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Abstract: Presently, deep learning models are an alternative solution for predicting solar energy
because of their accuracy. The present study reviews deep learning models for handling time-series
data to predict solar irradiance and photovoltaic (PV) power. We selected three standalone models
and one hybrid model for the discussion, namely, recurrent neural network (RNN), long short-term
memory (LSTM), gated recurrent unit (GRU), and convolutional neural network-LSTM (CNN–LSTM).
The selected models were compared based on the accuracy, input data, forecasting horizon, type of
season and weather, and training time. The performance analysis shows that these models have their
strengths and limitations in different conditions. Generally, for standalone models, LSTM shows
the best performance regarding the root-mean-square error evaluation metric (RMSE). On the other
hand, the hybrid model (CNN–LSTM) outperforms the three standalone models, although it requires
longer training data time. The most significant finding is that the deep learning models of interest are
more suitable for predicting solar irradiance and PV power than other conventional machine learning
models. Additionally, we recommend using the relative RMSE as the representative evaluation metric
to facilitate accuracy comparison between studies.
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1. Introduction

Solar energy is a popular renewable energy source because it is abundant and environment-friendly.
The amount of solar energy incident on the earth’s surface is approximately 1.5 × 1018 kW h/year,
which is approximately 10,000 times the current annual energy consumption of the entire world [1].
Therefore, in recent years, solar photovoltaic (PV) has a significant role in electricity generation.
A challenging issue associated with the solar PV is that its power output strongly depends on
uncertain and uncontrollable meteorological factors, such as atmospheric temperature, wind, pressure,
and humidity [2]. As the solar PV capacity increases, risks caused by the uncontrollable nature of PV
power increase. Energy storage could mitigate such risks, but the drawbacks are the installation and
management costs. However, solar irradiance forecasting is an inexpensive and immediate solution
and effective in microgrid operation optimization such as peak shaving, uncertainty impact reduction,
and economic dispatch problem in the power system [3].

Generally, solar irradiance can be forecast from very short terms (several minutes ahead) to long
terms (several days ahead)—the requirement for the time horizon changes with applications. For the
very short-term and short-term forecast horizons, sudden variations of solar irradiance, namely the
ramp events, are of interest. Abrupt and severe variations of solar irradiance have the potential
to degrade the reliability and quality of PV power. Hence, forecasting results for the short-term
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horizon are useful for estimating the largest PV power ramp rates [4]. Meanwhile, forecasting for the
medium and long-term horizons helps operation optimization and market participation. For example,
Husein et al. [3] demonstrated that day-ahead solar irradiance forecasting could increase annual energy
savings for the operation of a commercial building microgrid. Therefore, solar energy forecasting
should be targeted for a specific application, and accordingly, an appropriate forecasting method must
be selected.

The solar irradiance and PV power forecasting methods are divided into physical and statistical
models. The physical model mathematically or numerically manages the interaction of solar radiation
in the atmosphere based on the laws of physics. It comprises numerical weather prediction, sky imagery,
and satellite image models [5]. The statistical model finds a relationship between input and output
variables and consists of conventional statistical models and machine learning models. Conventional
statistical models include the fuzzy theory, Markov chain, autoregressive, and regression models.
The machine learning model, also known as an artificial intelligence model, can efficiently extract
high-dimensional complex nonlinear features and directly map input and output variables. In the
past, the well-known machine learning models for predicting solar energy were the support vector
machine (SVM), k-nearest neighbors, artificial neural network (ANN), naive Bayes, and random forest.
These statistical models rely primarily on historical data to predict future time series. Therefore,
the quantity and quality of historical data are essential for an accurate forecast.

Nowadays, the deep learning model becomes more popular in solar irradiance forecasting.
The deep learning model, which is the subpart of the machine learning model, was developed to solve
a complex problem with a large amount of data. The multiple layers in the deep learning structure
automatically learn the abstract features directly from the raw data to discover useful representations

Deep learning models are distinctive from other machine learning models because they outperform
as input data scale increases. Ng et al. [6] compared machine learning and deep learning models’
performance while changing the amount of input data. The result showed that deep learning models
tend to increase their accuracy as the number of training data increases, whereas the traditional machine
learning models stop improving at a certain amount of data.

