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Abstract: Rubber involving magnetic compound fluid (MCF) and TiO2 is effective in dye-sensitized
solar cells (DSSCs) to create large efficacy. Wearable and portable solar cells made of MCF rubber
are the most desirable as soft materials in robots or flexible devices, and they are further desirable
because they have self-generated power and power supply with sensing. Therefore, we investigated
the effect of TiO2 catalysts on the photovoltaic effect of MCF rubber DSSCs under large tension
and compression. The characteristics of the built-in electricity and photoelectricity were clarified
experimentally. The experimental results were explained by a chemical–photovoltaic mechanism
involving the behavior of dye, electrolytes, water, and rubber molecules, as well as a catalytic effect
of the metal component of the MCF on Ni, Fe3O4, and TiO2. Once we are able to produce solar
cells that have large tension and compression, the present experimental results and the model of
the chemical–photovoltaic mechanism will be of great interest.

Keywords: dye-sensitized solar cells (DSSCs); TiO2; rubber; tension; compression; photoelectricity;
built-in electricity; piezo-resistivity; piezo-electricity; electrolytic polymerization; magnetic field;
magnetic compound fluid (MCF)

1. Introduction

The problem of global energy consumption is being addressed in order to resolve the continuously
ascending consumption of energy that boosts global warming and acid rain. Therefore, solar cells are
receiving remarkable attention as a renewable energy technology. Organic solar cells have become
expectable, including various types structured with organic or inorganic materials [1–3] or with organic
or inorganic materials including liquids [4] such as ionic liquid [5–10] and dielectric liquid [11]. Above all,
dye-sensitized solar cells (DSSCs) [12,13] such as Gratzel-type solar cells [14] and Perovskite-type solar
cells [15] are well known to be lightweight low-cost cells. These organic solar cells are viable materials
in the creation of flexible engineering instruments that lead to wearable and portable electronic devices,
as opposed to rigid-type solar cells made of solid semiconductors such as silicon and metal glass.
The wearable and portable devices may include self-powered supply or health monitors [16] and
electronic devices embedded in clothes, watches, or glasses [17]. In order to achieve flexibility, not only
polymers [18–22] but also thin films [23,24] have been commonly utilized, and fibers [25,26], cloth,
or textiles [27] through which electrolytes or dye may be percolated have been proposed. The utilization
of rubber is another effective method. However, there have been few studies on the use of rubber,
and investigations of silicone rubber (Q) sheets are rare [28,29]. Q in solar cells has been utilized as
a substrate of layered materials for photovoltaics, in which case it is not metamorphosed to bring about
the photovoltaics [28]. Neither the effects of tension and compression on photovoltaic properties nor
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experimental data on their correlation have been elucidated [29], due in large part to the lack of clarity
regarding the chemical–photovoltaic mechanism and the lack of a high-efficiency profile. In contrast,
Shimada proposed suitable solar cells made of rubber involving DSSCs and addressed the cardinal
chemical–photovoltaic mechanism [30–33]. By applying a magnetic compound fluid (MCF), which is
a magnetic-responsive fluid compounded with 10 nm sphere magnetite (Fe3O4) particles coated with
oleic acid and 1 µm metal particles such as Ni or Fe to the rubber, and with electrolytic polymerization
under the application of a magnetic field, the MCF rubber is solidified, producing many needle-like
magnetic clusters that are aligned along the magnetic field lines, which have the same direction as
the electric field [34–39]. The magnetic clusters efficiently induce an exchange of ions and electrons
between the Fe3O4 metal particles and rubber molecules because they have a bulk hetero-type structure
inside the rubber. Although DSSCs have dye and electrolytes, even if the MCF rubber does not
involve dye and electrolytes, the photovoltaic effect can be created. The rubber must be water-soluble
rubber with C=C bonds in order for electrolytic polymerization. Therefore, natural rubber (NR) and
chloroprene rubber (CR), which are categorized as diene rubber involving C=C bonds, are optimal.
If the rubber is non-diene rubber or a water-insoluble rubber such as Q, the MCF rubber needs to
include polyvinyl alcohol (PVA) and a water-soluble rubber such as NR or CR [40–42]. For example,
if we use Q, which is structured as the basis of dimethylpolysiloxane (PDMS), PVA combines PDMS
and isoprene molecules of NR or CR via emulsion polymerization so that the non-diene rubber or
water-insoluble rubber can be electrolytically polymerized. The photovoltaic effect is created because
Fe3O4 metal particles, rubber, and water molecules have p-type and n-type semiconductor-like roles in
the form of ionized A− (A is the acceptor) and D+ (D is the donor) [30,31]. Naturally, when the MCF
rubber involves dye and electrolytes to be electrolytically polymerized, the photovoltaic effect can
also manifest as materialized DSSCs. The MCF rubber not only has a photovoltaic effect, but also
has sensing capabilities [30–33] and serves as a capacitor [32]. In addition, the brilliant peculiarity
of MCF rubber is that it is largely stretchable and compressible [31]. Regarding previous studies on
flexible solar cells utilizing polymers or thin films, the solar cells bend but do not stretch and are,
therefore, considered solid films [23,24]. Alternatively, the deformation of the solar cells is so small
that the tensile and compressive rates are not comparatively very large. However, MCF rubber can be
stretched to twice its original length or compressed to half its initial size. Therefore, wearable and
portable solar cells made of MCF rubber are highly promising for use as soft materials in robots and
flexible devices, especially because of their self-generated power and power supply with sensing.

