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Abstract: This paper presents an agent-based model (ABM) for residential end-users, which is part of
a larger, interdisciplinary co-simulation framework that helps to investigate the performance of future
power distribution grids (i.e., smart grid scenarios). Different modes of governance (strong, soft
and self-organization) as well as end-users” heterogeneous behavior represent key influential factors.
Feedback was implemented as a measure to foster grid-beneficial behavior, which encompasses a range
of monetary and non-monetary incentives (e.g., via social comparison). The model of frame selection
(MEFS) serves as theoretical background for modelling end-users’ decision-making. Additionally,
we conducted an online survey to ground the end-user sub-model on empirical data. Despite these
empirical and theoretical foundations, the model presented should be viewed as a conceptual
framework, which requires further data collection. Using an example scenario, representing a lowly
populated residential area (167 households) with a high share of photovoltaic systems (30%), different
modes of governance were compared with regard to their suitability for improving system stability
(measured in cumulated load). Both soft and strong control were able to decrease overall fluctuations
as well as the mean cumulated load (by approx. 10%, based on weekly observation). However,
we argue that soft control could be sufficient and more societally desirable.

Keywords: electricity feedback and consumption; governance; variable rationality; agent-based
modelling; socio-technical aspects of energy systems; co-simulation

1. Introduction and State of Research

The energy system is in transition; especially the increasing share of volatile, decentral
and renewable energy sources (RES) will change the structure and governance of this complex,
socio-technical system. In this context, the reorganization of the energy supply creates new uncertainties
and risks, because electricity generation and consumption become harder to plan and unpredictable
power fluctuations are more likely. Especially the power distribution grid is confronted with this new
situation, since a large part of RES is installed here [1]. New concepts of information management that
connect distribution system operators (DSOs) and end-users (industrial, commercial and residential)
offer one potential solution to tackle these challenges. In this context, the provision of electricity-related
flexibilities by end-users (i.e., situational shifts in peak electricity demand) as well as energy efficiency
programs are important stabilization measures when the system’s reliability is jeopardized [2].

1.1. Feedback, Information and the Role(s) of End-Users in Future Energy Systems

However, this is not a purely technological issue, but also a social innovation, since current practices
and roles of societal actors need to change. From households’ perspective, electricity is normally
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perceived as a “hidden” and easily available good that is deeply embedded in daily routines [3].
These habits and routines may collide with the flexibility requirements of smart grids [4] (p. 127),
which is why the provision of energy consumption feedback constitutes a possible intervention strategy
to support behavioral changes [5] (p. 708). Such feedback usually contains numerical information on
energy consumption (e.g., kWh or percent savings) or monetary incentives [6,7]. For this purpose,
a wide range of technological mediums has been utilized, for example energy management systems
(EMS), web portals, mobile applications or in-home displays (cf. [8] for an overview). EMS may include
monitoring and automated controls for residential appliances that have high electricity consumption
(e.g., heating, ventilation) or that are used for generation and storage (e.g., microgeneration plants
and batteries).

However, conventional, numerical feedback presents no ‘silver bullet’ for changing behavior,
because some studies also draw rather cautious conclusions concerning its effectiveness. This is
due to a series of difficulties, like the strength of hidden routines, perceived losses of comfort,
familiarization effects, frustrations concerning personal saving limits or issues of trust and data
security [4,9-12]. Additionally, the more frequent use of an increasing number of energy-efficient
technologies might counteract actual energy-savings and increase the energy intensity of households [13]
(pp- 251-252)—a phenomenon referred to as the “rebound effect” (p. 27) [12,14]. Concerning other
approaches that rely on the provision of information in order to facilitate behavioral changes, quite similar
empirical results can be observed. With regard to demand-side management (DSM), for example,
Parrish et al. identify factors influencing end-users’ engagement that go beyond exclusively economic
utility considerations, such as trust, familiarity, perceived risk, perceived complexity and effort [15].
Similarly, the public communication of environmental policies faces challenges with regard to cognitive
biases (e.g., perceived lack of control), emotions (e.g., fear), and expectations (e.g., social norms) [16].

In summary, the provision and communication of information to facilitate behavioral changes may
face various challenges, stemming from actors’ social and psychological processes. Consequently, recent
discussions have focused on the use of information and feedback that go beyond conventional, numerical
and purely economic-oriented approaches [6], shifting the attention away from technological issues
and towards the diverse characteristics and (social) behavior of households [17]. This usually refers to
‘soft’, non-monetary and normative incentives or “green nudges” [17] (p. 6) that are aimed at fostering
more sustainable behavior: For example by appealing to end-users’ social norms (e.g., comparing their
behavior to peers) or their environmental concerns (e.g., through feedback on the ecological footprint
of their behavior). Another idea would be to conceive end-users as active energy system participants,
who are “[ ... ] involved in both problem and solution” [9] (p. 28), exhibit self-criticism concerning
their energy practices, and may potentially contribute to electricity generation by operating private
photovoltaic (PV) power plants or communal wind turbines [18]. When pursuing this idea further,
electricity in future RES-based systems could be understood as a common pool resource [19,20], which is
potentially limited (i.e., rivalrous) but also non-excludable. In the German energy system, for example,
non-excludability is ensured through a legal basis (operators must guarantee ‘non-discriminatory
grid access’ to everyone). Such a new understanding might emphasize end-users’ significance in
contributing to a collective problem solution and their role as potential ‘partners’, who help DSOs to
maintain system stability. Considering this idea, non-monetary incentives and feedback could also
appeal to end-users’ energy-related involvement and willingness to cooperate.

1.2. Agent-Based Modelling and Simulation of Future Energy Systems

Agent-based modelling and simulation (ABMS) is a method often applied in computational social
sciences that “explicitly addresses the heterogeneous nature” [21] (p. 30) of social agents and thus
presents a suitable tool to study the issues mentioned above. In order to implement heterogeneity, social
agents are usually provided with a set of diverse characteristics and decision strategies, encouraging
the use of existing behavioral models and theories from sociology, psychology or behavioral economics.
Furthermore, ABMS is a bottom-up approach, since societal dynamics on the macro-level (like the
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diffusion of innovations) arise from the aggregation of agents’ individual, distributed decisions and
interactions on the micro-level [22] (p. 53). Consequently, ABMS is typically applied to investigate the
dynamics of complex, socio-technical systems: For example concerning forecasts, projections of future
pathways or what-if scenarios under different conditions [23] (p. 46).

Regarding energy-related issues, ABMS have focused particularly on the diffusion and adoption
of innovative products and services, for example (green) electricity contracts and tariffs [24,25], heating
systems [26,27], (community-based) microgeneration plants [28,29] or lighting [30]. In this context,
Hesselink et al. provide a comprehensive analysis of households’ energy-efficient technology adoption
in recent ABMS studies (e.g., lighting and PV), addressing especially the policy instruments applied to
overcome structural, economic, behavioral and social barriers [21].