The deep learning models specialized for handling sequential or time-series data such as text,
speech, and image have been developed and have been successful. Recurrent neural network (RNN),
long short-term memory (LSTM), gated recurrent unit (GRU), and convolutional neural network-LSTM
(CNN–LSTM) models are typical. Because solar forecasting is intrinsically based on sequential data,
such deep learning models were also applied for solar forecasting. For instance, Zang et al. [7]
demonstrated that the accuracies of CNN–LSTM, LSTM, and CNN models are better than those of
ANN and SVM in the short-term forecasting of global horizontal irradiance (GHI). Due to popularity
and excellency, more applications of the deep learning model for solar forecasting are expected.

Outstanding review papers dedicated to machine learning can be found in solar forecasting
literature [2,5,8,9]. However, they encompassed various machine learning models or paid little
attention to deep learning models. Because the deep learning models suitable for sequential data and
applied for solar forecasting have not been reviewed, the present study discusses basic principles of
the RNN, LSTM, GRU, and CNN–LSTM selected as recently developed deep learning models and
their comparative analyses. This paper is structured into six sections. Section 2 describes the solar
irradiance variability for different time scales. Section 3 summarizes the theoretical background of
the models, and Section 4 explains the evaluation metrics used to compare the performance of deep
learning models. Then, Section 5 analyzes relevant studies in terms of features and accuracy. Finally,
a summary of major findings in this study is presented in Section 6.

2. Solar Irradiance Variability

A single location on earth will experience a high degree of solar irradiance variability.
The variability is highly dependent on local weather and atmospheric conditions as well as diurnal
and seasonal cycles. The diurnal and seasonal variabilities due to the sun’s motion and the earth’s
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distance from the sun are fully predictable. However, the variability due to the moving clouds affected
by local weather and atmospheric conditions has stochastic features and consequently is very difficult
to predict.

The variability of solar irradiance depends on the time scale. A single datum represents a mean
value of more frequent measurement records for a given time period. For instance, an hourly value of
GHI may be acquired from 60 pyranometer records at the one-minute interval. Therefore, a long time
interval results in the smoothing effect, and thus the variability lessens. Figure 1 shows the smoothing
effect on the solar irradiance variability. The data were recorded every minute at Kookmin University,
South Korea and presented by different time scales. The finest temporal resolution of one minute
reveals a high degree of variability, but the variability smooths out with the time scale. It should be
noticed that the smoothing effect also appears when a spatial averaging over a large area is applied.
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Figure 1. The variability of global horizontal irradiance (GHI) at Kookmin University, South Korea,
as a function of time scale. The figure includes 1 day of 1 min data, 2 days of 10 min data, 4 days of 1 h
data, 48 days of day data, and 12 months of monthly data.

The variability of solar irradiance directly affects solar PV power systems’ performance and more
seriously disturbs grid stability. The grid typically absorbs power fluctuations at short time scales as
fluctuations in frequency and voltage. Therefore, grid operators can control the power ramp rate by
imposing a limit on PV plants; for instance, 10% of the nameplate capacity per minute. In addition,
grid operators need to balance supply and demand while complying with power system regulations.
If the power supply exceeds demand, curtailment can be applied to disconnect power delivery from
PV plants with the grid. Solar irradiance or PV power forecasting can optimize the ramp rate control
and schedule the load-following operation more effectively with an energy storage system.