As a general technique that has been seen in the case of ordinary solar cells, involving a catalyst is
an effective way of enhancing the high efficiency of solar cells. In water-soluble solar cells such as
DSSCs, a number of different effective catalysts have been proposed, such as graphite, carbon black,
SnO2 [43], Pt [44], MoSx [45], MnWO4, ZnWO4, and CuWO4 [46]. TiO2 is one of many useful catalysts
and is effective enough to enhance the photovoltaic effect. Because of the relevant reaction of water
on photovoltaics, the chemical–photovoltaic mechanism can be explained by the Honda–Fujishima
effect [47]. MCF rubber involving TiO2 is effective in the type of DSSCs that contain MCF in order
to achieve large efficacy. However, the effect of TiO2 on DSSCs with MCF remains to be clarified,
and the chemical–photovoltaic mechanism involving the catalytic effect has not been dealt with.

In the present study, we investigated the effect of TiO2 as a catalyst on the photovoltaic effect of
MCF rubber DSSCs under tension and compression. The experimental results were investigated by
using a chemical–photovoltaic mechanism that induces the Honda–Fujishima effect.

2. Effect of TiO2 on Photovoltaics

2.1. Experimental Procedure

The experimental procedure of fabricating the MCF rubber DSSCs is shown in Figure A1 in
Appendix A. As the first step, we fabricated the MCF rubber. The MCF rubber included the n-type
semiconductor TiO2 (titanium with a 10–50 nm particle size, anatase form, Fujifilm Wako Pure Chemical
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Co., Ltd., Osaka, Japan), 6 g of carbonyl Ni powder with µm ordered and pimple-shaped particles
(No. 123, Yamaishi Co., Ltd., Noda, Japan), 4.5 g of water-based magnetic fluid (MF) with 40 wt.% Fe3O4

(W-40 with 10 nm ordered sphere particles, Ichinen Chemicals Co., Ltd., Shibaura, Japan), and 9 g of
NR latex (Rejitex Co., Ltd., Atsugi, Japan), mixed using a supersonic stirrer (UR-20P, Tomy Seiko Co.,
Ltd., Tokyo, Japan) for 5 min and with air evacuated for 15 min. During electrolytic polymerization,
an electric field with constant 6 V and 2.7 A was applied between stainless-steel plates with a 1 mm
gap for 10 min under atmospheric conditions under the application of a constant 188 mT magnetic
field created by neodymium permanent magnets between the electrodes. Therefore, the directions
of the electric and magnetic fields were the same. The electrolytically polymerized MCF rubbers
had an area of almost 20 mm × 23 mm and a thickness of 1 mm. Next, we constructed the MCF
rubber DSSCs. First, 0.17 g of electrolytes and 0.06 g of liquid dye were poured onto the surface of
the MCF rubber. The electrolytes took the form of a KI + I2 solution, a mixture of potassium iodide
(KI) and iodine (I2) (both from Fujifilm Wako). KI contains 3.3 g of iodine I2 in a solution of 40 g of
potassium iodide KI and 60 g of water. The dye is based on ruthenium complexes PEC-TOM-P04
(Peccell Technologies Co., Ltd., Yokohama, Japan). The use of ruthenium dye is ordinary in DSSCs [48].
As shown in Figure A1 (Appendix A), the electrolyte solution was deposited on one side of the MCF
rubber at the cathode during electrolytic polymerization (a in Figure A1, Appendix A), and the dye
on the other side was deposited at the anode (b in Figure A1, Appendix A). The surface of side a in
Figure A1 (Appendix A) was in contact with a transparent glass to serve as an anode of the solar cells,
and the surface of side b in Figure A1 (Appendix A) was in contact with a transparent glass coated with
TiO2 as a cathode of the solar cell; the MCF rubber was sandwiched between the transparent glasses
(20 mm × 30 mm), as shown in Figure 1. The transparent electrode coated with TiO2 was illuminated
by visible light (238 Lux) or ultraviolet light (227 Lux). The voltage, electric current, and electrical
resistance between the electrodes were measured using a digital multimeter (PC710, Sanwa Supply
Co., Ltd., Okayama, Japan).
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The surface of the electrolytically polymerized MCF rubber is shown in Figure 2. The cathode 
side (Figure 2b,d) is typical and shows that the more TiO2 the MCF rubber has, the harder it is to 
compound TiO2. The compounded condition of TiO2 affects the photovoltaics, as shown in the later 
figures in the next section. 

The MCF rubber involving TiO2 has larger stretchability than commercial pressure-sensitive 
electrically conductive rubber (PSECR), as shown in our previous study [31]. DSSCs made of MCF 
rubber involving TiO2 are the most desirable as soft materials in robots or flexible devices, enough to 
be wearable and portable. 

Figure 1. Images of fabricated magnetic compound fluid (MCF) rubber dye-sensitized solar cells
(DSSCs): (a) transparent glass on the anode size of the DSSC; (b) glass on the cathode side of the DSSC,
coated with TiO2.