Some studies have also applied ABMS to investigate the effects of energy feedback, thus focusing
more on the adoption of energy-efficient behaviors and social eco-innovations, for example with regard
to heating [31] (p. 114). Anderson and Lee [32] furthermore analyzed the effects of normative feedback
and social networks on the energy usage of building occupants. In their experiments, they found out
that sending normative messages only to occupants with above-average energy use yielded the best
results [32] (p. 281), thereby confirming that effective feedback strategies should take the heterogeneity
of energy users into account.

Regarding demand-side management (DSM) and prosumers’ role in smart grids, there is
a rich amount of studies applying agent-based approaches—respectively multi-agent systems
(MAS) [33,34]. The solving of coordination and negotiation issues regarding demand-side flexibilities
is usually regulated via differently designed pricing and market mechanisms here [33] (p. 10).
Consequently, households—whether in their role as consumers or prosumers—are usually considered
as cost-optimizing entities [35] (pp. 230-231). However, recent studies have increasingly focused
on the distribution of shared energy resources in local communities [36-38], which supports the
above-mentioned assumption of energy as a common pool resource.

With regard to agent- and activity-based models of DSM, researchers have also pointed out a lack
of socio-technical perspective: This includes the consideration of end-users’ service expectations and
willingness to change everyday practices [39] (p. 1584) as well as comfort requirements, affinity for
technology or environmental awareness [40] (pp. 683—-684). Recently, Siebert et al. have underlined
that energy consumer agents “should be considered as [ ... ] driven not only by financial incentives
but also driven by concepts such as values, beliefs, and social norms” [41] (p. 12). In their agent-based
model, they implemented various consumer types (based on factors like interest in new technologies
and openness to social influences); simulation experiments with different scenarios showed that even
small changes in agents’ behavior (respectively the share of consumer types) may lead to “considerable
differences and non-linearity in the grid power flow and voltage levels” [41] (p. 11).

1.3. Purpose and Structure of This Paper

As described above, maintaining system stability in future RES-based power distribution grids is
the main issue that we investigate in this study. In this context, we focus on information management
approaches in which DSOs try to encourage end-users to behave in a grid-beneficial manner by applying
different intervention strategies (hereafter referred to as ‘modes of governance’), for example the
provision of feedback. As our literature review indicates, previous ABM-related studies have already
investigated the influence of various (information) management approaches on grid performance,
especially with regard to DSM in smart grids. However, they tend to focus on technological issues
and economic incentives, revealing a research gap with regard to a more nuanced perspective on
end-user behavior.

This leads to the following research questions:

e How do different modes of governance affect the performance of the grid, especially when
considering a heterogeneous agent population?
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e How can we model heterogeneous end-users and use them as a ‘social ingredient’ to improve
technical grid models?

Guided by these research questions, we draw on the methodological capabilities of ABMS in
order to present a simulation framework that helps to investigate the performance of future power
distribution grids (i.e., smart grid scenarios). Different modes of governance (i.e., soft and strong
control as well as self-organization) and the dynamics emerging from the decisions of individual,
residential end-users constitute key influential factors here. Based on discussions in current literature,
the soft mode of governance refers to feedback mechanisms that consider end-users’ heterogeneous
attitudes, preferences and behaviors. The feedback provided by DSOs therefore includes not only
monetary (electricity costs, power consumption), but also more normative, non-monetary information
(concerning social comparison, environmental impact and cooperativeness of the population).

Methods and materials are provided in Sections 2 and 3: Section 2 briefly presents the overall
simulation framework, which links different simulators from sociology and electrical engineering
(co-simulation). However, we will focus on the end-user sub-model in this paper (Section 3), using the
model of frame selection (MFS) as theoretical background for modelling end-users’ decision-making [42].
Additionally, we conducted an online survey to ground the end-user sub-model on empirical data.
Exemplary simulation experiments are presented in Section 4 in order to show possible applications of
the framework. We discuss the limitations and future prospects of the end-user model in Section 5.
The article concludes in Section 6.

2. An Interdisciplinary Co-Simulation Framework for Future Power Distribution Grids

The co-simulation framework presents the results of an interdisciplinary research project
(“Collaborative Data and Risk Management for Future Energy Grids—a Simulation Study”), conducted
by the Institute of Energy Systems, Energy Efficiency and Energy Economics (Faculty of Electrical
Engineering and Information Technology) as well as the Technology Studies Group (Faculty of Social
Sciences) at TU Dortmund University. In this collaborative project, the power distribution grid was
interpreted as a socio-technical system: Accordingly, the complexity of the system arises from the
interaction of social (e.g., end-users and DSOs) as well as technical components (e.g., microgeneration
facilities, grid topology). In this context, the framework was developed to investigate distribution power
grid dynamics under different conditions, paying particular attention to information management
concepts that involve DSOs and end-users. A simple visual representation of the framework can be
found in Figure 1; for a more detailed description see Hidalgo Rodriguez et al. [43].

The framework is based on a sociological macro-micro-macro model (cf. for example [44,45]);
specifically, we refer to Esser’s interpretation, the “model of sociological explanation” (MSE) [46]
(pp- 91-100). This basic model differentiates three analytical steps: First, actors on the micro-level
perceive a (social) situation or structure on the macro-level (“Logic of the situation”) [47] (p. 8).
Individual actors then take decisions (“Logic of the selection”) (ibid.), resulting in a new, collective, and
potentially unintended situation on the macro-level (“Logic of the aggregation”) [47] (p. 9). According
to Esser and Kroneberg, actors’ interpretation of a situation (“Logic of the situation”) provides a direct
link to the model of frame-selection [48] (pp. 68, 71), which we describe further in Chapter 3.

To our understanding, Esser’s basic concept of explaining macro-sociological phenomena is
suitable for our case, our understanding of governance as well as the idea of ABMS in general:
Influenced by current macro-level conditions (e.g., electricity prices), end-users make electricity-related
decisions on the micro-level, for example reducing their power consumption or changing settings
in their energy management system (EMS). In the building simulator, the decision of each individual
end-user is translated into a load value, depending on residential appliances as well as external
influences (i.e., weather). Since we aim to investigate future smart grids, we include inflexible
household appliances, flexible appliances (heat pumps), power generators (rooftop PV systems) and
storages (electric and thermal). With the exception of inflexible appliances, the operation of residential
facilities can follow different optimization objectives (e.g., cost-optimal or grid-beneficial operation),
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which can be set by residents via a simplified EMS [49]. The EMS uses model predictive control to
decide, for example, at which power level the heat pump shall operate, or whether the battery should
be charged or discharged in the following time steps. When set to grid-beneficial mode of operation,
the EMS tries to use as much (or less) energy as possible in the next time steps, in order to help keeping
the grid in a stable state (for details see [48]). Cost-optimal operation takes fixed costs of self-generated
or bought-in power into account. Using energy from a rooftop PV system is always cheaper than using
bought (electric) power).

Power distribution grid

Settings /
actions

Modes of operation /

State of the grid
available tech. assets

Information /

interventions .
¢ Grid control and
L == information management
7 N - ~

e N s

Figure 1. Overall co-simulation framework including the four simulators (colored boxes) and scenario
conditions (grey boxes). Source: Own figure based on [43] (p. 624).