Various solar forecasting techniques have their own applicable regimes in terms of time scale.
Thus, depending on solar irradiance variability of interest, an appropriate technique must be selected.
Figure 2 illustrates a guideline to select forecasting techniques. For time horizons less than one
hour, sky-image-based techniques offer very good forecasting capability [10]. Satellite-image-based
techniques are recommended for several hours ahead of forecasting with a spatial resolution around
1–5 km [11]. Numerical weather predictions (NWP) allows long-term forecasting over 1 day and
up to 15 days ahead, but its time step and update interval are large. On the other hand, time series
forecasting using statistical models covers many applications from short to long terms with fine time
steps [12–14]. As an advanced version of statistical models, deep learning models for sequential data
are anticipated to expand the regime.
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Figure 2. Solar irradiance forecasting techniques in different time horizons and steps.

3. Deep Learning Models

This section provides an overview of the theoretical background of the selected deep learning
models. We describe a neural network and activation function because they are fundamental for all
types of neural network algorithms, although ANN is not in the scope of this review.

3.1. Neural Network

The neural network is inspired by the structure of the human brain and significantly contributed
to machine learning technology development. It is a simplified mathematical model to solve various
nonlinear problems. In the past, researchers reviewed ANN models in predicting solar energy, such as
Yadav et al. [15] for solar radiation prediction, Mellit et al. [16] for PV applications, and Cheon et al. [17]
for solar energy forecasting. One conclusion from these studies is that the ANN model predicts solar
radiation more accurately than other conventional models, such as the Angstrom, conventional, linear,
nonlinear, and fuzzy logic models.

The neural network model comprises the input, hidden, and output layers with auxiliary
components, such as neurons, weight, bias, and activation functions. Figure 3 shows the basic neural
network architecture with a multilayer perceptron. The input layer receives input values, and the
hidden layer analyzes the input values. The output layer collects the data from the hidden layer and
decides the output. In the learning process, the neural network modifies its structure to get the same
reference or set point as the supervisor. The training process will be repeated until the difference
between the neural network output and the supervisor lies within an acceptable range [18].

Energies 2020, 13, x FOR PEER REVIEW 4 of 23 

 

 

Figure 2. Solar irradiance forecasting techniques in different time horizons and steps. 

3. Deep Learning Models 

This section provides an overview of the theoretical background of the selected deep learning 

models. We describe a neural network and activation function because they are fundamental for all 

types of neural network algorithms, although ANN is not in the scope of this review. 

3.1. Neural Network 

The neural network is inspired by the structure of the human brain and significantly contributed 

to machine learning technology development. It is a simplified mathematical model to solve various 

nonlinear problems. In the past, researchers reviewed ANN models in predicting solar energy, such 

as Yadav et al. [15] for solar radiation prediction, Mellit et al. [16] for PV applications, and Cheon et 

al. [17] for solar energy forecasting. One conclusion from these studies is that the ANN model predicts 

solar radiation more accurately than other conventional models, such as the Angstrom, conventional, 

linear, nonlinear, and fuzzy logic models. 

The neural network model comprises the input, hidden, and output layers with auxiliary 

components, such as neurons, weight, bias, and activation functions. Figure 3 shows the basic neural 

network architecture with a multilayer perceptron. The input layer receives input values, and the 

hidden layer analyzes the input values. The output layer collects the data from the hidden layer and 

decides the output. In the learning process, the neural network modifies its structure to get the same 

reference or set point as the supervisor. The training process will be repeated until the difference 

between the neural network output and the supervisor lies within an acceptable range [18]. 

 

Figure 3. A schematic of neural network architecture, including input, hidden, and output layers. 

The basic ANN mathematical formula can be expressed as 

Figure 3. A schematic of neural network architecture, including input, hidden, and output layers.



Energies 2020, 13, 6623 5 of 23

The basic ANN mathematical formula can be expressed as

An =
n∑

j=1

(w j · I j) + b (1)

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias.
The output value varies with the activation function. The activation function, also known as the

transfer function, is a mathematical equation determining neurons’ output and can be divided into
two types, namely, linear and nonlinear functions. A linear activation function generates the same
linear result between the input and output layers. However, such a linear relationship is not enough
for practical applications because the problems involve complex information and various parameters,
such as image, video text, and sound. A neural network with a nonlinear activation function can tackle
the limitations of the linear activation function. The commonly used activation functions are shown in
Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear activation
function because the slope is not constant for all values. Especially for ReLU, the slope is always either
0 for negative values or 1 for positive values.