The surface of the electrolytically polymerized MCF rubber is shown in Figure 2. The cathode
side (Figure 2b,d) is typical and shows that the more TiO2 the MCF rubber has, the harder it is to
compound TiO2. The compounded condition of TiO2 affects the photovoltaics, as shown in the later
figures in the next section.
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is impossible to predict the incidence; thus, certain precautionary measures must be considered. 
However, since this problem is often seen in ordinary solar cells, the same preemptive methods might 
be carried out. 

Figure 2. The surface of electrolytically polymerized MCF rubber with TiO2: (a) anode side of
the electrode during electrolytic polymerization with 2 g of TiO2; (b) cathode side of the electrode
during electrolytic polymerization with 2 g of TiO2; (c) anode side of the electrode during electrolytic
polymerization with 4 g of TiO2; (d) cathode side of the electrode during electrolytic polymerization
with 4 g of TiO2.

The MCF rubber involving TiO2 has larger stretchability than commercial pressure-sensitive
electrically conductive rubber (PSECR), as shown in our previous study [31]. DSSCs made of MCF
rubber involving TiO2 are the most desirable as soft materials in robots or flexible devices, enough to
be wearable and portable.

2.2. Experimental Photovolatics

Figure 3 shows the voltage, electric current, and electrical resistance as a function of the amount of
TiO2. In the images, “on” with a solid arrow indicates the onset of illumination and “off” with a dotted
arrow indicates the termination of illumination. Voltage, electric current, and electrical resistance were
measured separately. However, the tendencies of their correlation were obtained and were found to
be larger with ultraviolet light than with visible light; that is, MCF rubber DSSCs reacted largely to
ultraviolet light.

Under illumination, the electrical resistance increased at the same time that the voltage and
electric current increased as a photovoltaic effect. When the illumination was turned off, the electrical
resistance decreased at the same time that the voltage and electric current decreased. The electrical
resistance under illumination is relevant to microscopic behavior; extraneous electrons cannot be
transferred among ionized particles and molecules. Therefore, when photoelectricity was enhanced by
illumination, the electrical resistance increased. This behavior is further discussed below.

In some cases, when the sample was first illuminated and the illumination was then turned off,
it can be seen that the electric current changed rapidly and then returned smoothly to constant values;
this occurred, for example, with the 3 g TiO2 sample under visible light and the 4 g TiO2 sample under
ultraviolet light. This was due to dark current or leak current of the solar cells. The incidence of this
phenomenon is subject to the varied conditions of the surface of the transparent glass and the MCF
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rubber during the fabrication of the solar cells, the ambience during fabrication, etc. Furthermore,
it is impossible to predict the incidence; thus, certain precautionary measures must be considered.
However, since this problem is often seen in ordinary solar cells, the same preemptive methods might
be carried out.Energies 2020, 13, x FOR PEER REVIEW 5 of 30 
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Incidentally, the surface of MCF rubber is dark brown, as shown in Figure 1, so that it can absorb 
light more effectively. 
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potentiostat (HA-151B, Hokuto Denko Co., Ltd., Tokyo, Japan) at 50 mHz scan rates in the potential 

Figure 3. Effect of TiO2 on the voltage, electric current, and resistance of MCF rubber DSSCs as a
function of illumination vs. non-illumination: (a) voltage, visible light; (b) electric current, visible light;
(c) electrical resistance, visible light; (d) voltage, ultraviolet light; (e) electric current, ultraviolet light;
(f) electrical resistance, ultraviolet light.
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Incidentally, the surface of MCF rubber is dark brown, as shown in Figure 1, so that it can absorb
light more effectively.

Figure 4 shows the relationship between the electric current I and voltage V measured using
a potentiostat (HA-151B, Hokuto Denko Co., Ltd., Tokyo, Japan) at 50 mHz scan rates in the potential
domain of −1.5 to 1.5 V. As TiO2 increased, the area surrounded by I and V decreases, and I in particular
became larger at the largest V. This means that the MCF rubber solar cell was close to the I–V curve
of a photodiode [49,50]. On the other hand, our previous study [32] clarified the characteristics of
the photodiode under greater tension or compression. MCF rubber solar cells can typically be used as
photodiodes. In order to make the characteristics of MCF rubber solar cells more similar to those of
photodiodes, more TiO2 might be used, as shown in Figure 4.
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Figure 4. The effect of TiO2 on the current–potential curves of MCF rubber under illumination:
(a) visible light; (b) ultraviolet light.

The area of the I–V curve connotes the excited-charge regeneration. We can guess the effect of TiO2

on the rate of excited-charge regeneration in the MCF rubber DSSCs. The capacity of the excited-charge
regeneration might have an optimal amount of TiO2.

Regarding the general aspects of ordinary photodiodes and solar cells, photodiodes have a longer
response time to light scattering than solar cells. In addition, photodiodes might involve dark current.
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Therefore, dark current also occurs in MCF rubber, as indicated for the 3 g TiO2 in Figure 3b and
the 2–5 g TiO2 in Figure 3e.