Individual loads are aggregated in the power distribution grid simulator, resulting in a macro-level
grid state that serves as the basis of decision-making for grid control and information management.
A control algorithm represents the role of DSOs concerning operational grid control: It has the objective
to maintain grid stability and, if jeopardized, to intervene and interact with end-users.

This interaction between DSO and end-users is structured by different modes of governance.
We refer to the analytical definition by Weyer et al., who understand governance as “a specific
combination of the basic mechanisms of control and coordination [ ... ]” [50] (p. 17). In this context,
control is a directional relation between a controlling subject (i.e., DSO) and an “object-to-be-controlled”
(i.e., end-users). In order to achieve its goals, the subject tries to change the situational context of the
objects by utilizing incentives with varying intensity (e.g., stimuli or constraints) [50] (p. 20). However,
objects-to-be-controlled always have leeway concerning the compliance with these interventions:
The attempt to control a socio-technical system thus always involves a risk of failure (ibid. p. 20).
Coordination, on the other hand, refers to the “mutual adjustment of heterogeneous actors aiming
at collectively solving problems in a way that is acceptable to all parties involved” (ibid. p. 22).
Consequently, coordination is characterized by decentral and reflexive negotiation processes between
a variety of actors, who consider each other’s behavior when making decisions.

Based on this definition, we distinguish three modes of governance. This distinction is also guided
by flexibility concepts that are currently being discussed in economic and technical domains. As an
example: A traffic-light concept with different stages that define “how market participants and network
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operators can interact with one another in future” [51] (p. 2). The modes of governance applied here
are:

e  Decentral self-organization: All actors make their decisions independently; there is no exchange
of information or intervention on part of the DSO (i.e., neither control nor coordination).

e  Distributed, soft control: The DSO intervenes and sends feedback and incentives (cf. Tables 1 and 2)
to end-users, hoping that they adjust their behavior and contribute to solving the problem at hand.
Since end-users’ contribution to collective problem-solving is an integral part of the incentive here,
this constitutes a mixed mode of governance that links soft control and coordination.

e  Central, strong control: By contract, the DSO is allowed to directly access end-users” EMSs and
retrieve grid-beneficial flexibilities automatically. End-users receive the same information as in
soft control; however, the EMS processes this information automatically, leaving the end-user no
further leeway in their decision.

In summary, DSO’s interventions do not always have a direct impact, but rather influence
decision-making of strategic actors at the micro-level, which then leads to emergent effects on the
macro-level: power-surpluses or power-shortages [43]. The information from the DSO is updated
at 15-min intervals. However, the DSO only intervenes and sends information as long as the grid’s
stability is at risk.

Finally, framework conditions are used to specify scenarios by varying certain parameters
(dotted lines in Figure 1): For example concerning the share of innovative residential appliances
(building modernization), the dependency on external power supply (control limits), the share of
different end-user types (population) or the possible interactions between grid control and end-users
(modes of governance). The conditions relevant here will be described in more detail in Section 4.

3. Agent-Based Model for Residential End-Users’ Behavior

In order to describe the end-user sub-model in more detail, we draw on the ODD+D protocol in
this section (Overview, Design Concepts and Details + Decision), which is an extension of the original
ODD protocol by Grimm et al. [52,53]. It explicitly includes human decision-making and has been
proposed as a standardized protocol for reporting ABMs. The model presented here was programmed
in NetLogo [54].

3.1. Purpose

This sub-model is based on previous work of the authors and the simulator SimCo (Simulation
of the Governance of Complex Systems, [55])—consequently, we named it SimCo-Energy. It aims to
represent residential end-users’ decision-making and their reaction to DSO’s interventions. Depending
on user-type specific preferences and attitudes, they respond to (non-)monetary incentives and
electricity-related feedback by taking different actions, such as reducing their electricity consumption
or switching devices” modes of operation.

3.2. Theoretical Background

In order to model end-users, we utilize Kroneberg’s Model of Frame-Selection (MFS) and adapt it
to electricity-related feedback and consumption behavior. The MFS has been applied to and empirically
tested in various contexts, for example altruism, crime, fertility decisions, juvenile violence, voting
behavior, and waste recycling (see for example [56-59]).

The MFS’s main advantage lies in the possibility to include actors’ situational awareness as well as
their variable rationality [42] (p. 98); both concepts are highly relevant here. Firstly, as Davoudi et al. note
concerning energy consumption behavior, “people move between [ ... ] two extremes, from simple
heuristics to complex cognitive strategies, depending on the significance of the decision that they have
tomake [ ... ]” [60] (p.14). Accordingly, end-users may either be willed to “invest cognitive effort
in the decision-making process” or they may act out of habit [61] (p. 1936). In this context, the MFS
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represents a fitting theoretical background as it differentiates two modes of decision-making to depict
variable rationality: Actors may either draw on simple, automatic-spontaneous heuristics (“as-mode”) or
on complex, reflexive-calculating decision strategies (“rc-mode”) [42]. The complexity and rationality
of decision-making depend on the respective situation. External information, such as feedback and
incentives, may act as environmental cues: These may automatically trigger behaviors without the
need to consciously and repeatedly consider all other behavioral alternatives (cf. [62], cited from [31]),
or reveal discrepancies and contribute to breaking prevailing habits [12] (p. 27).
Decision-making processes in the MFS are divided into three sequential stages:

e  The selection of a frame (“What kind of situation is this?”),
e the selection of a script (“Which way of acting is appropriate?”),
e and lastly the selection of an action (“What am I going to do?”) [42] (p. 99).

This distinction refers to the idea of mental models, which are defined as subjectively constructed
and internally held interpretations of external phenomena that affect how a person behaves [63] (p. 42).
In this context, frames represent mental models of situations, i.e., actors define the kind of situation
they are currently faced with. Scripts, on the other hand, constitute mental models of “behavioral
predispositions or programs of action” that are held by an actor and are perceived as relevant or
suitable in the respective situation [42] (p. 99). These two mental models pre-structure an actor’s
behavior and finally lead to the action selection, i.e., the choice of an actual behavior. The three phases
can each be carried out in any mode (i.e., as- or rc-mode).

Similar approaches to variable rationality encompass, for example, the four decision strategies
in Jager’s Consumat approach [64], which has been empirically tested and applied to investigate the
diffusion of innovations (cf. [26,65]). Based on the degree of need-satisfaction and the certainty of
opportunities, Jager distinguishes two automated (repetition, imitation) and two reasoned (deliberation,
inquiring) strategies of information processing [64] (p. 79). Similarly, household agents in the ABMS of
Schwarz and Ernst [66] apply three different decision rules when choosing water-saving innovations
(peer evaluation, best-utility heuristic and rational-choice evaluation).

3.3. Entities, State Variables, and Scales

Residential end-user agents, i.e., private households, are the only entity in SimCo-Energy. The state
variables that characterize individual end-users are summarized in Table 1: All variables are described
in more detail over the course of Chapters 3.4 and 3.5; for reasons of comprehensibility, we grouped
them in content-related units:

A. General attributes
Static MFS-related attributes
Situational information

B.
C
D.  Results of the MFS decision process
E Energy-related output

E.

