)

Figure 10 shows the effect of changes in porosity and solid particle radius on the difference
coefficient. As can be seen from the figure, under the same particle radius, with the change of porosity,
the difference coefficient is larger when the porosity is close to 0 and 1, and smallest when the porosity
is close to 0.6. Therefore, the prediction of permeability of porous media with high porosity and low
porosity should pay particular attention to the influence of particle arrangement. In addition, the
difference coefficient increases with the increase of the radius of solid particles. This indicates that the
arrangement of particles has a great influence on the permeability of porous media when the particle
radius is large. It can be seen from Equation (38) that the difference coefficient is a function of the pore
area fractal dimension and the tortuosity fractal dimension. Figure 11 shows the relationship between
fractal dimension and permeability difference coefficient. The permeability difference coefficient
decreases first and then increases with the increase of pore area fractal dimension, reaching the
minimum when its value is close to 2. At the same time, as the tortuosity fractal dimension increases,
the permeability difference coefficient decreases first and then increases, reaching the minimum when
its value is close to 1. The permeability difference coefficient changes rapidly when the pore area fractal
dimension approaches 2 and the tortuosity fractal dimension approaches 1, respectively.
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5. Conclusions

In this paper, we derive a novel porous media permeability model considering irregular pore
space based on fractal theory and ideal particle space geometry. The results show that our model is
more suitable for medium and low porosity porous media. In addition, the following conclusions are
obtained through multivariate analysis: (1) the equivalent capillary bundle pore diameter increases
with the increase of porosity; (2) tortuosity fractal dimension has a negative correlation with porosity,
while the pore area fractal dimension of the pore surface has a positive correlation with porosity; (3) the
permeability is negatively correlated with the tortuosity fractal dimension and positively correlated
with the pore area fractal dimension and particle radius. When the tortuosity fractal dimension is
close to 1 and the pore area fractal dimension is close to 2, the faster the permeability changes, the
greater the impact. (4) different particle arrangement has great influence on porous media permeability.
When the porosity is close to 0 and close to 1, the permeability is especially affected by the greater
the difference coefficient. In addition, the larger the particle radius is, the greater the permeability
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difference coefficient is, and the greater the permeability difference is for different particle arrangement.
(5) With the increase of fractal dimension, the permeability difference coefficient first decreases and
then increases. When the pore area fractal dimension approaches 2, the permeability difference
coefficient changes quickly and reaches the minimum value, and when the tortuosity fractal dimension
approaches 1, the permeability difference coefficient changes quickly and reaches the minimum value.
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