As shown in Figure 5, focusing on the correlation among the particles of Fe3O4, Ni, and TiO2,
and the molecules of rubber, water, and a mixture of potassium iodide (KI) and iodine (I2) electrons
were transferred so that the particles and molecules were ionized, corresponding to A− and D+ [30,31].
The electrons and holes induced by the transfer of the electrons were mobile such that photoelectricity
(photocurrent and photovoltage) was generated by a short circuit created by the photocurrent induced
by the transfer of the electrons and holes and the photovoltage induced between the electrons and
holes [30,31,34]. On the other hand, the ionized particles and molecules were static and without
a mobile state, with the result that the built-in electricity (built-in voltage and built-in current) was
created; the voltage between them induced the built-in voltage, while the apparent moving distance
between them induced the built-in current. Therefore, MCF rubber also exhibited sensing as a piezo
element whose excitement was generated by the built-in voltage reacting to pressure, such that it was
a hybrid with both sensor material and solar cell material [31].
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Figure 5. Model of the generation of photoelectricity and built-in electricity.

The built-in electricity is relevant to the electrical resistance inasmuch as extraneous electrons
cannot transfer among ionized particles and molecules via the application of voltage from an outer
power supply. In general, in the case of the application of extraneous voltage, electricity as voltage and
electric current is categorized in the field of piezo-resistivity, as is built-in electricity. We investigated
the relationships among photoelectricity, built-in electricity, and piezo-resistivity in order to clarify the
relationship between sensor and solar cells in MCF rubber. Figure 6a shows the changes in electrical
resistance by pressure, which corresponds to piezo-resistivity. The state at the initial zero pressure
corresponds to built-in electricity. As pressure increases, the electrical resistance decreases because
electrons transfer easily between the ionized particles and molecules by decreasing the distance
between them. Under the greatest pressure, the electrical resistance is saturated and constant because
the distance has reached its finite limit. The electrical resistance values at the initial zero pressure and
at the greatest pressure, as well as their difference, are shown in Figure 6b. The experimental apparatus
was the same as that in our previous studies [34–37]. The voltage under the electrical resistance of
1.8 kΩ was measured under the application of a 10 V electric field via the power supply to the electric
circuit with the MCF rubber solar cells connected to the 1.8 kΩ resistance. The MCF rubber solar cells
were pushed between the two 7 mm stainless-steel square plates. The upper plate was moved to
touch the lower plate via an actuator at a pressing speed of 10 mm/min. The actuator was operated
by a small SL-6002 automatic measuring tensile testing machine (IMADA-SS Co., Ltd., Toyohashi,
Japan). As TiO2 increased, the electrical resistance at the initial zero pressure decreased. However,
the electrical resistance under the greatest pressure increased. Therefore, their difference decreased.
Thus, the electrical resistance depended on the amount of TiO2.
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Figure 6. The effect of TiO2 on piezo-resistivity, piezo-electricity, and photoelectricity: (a) electrical
resistance as piezo-resistivity to pressure; (b) electrical resistance as piezo-resistivity to TiO2; (c) voltage
as photoelectricity and built-in electricity; (d) electric current as photoelectricity and built-in electricity;
(e) electrical resistance with photoelectricity and built-in electricity.

In Figure 6c,d, the built-in electricity and photoelectricity are those shown in Figure 3a. As TiO2

increased, the built-in electricity decreased and the photoelectricity increased. The electrical resistance
values of both the built-in electricity and the photoelectricity are shown in Figure 6e. As TiO2 increased,
the electrical resistance of the built-in electricity decreased, while that of the photoelectricity first
decreased and then increased. Thus, the catalyst TiO2 affected photoelectricity.
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Lastly, we compared the MCF rubber to PSECRs that have been used in the fields of robot sensing
and sensors and were the same as those used in our previous studies [31,34]. These rubbers were made
of NR and had an area of almost 28 mm × 21 mm and a thickness of 1 mm. The KI + I2 electrolyte
solution and PEC-TOM-P04 dye were poured onto the surface of the rubbers following the same
procedure as that described for the MCF rubber (Figure 1). In Figure 7, as in Figure 3, the solid and
dotted arrows indicate the onset and termination of illumination, respectively. In contrast to the present
study, there was a unique investigation of DSSCs with Q compounded by carbon black or graphite
powder [29]; however, it presented only experimental data on the I–V relationship without clarifying
the photovoltaic characteristics.
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The voltage, electric current, and electrical resistance in the case of PSECR were smaller than those
in the case of MCF rubber under both visible and ultraviolet light. This indicates that the photovoltaic
effect of MCF rubber was larger than that of PSECR.

2.3. Chemical–Photovoltaic Mechanism

2.3.1. Case of Photovoltaic Mechanism by Dye and Electrolyte

The ordinary chemical–photovoltaic mechanism of DSSCs is well known and can be expressed as
Equations (1)–(5).

At the cathode, the dye (Dye) is ionized to Dye+ with TiO2 coated on the transparent glass by
illumination. Electrons from the dye enter the cathode through TiO2, which serves as an electron
transport body.

At the anode, the electrolyte reacts as shown in Equation (1) by obtaining electrons from the anode.
A part of I−3 reacts as shown in Equation (2).

3I2 + 2e− → 2I−3 (1)

2I−3 + 2e− → 3I−. (2)

I−3 on the right side of Equation (1) transfers to the cathode and reduces the ionized Dye+ at
the cathode as shown in Equation (3). The dye on the right side of Equation (3) is ionized to Dye+ at
the cathode again as above. I2 on the right side of Equation (3) transfers to the anode and reacts as
shown in Equation (1).