Dissatisfaction-related attributes

In addition, each end-user agent is assigned to one building agent in the building simulator
(see overall framework above): The building constitutes the spatio-technical context for an agent
and therefore specifies which devices an agent can use or configure via the EMS (cf. “technological
equipment” and “mode of operation” in Table 1). Furthermore, each building agent stores a residential
load profile, which is assigned to an end-user agent and then modified by their behavior (cf. block E
in Table 1)—due to self-regulated changes or DSO’s interventions.
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Table 1. State variables of end-user agents. Source: own depiction.

End-User Variable Values

Description

“Eco-helper”,

“Spendthrift”,

“Materialist”,
“Skeptic”

Type

Affiliation to one of the four empirical
agent-clusters; determines the
parametrization concerning
decision-making relevant variables.

“Inflexible electrical devices
only”,
“PV system only”,

One of five predefined equipment

A . . “PV system with battery configurations; input from the building
Technological equipment ” . .
storage”, simulator; static and does not change
“PV system and heating over time.
pumpﬂ,
“Heating pump only”
Consists of 20 other randomly selected
Social network List of agents end-users; static and does not change
over time.
Chronic accessibility
(value btw. 0 and 1),
Presence of situational objects ~ Variables for calculating the matches of
Frame-related (btw. 0 and 1), the frames; static and does not change
dispositions Associative link (btw. 0 and 1), over time. Relevant for
Spontaneity threshold as-mode.
(btw. 0 and 4),
Attitude (btw. 1 and 5)
B Relates to the importance of the four
Number between 0 and 1 for quantitative information (“information
Frame-related each of the four preferences  profile”) and the probability to perceive
preferences (cost savings, eco-friendliness, a need to act (frame 1), if these
social norm and compliance) information reveal a discrepancy.
Relevant for rc-mode.
Chronic accessibility
Script- and action-related (value btw. 0 and 1), Variables for calculating the matches of
dispositions Temporary accessibility the scripts. Relevant for as-mode.
(btw. 0 and 1)
List of values for each of the , .
C . . An agent’s memory concerning current
four quantitative information c :
. . . and historical information. Gets
C Information profile (costs, own consumption, .
. updated when grid control sends a
consumption of peers, share of
Lo . request. Relevant for rc-mode.
cooperation) in course of time
Number between 0 and 1 for Relates to the fit and suitability of a
Match . . . . . 4
each frame and script/action frame/script in a given situation.
“No need to act” (0),
D Current frame “Need to act” (1) The currently chosen frame.

“Doing nothing” (0),
“Adjusting power
consumption” (1),

“Following recommendation”

@)

Current script and action

The currently chosen script and action.

“Cost-optimal”,
“Grid-beneficial”

Current mode of
operation

Simplified settings for the EMS that an
agent possesses. Cost-optimal settings
are the default for all types of
equipment; grid-beneficial settings are
available to all but inflexible electricity
devices.
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Table 1. Cont.

End-User Variable Values Description

Modification (percentage) of the
standard load profile (building
simulator) of an end-user, indicating
that they may habitually use more or
less power.

Values get updated due to behavioral
changes: Each selection of script/action
1 or 2 results in a 10% de-/increase of the
previous value; 10% of that change
(i-e., 1% of the old value) will remain in
the next step, indicating familiarization
effects.

Current load factor Value between 0.5 and 2

Threshold for determining the

Dissatisfaction threshold Value between 0 and 1 . L
dissatisfied status.

An agent’s dissatisfaction with regard
F to its current situation, compared to the
Dissatisfied? Boolean past. Used for determining
decision-making in rc-mode. Gets
updated every day.

3.4. Individual Decision-Making

When grid stability is at risk and grid control decides to intervene by providing feedback and
incentives to end-users (depending on the mode of governance presented in Section 2), end-users are
faced with the choice of whether or not to comply with this ‘request for assistance’. In general, DSO’s
requests resemble short messages to the end-users, which entail a recommended action (e.g., decreasing
consumption or changing settings in the EMS) as well as a range of quantitative data concerning own
consumption, current costs and cooperativeness of other agents (cf. variable “information profile
in Table 1 and Section 3.4.2). These interventions change end-users’ context and provide situational
cues that may lead to behavioral changes. Figure 2 depicts the general process of SimCo-Energy and
its interfaces with the other simulators of the framework (cf. Section 2).

End-users usually follow routines and habits when making daily electricity-related decisions.
In our adaptation of the MFS, we therefore assume that end-users act in the habitual as-mode by
default and activate ‘default’ frames and scripts (i.e., no need to act’ and ‘doing nothing’). This reflects
end-users’ tendency to maintain the status quo instead of evaluating all information available [67]
(p. 174). In technical terms, this means that the EMS is set to “cost-optimal” per default.

Agents can deviate from their default behavior when the following conditions are met:

”

e  End-users select another frame or script in as-mode if the match (i.e., the perceived fittingness of
frames and scripts, max. value 1) of the best option is sufficiently high (above 0.8) or higher than
the other options (twice as high as second best option’s match);

e End-users can switch from as-mode to rc-mode if no match stands out and they are dissatisfied
with their past behavior (see Section 3.5.4).

Figure 3 ‘zooms in” on end-user agents’ behavior according to the MFS (as shown in the center of
Figure 2) and shows a schematic depiction of the individual decision-making process.
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Technological equipment

(building simulator)

Link buildings with end-users

Setup
end-users

Run simulation

o —————— T o e e . ——— ———————— — T T o

Loop for duration of |

simulation '
Update information

of end-users

( Loop over end-users

End-user chooses behaviour
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Report load factor and
mode of operation

Building

Report individual loads

Power distribution grid

Intervene /
send information Report aggregated load
if necessary Grid control and

information management

— i — — — — 4

Figure 2. Process of SimCo-Energy (yellow boxes) and interface with other simulators (green and blue
boxes). Source: own figure.
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Frame selection

No No
— T

Script and action selection

Figure 3. Decision-making process of end-users, based on the MFS. Source: own figure.

3.4.1. Frame Selection in as-Mode

In this initial stage of decision-making, agents define their situation. We assume that an end-user
either perceives no need to act in the present situation (“No need to act”, frame 0) or assumes that an
(re-)action is required (“Need to act”, frame 1).

Frame selection in as-mode constitutes the rather spontaneous assessment of a situation based on
general attitudes and dispositions. Only factors are taken into account that reflect an actor’s habitual,
taken for granted and mentally anchored behavior [42] (p. 102). End-users finally choose the frame
with the highest “match”, i.e., the frame that is perceived to fit the current situation best (p. 101).
The match m of a frame i is calculated for each agent via the following equation:

miZOiniXﬂi (1)

Firstly, a refers to the “chronic accessibility” of a frame, i.e., the general willingness to activate it
(p. 101). We use the end-user’s perceived personal responsibility concerning the energy transition as
an (empirical) indicator for the chronic accessibility of frame 1 (“Need to act”) here. Since there are
only two mutually exclusive frames, we assume that the chronic accessibility of frame 0 (a) is equal to
1- ap.

Secondly, o refers to the “presence of situational objects”, which represents the awareness for
situational cues (ibid.). Two cues are relevant here: The DSO either sends a request to end-users,
including a recommended action (e.g., lowering or raising power consumption); or no request is
sent, if there is no need to intervene on part of the DSO, signaling ‘business-as-usual’. However, we
assume that grid control’s requests are not perceived immediately by an agent, but rather require a
certain response time (end-users’ spontaneity threshold). Each simulation step represents 15 min:
Due to the parametrization of end-user types, response time may thus vary between 15 and 120 min.
Once the threshold exceeds the duration of the request (i.e., simulation-steps passed), the awareness
increases gradually over time, influenced by general attitude towards the possibilities of smart metering.
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This combination of spontaneity threshold and attitude is intended to address end-users’ involvement
in electricity-related feedback (cf. [68]). The three variables are measured in simulation steps; however,
we used self-reported, attitudinal measures as empirical indicators for spontaneity threshold and
attitude (cf. Section 3.5.2). Consequently, o is determined as depicted in Algorithm 1.

Algorithm 1: Presence of Situational Objects

If request present = True:
If request duration > spontaneity threshold:
o0 = (request duration — spontaneity threshold)/attitude (capped at 1)
Else: 0=0
Else: 0=0

Lastly, the “associative link” (I) states to what degree end-users take situational cues as an indicator
for the existence of a certain frame [42] (p. 101): In our case, it specifies in how far the two cues are
associated with the need to act (frame 1) or not (frame 0). This variable was not empirically collected,
but estimated based on the general characteristics of the end-user clusters (cf. Section 3.5.2).

As an example, a request (sent by the operator) can only trigger any reaction, if an agent’s mental
linkage between that request and frame 1 “need to act” as well as the general disposition to activate that
frame (“chronic accessibility”) are sufficiently high. An end-user, who is more interested and engaged
in energy-related topics, would therefore be more likely to respond than a passive user, who regards
electricity as a hidden and taken for granted good.

3.4.2. Frame Selection in rc-Mode

In the re-mode, actors systematically process information and finally choose the alternative with
the highest subjective utility [42] (p. 102). According to Kroneberg, frame selection in rc-mode focuses
on the conscious formulation of expectations regarding the appropriateness of a situation definition [69].
When applying these ideas to our case, actors might tend to formulate a need to act if the information
available reveal a discrepancy between current practices and desired outcomes [3] (p. 119).

Referring to the “feedback-standard gap” described by Karlin et al. [70] (p. 2), we assume that a
mismatch between an end-user’s actual behavior (feedback, f) and a provided standard (reference, r)
increases the probability that choosing the frame ‘need to act’ (frame 1) is perceived as appropriate.
The mismatch equals the absolute deviation of r and f, which is then compared to a threshold in order
to determine an end-user’s perceived appropriateness of a frame. Table 2 shows the four types of
information that influence the frame selection in rc-mode. They comprise both conventional and
monetary as well as non-monetary information.

Table 2. Information used for determining the appropriateness of frame 1. Source: own depiction.

Type Feedback (f) Reference (1) Threshold (for Frame 1)

personal power historical average of the

P ti . 1 >109 iati
ower consumption consumption of the last 24 h personal power 0% deviation
consumption
average electricity costs of historical average of

Electricity cost >10% deviation

thelast 24 h electricity costs

average consumption of
other households in the >10% deviation
personal social network

personal power

Social comparison consumption of the last 24 h

share of households that
pledged their support in
the past (i.e., share of
households that
followed the
request/recommendation)

Cooperativeness none <50% supporters
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With the exception of “cooperativeness”, each household is provided with individual performance
data for each type of information. “Power consumption” is used to calculate the mismatch within
a household, whereas “social comparison” refers to the mismatch between a household and other
households in its social network; consequently, both use a household’s personal power consumption
of the last 24 h as an indicator for its actual behavior.

However, end-users evaluate information differently: This is implemented by giving end-users
preferences concerning electricity-related decisions, which rate the four types of information in
terms of their subjective importance (cf. Table 1). These preferences refer to eco-friendliness (power
consumption), cost savings (electricity costs), social norms (social comparison) as well as compliance
with stability requirements of the power grid (cooperativeness). While the first three criteria are rather
common for models on energy consumption behavior (cf. [67]), the last one is adopted from the idea
of ‘grid-beneficial behavior’, which encompasses, for instance, end-users’ willingness and ability to
prevent grid bottlenecks/congestion or stabilize the local supply system [71] (p. 17) via temporal
changes in energy consumption.

Summing up, the information in Table 2 can be transferred to probabilities that indicate the ‘correct’
definition of a situation—depending on the preferences of end-users. The expected appropriateness
for each frame is consequently determined by calculating the mean probability of all four information
types (consumption, cost, social comparison, cooperativeness); the frame with the highest expected
appropriateness is then selected. As an example, end-users might be more likely to perceive a ‘need to
act’ (frame 1), if they are cost-sensitive and the change of their current electricity costs (compared to
their historical average) exceeds the threshold (here: 10%). Likewise, end-users who give high priority
to stability compliance might formulate a ‘need to act’, when merely a small number of households
(here: below 50%) cooperates although the latter might be counter-intuitive at first sight.

3.4.3. Script and Action Selection in as-Mode

Scripts constitute actors’ notions of courses of action (i.e., routines or behavioral predispositions)
that are deemed appropriate for a given situation. Referring to Jager, we assume that scripts (and
actions) are selected only in as-mode, because “a script hardly requires cognitive effort to be executed”
and thus “individuals do not have to explicitly evaluate all aspects of the available options any more
[... 1" [72]. For reasons of simplification, we combine the script and action selection stages here,
since scripts can be regarded as “mental models of sequences of actions” [42] (p. 99). We decided to
implement three script-action-combinations:

e  “Business as usual” (script 0): The end-user does not change their actions at all and behaves
as usual.

e  “Adjusting power consumption” (script 1): The end-user changes their behavior, i.e., increasing or
decreasing consumption within reasonable limits relative to their standard behavior (cf. Table 1).
Additionally, the end-user changes the settings of their EMS to ‘cost-optimal’.

e “Following recommendation of DSO” (script 2): The end-user adjusts their power consumption
(see above) and additionally changes the EMS to a ‘grid-beneficial setting’, if available.

The match m of a script j is determined similarly to the frame match and is calculated as depicted
in Equation (2):
m; :m,-xa]-l-xa]- (2)

The first variable m; refers to the match of the previously chosen frame i (see above), indicating
that a script is more likely to be activated if the situation is sufficiently clear to the agent.