2Dye+ + 2I−3 → 2Dye + 3I2. (3)

On the other hand, at the cathode, I− on the right side of Equation (2) reacts via photoexcitation
as shown in Equations (4) and (5) such that the electrons enter the cathode. I2 on the right hand of
Equation (5) transfers to the anode and reacts as shown in Equation (1).

3I− → I−3 + 2e−. (4)

2I−3 → 3I2 + 2e−. (5)

The above chemical–photovoltaic mechanism can be applied to ordinary DSSCs which are
wet-type solar cells with liquid electrolyte and dye without any solid material. However, we can
obtain the photovoltaic effect even if we use a conventional rubber sandwiched between the dye and
the electrolyte solution, as shown in Figure 7 and in a previous study by Muller [29]. As a liquid,
in general, cannot be percolated through a rubber, the creation of the photovoltaics might be due
to the electrons and ions transferring over the rubber surface. In contrast, in the case of the MCF
rubber DSSCs, a liquid can be percolated through MCF rubber as shown in Figure A2 in Appendix A,
as presented in our previous study [41]. Therefore, the above chemical–photovoltaic mechanism occurs
within the MCF rubber.

2.3.2. Case of Electrical–Chemical Mechanism before Electrolytic Polymerization and without
Light Scattering

From our water-soluble rubber in the form of NR or CR structured by polyisoprene molecules
in the MCF rubber, one unit of isoprene molecules is defined as SH with presenting S, as shown in
Equation (6).
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Without electrolytic polymerization, SH is anionized to S−, as shown in Equation (7), via the Honda–
Fujishima effect [30,47].

SH↔ (SH)∗ ↔
(
S−H+

)∗
↔

(
S−H+

)
↔ S− + H+. (7)

S− generates a radical • as shown in Equation (8) via some influences such as illumination.

S− → S• + e−. (8)

Water molecules are ionized as shown in Equation (9) [51].

H2O→ H+ + OH−. (9)

The generated radical OH− becomes a hydroxyl radical OH• as shown in Equation (10) due to
certain influences.

OH− → OH• + e−. (10)

2.3.3. Case of Electrical–Chemical Mechanism by Electrolytic Polymerization and without Light
Scattering

The reaction occurs as shown in Equation (11) at the anode via electrolytic polymerization [38].

SH + S− → SS + H• + e−. (11)

SS denotes cross-linking between isoprene molecules. The reaction occurs as shown in Equation
(12) at the cathode, when the oleic acid coating around Fe3O4 is defined by P as shown in Equation
(13) [38].

P + H+ + S− + e− → SPH + e−. (12)
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2.3.4. Case of Photovoltaic Mechanism after Electrolytic Polymerization and with Light Scattering

In the case of solar cells under scattered light, reverse reactions of Equations (11) and (12) are
generated as shown in Equations (15) and (16) under the outer-sphere electron transfer reaction (OSETR),
which means that the structural coordination of molecules is not deformed and only the electrons are
transferred by the tunneling effect [30].

SS + H• + e− → SH + S−. (15)

SPH + e− → P + H+ + S− + e−. (16)

The electron on the left side of Equation (15) transfers from the anode. The electron on the left side
of Equation (16) transfers from the anode and that on the right transfers into the cathode. S− on the right
side of Equations (15) and (16) generates the reaction shown in Equation (8), and then the electron on
the right side of Equation (8) transfers into the cathode. These transfers are delineated as shown in
Figure 8b, which depicts the chemical–photovoltaic mechanism of solar cells.

2.3.5. Case of Photovoltaic Mechanism by Catalyst Effect of TiO2, Ni, and Fe3O4.

Next, let us consider the catalyst effect of TiO2, Ni, and Fe3O4. Due to these catalysts, Equations (17)
and (18) are created.

4H+ + H2O→ 2H2 + O2 + 4H+. (17)

2S− + 2H2O→ 2S + H2 + 2OH−. (18)

H+ on the right side of Equation (17) creates Equation (19) and then Equation (14). The electron on
the left side of Equation (19) transfers from the anode. OH− on the right side of Equation (18) creates
Equation (10).

H+ + e− → H•. (19)

Additionally, upon electrolytic polymerization, the hydroxyl group of the oleic acid reacts with Ni
as shown in Equations (20) and (21).
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SPH is created from the right side of Equation (21) through Equation (12), and Ni2+ on the right
side of Equation (20) is generated as shown in Equation (22) [52].

2Ni2+ + 2H2O→ 2Ni + O2 + 4H+. (22)

H+ on the right side of Equation (22) creates Equation (19) and then Equation (14); the electron on
the left side of Equation (19) transfers from the cathode via electrolytic polymerization and without
light scattering; the electron on the left side of Equation (19) transfers from the anode via electrolytic
polymerization and with light scattering.

On the other hand, upon electrolytic polymerization, Fe3O4 is generated as shown in
Equations (23)–(27), where Fe (II) is FeO, Fe (III) is Fe2O3, and O2

•− indicates superoxide radicals [53].

Fe(II) + H2O2 → Fe(III) + OH• + OH−. (23)

Fe(III) + H2O2 → Fe−(OOH)2+ + H+. (24)
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Fe(III) + H2O→ [FeOH]2+ + H+. (25)

Fe(II) + OH• → Fe(III) + OH−. (26)

Fe(II) + O2 → Fe(III) + O•−2 . (27)

In cases in which ultraviolet light is applied, Equation (28) is generated, followed by Equation (25).
Then, Equation (26) is generated.