Secondly, aj; refers to the “temporary accessibility”, which represents an end-user’s mental
association of a script with the selected frame. Consequently, it is conceptually similar to the
“associative link” in the spontaneous frame selection (cf. Section 3.4.1). The temporary accessibility was
not empirically collected, but estimated based on the general characteristics of the end-user clusters.
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Lastly, a; refers to the chronic accessibility of a script, i.e., the strength of end-users” mentally
anchored behaviors [42] (p. 102). Since such behavior is, for example, reflected in routines and
experiences, we use end-users’ familiarity with energy-saving measures as an indicator for script 1
(“Adjusting power consumption”). When routines involve the interaction with others (human and
machine), trust constitutes an important influencing factor in socio-technical systems [67] (p. 181):
It constitutes a social mechanism to reduce complexity and uncertainty, and is assumed to prevent
passive behavior [73]. Consequently, we assume that end-users’ trust in specific actors, like DSOs and
municipal utilities, indicate the general disposition to activate script 2 (“Following request of DSO”).

Finally, the results of the script selection, i.e., electricity consumption (“current load factor”,
cf. Table 1) and EMS settings (“current mode of operation”, cf. Table 1) are reported to the building
simulator (cf. Figure 2).

3.5. Further Design Concepts

3.5.1. Interactions and Social Influence

We implemented indirect social interactions between households: End-users are provided with
information on the average consumption of their social network (‘social comparison’, see above),
and may consider this information when making their decisions (depending on the preference to
comply with the “social norm’, see above). Since we focus on short-term electricity feedback in our
study, information on social peers are only available in form of aggregated data without providing an
immediate insight into their specific actions, decisions or choices.

3.5.2. Empirical Background and Agent Heterogeneity

The agents in our model belong to one of several ‘end-user types’ that were differently parametrized
with regard to the MFS-relevant decision variables (Appendix B as well as “dispositions” and
“preferences” in Table 1). For this purpose, these variables were operationalized for an empirical
(online) survey (Appendix A); the collected data was then used for a cluster analysis in order to identify
and characterize heterogeneous, attitude-based end-user types.

Survey participants were recruited via the online research platform SurveyCircle [74]. In addition
to the attitudinal data required for the cluster analysis, we also collected some basic sociodemographic
(e.g., age, occupation, education) and household-related data (e.g., living conditions, dwelling).
101 people participated in mid-August 2018 (Germany; 62% female; average age of 29, ranging from
18 to 65). Due to the choice of an online research platform for data collection, the sample is biased
towards a more academic segment of the population. This becomes evident by the rather high level of
education (68% high school graduation, 56% university degree). 66% of the respondents are fully or
partially employed; students make up 26% of the sample. Regarding the living conditions, 41% of the
respondents live in detached or duplex houses; 37% are homeowners.

Since a detailed description of the cluster analysis would go beyond the scope of this article, it is
only possible to refer to the Appendices here in which the results (Appendix B) and the underlying
variables (Appendix A) are presented. Cluster analysis is a common method in social sciences to
identify similar groups of objects, i.e., persons or organizations [75] (pp. 453-515). We used the
Ward method to form clusters, which aims to combine those objects that increase the total variance
within a group as little as possible. Although Formann suggests utilizing no more than 6-7 variables
when conducting a cluster analysis with less than 128 cases (2X, with k being the number of cluster
variables [76], cited after [77]), we have decided to include nine variables due to conceptual reasons
(cf. Appendix B): Specifically, finding attitudinal clusters that differ concerning the MFS-specific
variables. Variables that were not significantly distinct between clusters were later excluded and
randomly distributed. Different quantities of clusters were checked, but the four-cluster solution
yielded the results that were the clearest to interpret. Since our sample is comparatively small and not
representative for the overall German population, the findings presented in Chapter 3 and 4 should
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not be generalized. Since we examine a generic, ideal-typical power grid in Chapter 4, we have
nevertheless accepted this sample in order to represent the effect of heterogeneous agent types.

In the end, four end-user types were identified, and parametrized based on the empirical findings
(Appendix B):

1. Hesitant skeptics: Typically not inclined to act and skeptical about interventions and the benefits
of smart metering; aspire conformity within their social network.

2. Eco-responsible helpers: Exhibit a strong sense of responsibility and a constant need to act; prioritize
environmental concerns over all other needs.

3. Cost-conscious materialists: Most likely to act due to cost-minimizing reasons.

4. Spendthrifts: No prominent dispositions, but put high trust in DSOs” and municipal utilities’
interventions; while group conformity is important, cost-related issues play an inferior role.

By varying the shares of these types in the total population, it is possible to make assumptions
about the general societal sentiment within a scenario, for example with regard to the populations’
openness to flexibility concepts.

3.5.3. Stochasticity

The parametrization of end-users entails some random components. Firstly, end-users’ social
network is randomly generated at the start of the simulation. It consists of 20 end-users and does not
change over time. Secondly, the initial value of the load-factor (cf. Table 1) is drawn from a normal
distribution, based on the cluster means and standard deviations gained from the survey. Lastly, we
randomly distributed the spontaneity value of end-users, because this variable showed no significant
differences in mean values among clusters (cf. Appendix B).

3.5.4. Learning

Since the overall co-simulation framework focusses on operational grid control and therefore only
considers a relatively limited time span, i.e., days to weeks (cf. Section 2), no long-term changes in
end-users” habits, dispositions or preferences are taken into account here.

However, we implemented a simple short-term learning mechanism, representing agents’
daily satisfaction. We assume that agents are satisfied if they do not need to actively engage in
electricity-related decisions on a regular basis and thus perceive no need to act in a situation [78]
(p. 398). The agent calculates a satisfaction value for each day passed (calculated by 1 — m;, i.e., the
reverse match of frame 1). If the historical mean of these values is below a given threshold, their
status is set to ‘dissatisfied” (see Table 1). Since a low satisfaction with their current situation may
cause agents to elaborate on alternative behaviors [64] (pp. 76-77), the “dissatisfied” status constitutes a
prerequisite for selecting the rc-mode in the frame-selection (see Section 3.4).

Additionally, the intensity of end-users” load-factor adjustments declines over time (cf. “current
load-factor” in Table 1) in order to represent feedback-related familiarization effects [4] (p. 130).
Consequently, if end-users do not repeat such adjustments, short-term learning effects remain minor.

3.6. Implementation Details

SimCo-Energy was programmed in NetLogo [54], while the overall framework as well as the
software for linking the separate models (mosaik [79]) are Python-based. We used the NetLogo-Java
API to implement an adapter connecting SimCo-Energy to mosaik.

The agent-type parameters are specified in the code (see Table 1 and Appendix B), while the
population (i.e., shares of agent-types) as well as the household-building-allocation are provided in
external input files on setup (see below). In the running simulation, DSO’s requests are inputs from
another model (grid control and information management, see Figure 1), which are based on the
current criticality of the grid’s stability.
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4. Results

4.1. Scenario Definition and Experimental Set-Up

To illustrate possible applications of the overall simulation framework, we will examine an
exemplary scenario in the following. It represents a generic, lowly populated residential area with
167 households, which consists of single- and two-family houses (cf. grid topology by [80] (p. 25)).
It should be noted that this grid topology represents an ideal-typical grid structure and not a real
one. Consequently, it is not directly linked to the household-related data we gathered from the survey.
The survey was merely used to introduce heterogeneity to the agent population in terms of attitudinal
clusters. Based on the types identified in the empirical data, our scenario uses an agent population that
includes a relatively high share of environmentally aware and cost-conscious end-users, compared
to existing energy consumer typologies [81]. Furthermore, we assume a fairly high diffusion of PV
systems, which increases the volatility of power generation through RES. End-user agents and building
agents (cf. Chapter 2) were randomly linked to each other, excluding some unreasonable combinations
(e.g., “hesitant skeptics” having an advanced degree of building modernization, cf. Table 3). The shares
of end-user types and residential facilities are depicted in Table 3. Finally, all information presented in
Table 2 are available to end-users (cost, social comparison, cooperativeness etc.).