[FeOH]2+ → Fe(II) + OH•. (28)

OH− in Equations (23) and (26) creates Equation (14) through Equation (10); the electron on
the right side of Equation (10) transfers into the anode via electrolytic polymerization and without
light scattering; the electron on the left side of Equation (19) transfers into the cathode via electrolytic
polymerization and with light scattering. H+ in Equations (24) and (25) creates Equations (12) and
(19). H• generated by Equation (19) creates Equation (14); the electron on the left side of Equation (19)
transfers from the cathode via electrolytic polymerization and without light scattering; the electron
on the left side of Equation (19) transfers from the anode via electrolytic polymerization and with
light scattering.

Regarding other aspects, when the light is irradiated, the reactions below are generated
with the TiO2 catalyst [54–59]. First, hole h+ and an electron are created from TiO2 as shown in
Equation (29) [60].

TiO2 → h+ + e−. (29)

This electron is scavenged by oxygen, and then superoxide radicals O2
•− are generated as shown

in Equation (30) [61,62].
e− + O2 → O•−2 . (30)

Hole h+ oxidizes molecules such as rubber or oleic acid, which are defined as R or R-H, as shown
in Equation (31), and reacts with water as shown in Equations (32) and (33).

h++ R→ R+•. (31)

4h+ + H2O→
1
2

O2 + 2H+. (32)

h+ + H2O→ OH• + H+. (33)

Hydroxyl radical OH• in Equation (33) oxidizes R-H and reacts with H• as shown in Equation (14).
As a result, molecules such as rubber or oleic acid are oxidized as shown in Equations (31) and (34) [63].

OH• + R −H → R′• + H2O. (34)

The superoxide radicals O2
•− on the right side of Equation (30) are protonated, which means that

proton H+ is ionized, thereby generating hydroperoxyl radicals HO2
• as shown in Equation (35).

O•−2 + H+
↔ HO•2. (35)

Hydrogen peroxide H2O2 is generated as shown in Equation (36) from the hydroperoxyl radicals
HO2

• on the right side of Equation (35).

2HO•2 → H2O2 + O2. (36)
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In addition, hydrogen peroxide H2O2 is generated as shown in Equation (37) from the hydroperoxyl
radicals O2

•− on the right side of Equation (30); the electron in Equation (37) is scavenged by O2
•−.

2Ni2+ + 2H2O→ 2Ni + O2 + 4H+. (37)

Summarizing from the above electrochemical reactions in Equations (4) and (5), in the case of
light scattering, the creation of the photocurrent can be considered to correspond to the generating
electrons as follows:

(a) As shown in Equations (15) and (16), electrons transfer. Electrons are generated not only as
shown in Equation (8) through S− in Equations (15) and (16) but also as shown in Equation (19)
through H+ in Equation (16). This chemical–photovoltaic mechanism is irrelevant to the behavior
of the rubber molecule.

(b) The operations expressed in Equations (19) and (21) are facilitated by the catalyst effect of TiO2,
Ni, and Fe3O4 through the operations shown in Equations (17), (20), and (22). The ones
expressed in Equation (10) are also facilitated through the one shown in Equation (18).
This chemical–photovoltaic mechanism is irrelevant to the catalyst behavior of TiO2, Ni, and Fe3O4.

(c) Equations (30) and (37) show that electrons are scavenged. This induces the reduction of
photovoltaic current. In addition, not only Equations (17) and (18) but also Equations (9), (10), (14),
and (19) show that the electrons are generated by water with an aiding catalyst. These summarized
results provide the complicated changes in photovoltaic current. This chemical–photovoltaic
mechanism is relevant to the behavior of correlation between TiO2 catalyst and H2O.

Thus, the photocurrent is created by summarizing the abovementioned operations (a–c) so that
the photoelectricity is created as shown in the experimental data (e.g., Figure 7).

Incidentally, the photovoltaics of MCF rubber DSSCs are related to the integrated correlation
as shown in many equations. The behavior of redox reactions of iodide and triiodide as shown in
Equations (1) and (2) with respect to the overall reactions can be guessed via the comparison between
Figure 3d,e and the results in our previous study [30] without using dye and electrolyte, as shown in
Figure A3 in Appendix A. The role of iodide and the triiodide redox reaction is not diminutive.

Furthermore, concerning the chemical–photovoltaic mechanism, we could proceed with
the photovoltaic theorem by using the theoretical formula of an equivalent electric circuit and
tunneling theory as shown in our previous study [32] with conjugating Equations (1)–(37) in order to
clarify the catalyst effect of TiO2, Ni, and Fe3O4, although we do not present that here.