Based on this scenario, we conducted three experiments with varying modes of governance
(decentral self-organization; distributed, soft control; central, strong control; cf. Section 2). The DSO
(represented by a control algorithm in our framework) is allowed to send requests to the consumers,
indicating whether there is any need to use more or less electric energy in the current situation; these
messages might additionally contain further information, like feedback and incentives (see Table 2).
Central and distributed modes operate with narrow control limits for the grid control algorithm
(between 10 and —10 kW aggregated load), which specifies the scope of permitted fluctuations;
consequently, we assume that the distribution grid cannot completely rely on external power supply
from the transmission grid, which would be the case in scenarios of “energy self-sufficiency” or “energy
autonomy” [82,83].

Table 3. Shares of end-user types and building modernization for 167 households. Source:
own depiction.

Share
Hesitant skeptics 10%
Population Eco-responsible helpers 40%
Cost-conscious materialists 30%
Spendthrifts 20%
PV systems only 35%
Building modernization PV systems with battery storage 10%
PV systems and heating pumps 5%
Heating pumps only 10%
Inflexible electricity devices only 40%

4.2. Simulation Results

Three experiments were conducted for a seven-day period in order to examine in how far system
stability on the macro-level can be improved through interventions. For this purpose, we use the
cumulated load in kW as a macro-level indicator for assessing the experiments and the effectiveness
of the three modes of governance. Positive loads stand for power consumption, while negative ones
represent power feed-ins.
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A two-day section of the measurement series is depicted in Figure 4. Due to a relatively high share
of PV systems, we can observe a high load volatility: The black curve (decentral self-organization)
shows a feed-in peak at noon of the first day, while no such weather-related generation occurs on the
second day. On both evenings, the load increases clearly, since electricity consumption is higher during
this time of the day. First successes can be observed concerning the interventions to reduce generation
and feed-in, because the total absolute value of the loads declines and fluctuations in the grid decrease
accordingly. Central, strong control shows slightly better results, although a possible control error
can be observed on the evening of the second day, when the load value rises to the level of decentral
self-organization for a short time. Nevertheless, differences between central and distributed control
are minor, at least when merely considering technical indicators for system stability; one could argue
however that the use of additional (social) indicators, for instance end-users’ satisfaction, may yield
different results, since the central mode of governance constitutes a strong intervention into end-users’
residential facilities.
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Figure 4. Cumulated load in kW (two-day section) over time, comparing three modes of governance.
Source: own figure.

Figure 5 illustrates the results of the complete seven-day period by means of violin plots, which
visualize the distribution of measured values regardless of their temporal occurrence—similar to a
boxplot. Both interventions succeeded in reducing outliers (high consumption/feed-in) that are critical
for grid stability.
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Figure 5. Cumulated load in kW. Source: own figure.
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A statistical analysis (see Table 4) supports these findings: Mean load values drop from 88.3 kW
(decentral self-organization) to 77.6 kW (distributed, soft control) or 77.7 kW (central, strong control);
additionally, standard deviation decreases from 57.7 to 44 (for both modes of control). At least for
the scenario under investigation, we can make an interim supposition that soft control is sufficient
for the time being and allows improving the local grid stability as a result of DSO’s and end-users’
interactions. A sufficient share of end-users is apparently willing (and able by means of technical
facilities) to respond to soft interventions. Accordingly, it appears reasonable to resort to central, strong
control only in justified and exceptional cases, for example when preceding attempts at soft control did
not achieve the desired effects and there is an imminent risk to the stability of the system.

Table 4. Cumulated load in kW. Source: own depiction.
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Decentral self-organization 88.3 57.7 273.8-174.8 208.3 -1185
Distributed, soft control 77.6 44.0 203.0-122.0 166.9 -81.8
Central, strong control 77.7 44.0 197.8-103.6 173.7 —84.7

5. Discussion

We hope that SimCo-Energy may contribute to the discussion on the effects of end-users’
(participatory) behavior on grid operation. Primarily, because it takes two important aspects of
decision-making into account: Variable rationality and situational awareness of agents. Nevertheless,
our end-user model should be viewed as a conceptual framework that requires further data
collection, since some agent parametrizations are still based on qualitative assessments and estimations
(e.g., thresholds or linkages, cf. Table 1). Experimental research designs, for example “vignette analyses”
or “factorial surveys” [84,85], could serve as valuable tools for data collection here. They allow
to ‘simulate’ decision-making situations, in which respondents have to decide under different,
systematically manipulated circumstances (i.e., environmental cues). Such situational descriptions
could provide respondents (i.e., end-users) with different combinations of feedback information, hints
and DSO’s requests (as presented in Table 2) and would enable researchers to elicit respondents’
“[ ... ]beliefs, attitudes, judgments, knowledge, or intended behavior” [85] (p. 129). Consequently,
the importance of different information (as well as their interaction effects) could be identified and
assessed. However, such experimental research designs would require larger samples, which would also
allow for a more reliable cluster analysis. Since scenario and grid investigated in this paper are rather
generic (cf. Section 4.1), and in order to introduce heterogeneity to the agent population, we accepted
the small sample for now. When running experiments with grids and scenarios that are more realistic,
a bigger and more representative sample for the calibration of end-users is definitely needed.

Furthermore, the exemplary scenario, representing a lowly populated residential area (Chapter 4),
was used here mainly for reasons of simplicity and to demonstrate the general applicability of
the framework. However, researchers recognize a large potential for the energy transition in such
rural regions [86] (p. 58), which holds further need for research [87,88] (p. 103). Although the
simulation framework presented here encourages us to experiment with various scenarios and
system configurations, it easily neglects the complex processes that (must) precede such a what-if
state. In particular, the change of predominant institutional regime-structures in administration, user
practices, management, or politics is of great importance here—be it at the level of rural communities [86]
(p. 58) or at the overall system level [89] (p. 146). Our exemplary scenario assumes that the energy
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transition is already at an advanced stage and that end-users are mostly willing to adopt socio-technical
innovations and to participate in energy-efficient programs—thereby neglecting potential institutional
barriers and taking a very optimistic view [90]. While the result of our simulation—and the outcome of
agent-based simulations in general—can certainly serve as input for practitioners to assess the impact
of governance measures (under certain conditions), complementary strategic instruments are needed
to communicate the potential benefits of those measures to affected actors and thus help to overcome
institutional barriers [86].