3. Effect of Tension and Compression

3.1. Experimental Procedure under Tension and Compression

We used the same experimental apparatus as in our previous studies [31] and as shown in
Figure A4 in Appendix A. This apparatus provides tension and compression of MCF rubber DSSCs,
as shown in Figure A1 (Appendix A), with 0.17 g of poured electrolyte solution and 0.06 g if poured
liquid dye. The MCF rubber was elongated vertically by a small SL-6002 automatic measuring
tensile testing machine (IMADA-SS) and, at the same time, was compressed by a thickness gauge
transverse to the rubber, which was sandwiched by pieces of transparent glass (20 mm × 30 mm).
For the compression, the irradiated glass coated with TiO2 was compressed by a cylinder with
a ϕ 6.5 mm connected to the thickness gauge. Therefore, the irradiated area of the MCF rubber
was the area that remained outside its circular area. The irradiation light was ultraviolet (40 Lux).
The voltage and electric current between the electrodes were measured using a PC710 digital multimeter
(Sanwa). The set-up is depicted in Figure 9. In the experiment, the MCF rubber was elongated not
more than twice by tension and not more than half as many times by compression.
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Figure 9. Photograph of the experimental apparatus for measuring the built-in electricity and
photoelectricity of MCF rubber DSSCs under tension and compression.

3.2. Results and Discussion

First of all, we clarified the length of conjugated double bond of MCF in our previous studies [34,38]
as shown in Figure A5 in Appendix A, which is an example of electric current and tension. The length of
the conjugated double bond lengthens via electrolytic polymerization and the application of a magnetic
field. Therefore, through these factors, the photovoltaics are enhanced.

The effects of compression and tension on the built-in electricity and photoelectricity (for voltage
and current density, respectively) and the electrical resistance corresponding to the built-in electricity
and photoelectricity are shown in Figures 10–12. These effects are presented as changes from the initial
state (with neither compression nor tension) due to compression or tension. Here, the MCF rubber
contained 3 g of TiO2, 6 g of Ni, 4.5 g of MF, and 9 g of NR latex. Where the compressive strain
changed, the tension or tensile strain remained constant under the compression. Where the tensile
strain changed, the pressure remained steady under the tension. If we consider the effect of either
compression or tension individually, the case at 0 mm tensile stress or 0 Pa pressure is indicated in
the figures. In the cases of voltage and electric current, the compressive strain–pressure relationship
and the tensile strain–stress relationship are also shown (Figures 10 and 11). While the former was
only a linear relation, the latter had linear elastic and plastic regions.
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Figure 10. Effects of compression and tension on voltage as built-in electricity and photoelectricity:
(a) as built-in electricity, under compression; (b) as photoelectricity, under compression; (c) as built-in
electricity, under tension; (d) as photoelectricity, under tension.

Built-in voltage and current under increasing compression and tension tended to first increase
and then decrease and remain constant. The enhancement occurred with the smallest compression or
tension, and, in the case of tension, it occurred in the inner linear elastic region. On the other hand,
while photovoltage and current under increasing tension showed the same tendency, under increasing
compression, they showed a different tendency, without the initial increase. In contrast, regardless of
condition, electrical resistance tended to show the first pattern, that is, an initial increase, followed
by a decrease, after which values held constant. Figure 13 shows a microscopic model that explains
these results, with electrons and holes bringing about photoelectricity and ions bringing about built-in
electricity (Figure 5). The behaviors of the particles of Fe3O4, Ni, and TiO2, and the molecules of
rubber, water, a mixture of potassium iodide (KI) and iodine (I2), and electrons as shown in Figure 5
are presented in Figure 13, and their configurations are different from those of ceramic and metal.
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Although the rubber prevented the particles and the molecules in Figure 13 from moving, the position
of the particles and the molecules could move elastically in accordance with the rubber’s deformation
via compression or tension. In the case of compression, as shown in Figure 13a, because the distance
between the electron and the hole or between ions was narrowed, the voltage and electric current were
increased. Under sequentially greater compression, the electron and hole became contiguous such that
the voltage and electric current were zero, and, at further compression, the situation of the electron and
hole was inverse such that the voltage and electric current attained negative values. On the other hand,
in the case of tension (Figure 13b), because the distance between the electron and the hole or between
ions was widened, the voltage and electric current decreased. However, the opposite situation could
be considered to exist; that is, an adjacent electron and hole (“A” in Figure 13b) moved closer to each
other due to reduced deformation transverse to the direction of tension. Therefore, the voltage and
electric current potentially increased once.Energies 2020, 13, x FOR PEER REVIEW 17 of 30 
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Figure 11. Effects of compression and tension on the electric current as built-in electricity and
photoelectricity: (a) as built-in electricity, under compression; (b) as photoelectricity, under compression;
(c) as built-in electricity, under tension; (d) as photoelectricity, under tension.
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Figure 12. Effects of compression and tension on the electrical resistance as built-in electricity and
photoelectricity: (a) as built-in electricity, under compression; (b) as photoelectricity, under compression;
(c) as built-in electricity, under tension; (d) as photoelectricity, under tension.
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Figure 13. Model of the effects of compression and tension on the photoelectricity created by electrons
and holes emerging from neutral particles and molecules (Figure 5) and on the built-in electricity created
by ionized particles and molecules after the emergence of electrons and holes: (a) by compression;
(b) by tension.

Next, we investigated the effects of a TiO2 catalyst on built-in electricity and photoelectricity under
compression and tension, as shown in Figures 14–17. Here, the MCF rubber contained 2, 4, or 5 g of
TiO2, 6 g of Ni, 4.5 g of MF, and 9 g of NR latex. As in Figures 10–12, the tension remained constant
under compression, and the pressure remained constant under tension. Changes due to compression
or tension are shown as differences from the initial state (with neither compression nor tension).
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Figure 16. Effects of tension on the electric current as built-in electricity: (a) at 2 g of TiO2; (b) at 4 g of
TiO2; (c) at 5 g of TiO2.
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Under compression, the built-in current tended to show values that changed from positive to
negative as TiO2 increased, while, in the case of photocurrent, negative values tended to decrease
as TiO2 increased. These results indicate that the enhancement of TiO2 reduced the built-in current
and photocurrent by compression. This can be explained by the model in Figure 13a, where ionized
particles increased with increasing TiO2, and the adjacent ionized particles approached each other and
became contiguous such that the voltage and electric current became zero due to compression.