Lastly, future simulation experiments should include the exploration of more elaborated scenarios
(e.g., by comparing different populations or grids, by improving the information provided and received
by the DSO or by giving DSOs a better foresight in order to generate more plausible and targeted
requests). This could be complemented by the utilization of more advanced indicators for measuring
the effects of these experiments. In terms of macro-indicators, for example, it would be useful to link
measures for grid-stability and security of supply to macroeconomic performance parameters [91].
In order to give a more nuanced, micro-level assessment of scenarios, social indicators—like end-users’
satisfaction or their acceptance towards interventions—should also be elaborated for future experiments.
Since satisfaction presents merely a simple mechanism in our model (cf. Section 3.5.4), we refrained from
using it as an evaluation criterion for the simulation. Jager’s Consumat approach [92], which tackles
issues of need satisfaction in a more refined way, may constitute a useful starting point for further
improvements of the model. Furthermore, other micro-level evaluations (e.g., agent-type specific
behavioral changes and responses) should be taken into account in future experiments.

6. Conclusions

We have presented an interdisciplinary co-simulation framework that covers both technical and
social aspects of the power distribution grid, and that allows to test different what-if scenarios of future
smart grids. In order to depict the behavior of residential end-users, we developed an ABMS that is
based on the model of frame selection (MFS). The MFS assumes that actors interpret specific situations
differently and choose from several behavioral alternatives, which they expect to be appropriate for
the given situation; the MFS is thus particularly suited to depict the variable and situational rationality
of actors. End-users respond to various electricity-related feedbacks and incentives in this ABMS and
adapt their behavior where deemed appropriate. In this context, feedback and incentives constitute
possible means of intervention for DSOs in order to encourage end-users to contribute to the stability
of the system. Feedback does not only encompass financial incentives, but also more normative,
non-monetary incentives that rather target end-users’ perceived role in the energy system, for instance
concerning their energy-related involvement and intrinsic willingness to cooperate.

Using an example scenario, different interventions were compared with regard to their suitability
for improving system stability. Both distributed, soft control and central, strong control were able
to improve the measured values, whereby the differences between the two governance modes were
comparatively small.
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Appendix A
Table Al. Empirically Collected MFS-Variables I.
No. MES Variable Relates to Operationalization No. of Items Examples !
“I'm always trying to make a
Personal ascription of contribution to the energy
1 Chronic accessibility Frame (as) responsibility concerning 4 . transition.
success of energy The success of the energy
transition (frame 1) transition is beyond my
capabilities.” (neg.)
Presence of Self-reported spontaneity ! usua.lly takg my t131e before
2 . . . Frame (as) . . . 4 making decisions.” (neg.)
situational objects and impulsive behavior o R o7
I often decide by gut feeling.
Presence of Attitude towards “I find the use of a Smart Meter
3 . . . Frame (as) possibilities of smart 4 interesting due to the
situational objects . e O B
metering possibilities of use.
When making electricity-related
Subjectively evaluated decisions, it is important to me
preferences when making that...
4 Preferences Frame (rc) decisions; relate to (1) 1 for each “ ... the environment is treated
costs, (2) eco-friendliness, preference with care.” (eco-friendliness)
(3) social norm and (4) “ ... I meet the expectations of
grid-beneficial behavior people who are important to
me.” (social norm)
How often have you done the
following in the past year?
. s . Experiences with energy “Unplugged electrical
5 Chronic accessibility Seript (as) saving behavior (script 1) 6 appliances (e.g., computers,
televisions, etc.) when they
were not in use.”
Trust in recommendations “I think that my electric utili
6 Chronic accessibility Script (as) of DSO/electric utility 5 yee . ty’
. makes a competent impression.
(script 2)
1 English translation, since survey was in German.
Table A2. Empirically Collected MFS-Variables II.
Internal
R Explai
No. Scale Source; Based on Consistency of Mean Star}da'rd P 'alned
N Deviation Variance
Scale
Five-level Likert
1 tveeve Lier [93,94] 0.785 3.70 0.93 63.17%
scale (agreement)
p  Fvelevel Likert [95] 0.690 291 0.74 52.04%
scale (agreement)
3  [Fivedevel Likert [96,97] 0.913 3.97 0.85 79.53%
scale (agreement)
Rating scale, adds 0.40 (1), 0.20 (1),
4 up to 100% forall ~ Own custom scale - 037 (2), 0.17.(2), -
preferences 0.07 (3), 0.16 0.07 (3),
’ (4) 0.10 (4)
Five-level scal
5 tye-eve’ scale [98-100] w 3.52 0.57 -
(frequency)
Five-level Li
ive-level Likert [96] 0.904 3.56 0.75 72.64%

scale (agreement)

* Based on Cronbach’s alpha. A value above 0.7 is considered acceptable. ** An index has been calculated here
because the different practices do not need to correlate and therefore the calculation of internal consistency is

not necessary.
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Appendix B

Table A3. Agent-Type Parametrization Based on Empirical Data from the Cluster Analysis.

Cluster Means and Parametrization *

. Description Hesitant Eco-Responsible Cost-Conscious .
MFS-Variable Refers to (Short) Skeptics Helpers Materialists Spendthrifts
Chronic Frame (as) Personal 0.65 0.75
accessibility responsibility (—0.48) (0.07)
Presence of sit. —
objects Frame (as) Spontaneity - - - -
Presence of sit. . o 2.02 1.90
. . 0.24 0.36
Preferences Frame (rc) Eco-friendliness (~0.58) (=027)
Preferences Frame (rc) Cost 044
(0.38)
Preferences Frame (rc) Grid-beneficial (0.23)
Preferences Frame (rc) Social norm Tl
(0.78)
Chronic . Experience 0.64 0.73
o Script (as) X
accessibility energy saving
Chronic . e 0.73 0.67
accessibility Seript (as) Trust utility (0.10) (~0.25)

Share 9.5% 41.1% 30.2% 18.8%
(N = 95 ***%) ) (39) (29) (18)

* All variables (except preferences) were initially on a 5-point Likert scale for the survey (see Appendix A); for
parametrization, these values were partially recoded to a scale from 0 to 1 (except “attitude”, see below). The upper
values thus represent the recoded cluster means. In order to compare differently scaled variables, the z-standardized
values are also reported here (see values in brackets). This means that all values have a mean value of 0 and a
variance of 1: A value close to 0 indicates that the cluster has an average value (yellow shades); a positive (green
shades) or negative (red shades) value indicates that the cluster has an above-average or below-average value. ** In
order to check whether the clusters differ significantly from each other with regard to their mean values (external
heterogeneity), we conducted an analysis of variance (ANOVA). Concerning “spontaneity” there was no significant
difference in mean values, so this variable was excluded from further clustering. *** Since the attitude functions as a
gradient in Algorithm 1, the initial scale was reversed (6 — cluster mean), meaning that a lower value signals a better
attitude towards the possibilities of smart metering (i.e., 1 and 2). Consequently, the awareness for a situational cue
increases more strongly with a positive attitude. **** After identifying and eliminating outliers via a Single Linkage
algorithm [101] (p. 311), we kept 95 of the initial 101 cases for further analyses.
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