On the other hand, under tension, built-in current tended to show values that changed from
negative to positive as TiO2 increased, while positive photocurrent values tended to decrease to zero
with increasing TiO2. These results indicate that the enhancement of TiO2 increased built-in current
values but decreased photocurrent values due to tension. This can be explained by the model in
Figure 13b, where the adjacent ionized electron and hole (“A” of built-in electricity in Figure 13b)
approached each other due to the reduced deformation under tension such that the voltage and electric
current were enhanced; however, the adjacent electrons and holes that emerged from neutral particles
and molecules (“A” of photoelectricity in Figure 13b) approached each other such that the voltage and
electric current became zero due to tension.

4. Conclusions

As TiO2 increases, the area surrounded by the I–V curve becomes small and MCF rubber DSSCs
serve almost as photodiodes. Electrical resistance depends on the amount of TiO2. As TiO2 increases,
the electrical resistance as piezo-resistivity at the initial zero pressure decreases; however, the electrical
resistance under the greatest pressure increases and, therefore, the difference decreases.

Built-in voltage and current under increasing compression and tension tend to first increase,
then decrease, and then remain steady. The increase occurs under the smallest amount of compression
or tension and, in the case of tension, occurs in the linear elastic region. Photo voltage and current under
increasing tension show the same tendency as above; however, under increasing compression, they do
not show the initial increase in values. In contrast, regardless of condition, electrical resistance tends
to first increase, then decrease, and then remain constant. Regarding compression, increasing TiO2

reduces the changes in built-in current and photocurrent, while, in the case of tension, increasing TiO2

increases the change in built-in current but reduces the change in photocurrent.
The particles and molecules in MCF rubber DSSCs are ionized, corresponding to A− and D+.

In addition, the present experimental results regarding the effect of TiO2 on photovoltaics can
be explained by the chemical–photovoltaic mechanism involving the behavior of dye, electrolyte
solution, water, and rubber molecules and the catalytic effect of Ni and Fe3O4 on the MCF,
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TiO2, and K, together with the Honda–Fujishima effect. To summarize the chemical reactions
in the case of light scattering, the creation of the photocurrent comes about by generating electrons;
the chemical–photovoltaic mechanism is irrelevant to the behavior of rubber molecules where
the operations of electrons are facilitated by the catalyst of TiO2, Ni, and Fe3O4.

Because ordinary solar cells do not have the properties of large tension or compression, they are
rigid and not very flexible, and solar cells having these properties are currently novel enough to be
almost unknown. However, MCF rubber DSSCs typically have large tension and compression, and their
production opens the door to a number of practical devices and instruments. MCF rubber solar cells
are suitable for a great variety of engineering applications. Once they are ready to go into production,
the present experimental results and the model of the chemical–photovoltaic mechanism will be
of great interest. For further development of the MCF rubber DSSCs, large stretchable transparent
glass needs to be developed because large stretchable MCF rubber DSSCs integrated with stretchable
transparent glass bring about more practical and convenient devices and instruments. The study to
develop the large stretchable transparent glass will be addressed in another investigation.
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Appendix A

Figure A1 is a schematic diagram of the experimental procedure of fabricating the MCF rubber
DSSCs after electrolytic polymerization [31].
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Figure A1. Schematic diagram of the fabrication of MCF rubber DSSCs [31].

Ordinary solid rubber such as vulcanized NR or Q is generally impermeable. However, any liquid
can permeate electrolytically polymerized MCF rubber, as shown in the experiment in Figure A2,
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which used a 312 mT magnetic field, a 30 V electric field, and 2.7 A for 5 min with a 1 mm gap between
electrodes [41]. MCF rubber can be permeated not only in the form of water-soluble rubber types such
as NR or CR but also as a mixture of water-soluble and water-insoluble rubber types such as Q with
MCF. As shown in Figure A2b, water can be seen as a shimmering reflection of light on the rubber
surface after permeation.
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Figure A3 shows the changes in voltage and electric current density when ultraviolet light was
turned on and off without dye and KI + I2 [30]. In the figure, “elec.” indicates electrolytic polymerization,
“mag.” indicates a magnetic field at electrolytic polymerization, and “no-” indicates their absence.
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Figure A3. Change in voltage and electric current density of the MCF rubber DSSCs without dye and
KI + I2 by illumination vs. non-illumination: (a) voltage; (b) electric current density [30].

Figure A4 shows the experimental apparatus used to investigate the effect of the simultaneous
excitation of tension and compression on the photovoltaics of MCF rubber DSSCs. This is the same
apparatus we used in our previous study [31].
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Figure A5 shows the effects of the electrolytic polymerization and the application of a magnetic
field on built-in electricity and photoelectricity under tension. Here, the MCF rubber contained 6 g of
Ni, 4.5 g of MF, and 9 g of NR latex.
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