Table 1. Activation functions of the neural network.

Activation Function Equation Plot

Linear f (x) = x

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

1

( )
n

n j j

j

A w I b


    (1) 

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias. 

The output value varies with the activation function. The activation function, also known as the 

transfer function, is a mathematical equation determining neurons’ output and can be divided into 

two types, namely, linear and nonlinear functions. A linear activation function generates the same 

linear result between the input and output layers. However, such a linear relationship is not enough 

for practical applications because the problems involve complex information and various parameters, 

such as image, video text, and sound. A neural network with a nonlinear activation function can 

tackle the limitations of the linear activation function. The commonly used activation functions are 

shown in Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear 

activation function because the slope is not constant for all values. Especially for ReLU, the slope is 

always either 0 for negative values or 1 for positive values. 

Table 1. Activation functions of the neural network. 

Activation Function Equation Plot 

Linear  f x x  

 

ReLU    max 0,f x x  

 

Leaky ReLU    max 0.1 ,f x x x   

 

Tanh    tanhf x x  

 

Sigmoid  
1

1 x
f x

e



 

 

3.2. RNN 

RNNs are specially designed for analyzing sequential data and have been successfully used in 

fields such as speech recognition, machine translation, and image captioning [19]. RNN processes 

sequence data by elements and preserves a state to represent the information at time steps [20]. A 

ReLU f (x) = max(0, x)

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

1

( )
n

n j j

j

A w I b


    (1) 

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias. 

The output value varies with the activation function. The activation function, also known as the 

transfer function, is a mathematical equation determining neurons’ output and can be divided into 

two types, namely, linear and nonlinear functions. A linear activation function generates the same 

linear result between the input and output layers. However, such a linear relationship is not enough 

for practical applications because the problems involve complex information and various parameters, 

such as image, video text, and sound. A neural network with a nonlinear activation function can 

tackle the limitations of the linear activation function. The commonly used activation functions are 

shown in Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear 

activation function because the slope is not constant for all values. Especially for ReLU, the slope is 

always either 0 for negative values or 1 for positive values. 

Table 1. Activation functions of the neural network. 

Activation Function Equation Plot 

Linear  f x x  

 

ReLU    max 0,f x x  

 

Leaky ReLU    max 0.1 ,f x x x   

 

Tanh    tanhf x x  

 

Sigmoid  
1

1 x
f x

e



 

 

3.2. RNN 

RNNs are specially designed for analyzing sequential data and have been successfully used in 

fields such as speech recognition, machine translation, and image captioning [19]. RNN processes 

sequence data by elements and preserves a state to represent the information at time steps [20]. A 

Leaky ReLU f (x) = max(0.1 · x, x)

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

1

( )
n

n j j

j

A w I b


    (1) 

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias. 

The output value varies with the activation function. The activation function, also known as the 

transfer function, is a mathematical equation determining neurons’ output and can be divided into 

two types, namely, linear and nonlinear functions. A linear activation function generates the same 

linear result between the input and output layers. However, such a linear relationship is not enough 

for practical applications because the problems involve complex information and various parameters, 

such as image, video text, and sound. A neural network with a nonlinear activation function can 

tackle the limitations of the linear activation function. The commonly used activation functions are 

shown in Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear 

activation function because the slope is not constant for all values. Especially for ReLU, the slope is 

always either 0 for negative values or 1 for positive values. 

Table 1. Activation functions of the neural network. 

Activation Function Equation Plot 

Linear  f x x  

 

ReLU    max 0,f x x  

 

Leaky ReLU    max 0.1 ,f x x x   

 

Tanh    tanhf x x  

 

Sigmoid  
1

1 x
f x

e



 

 

3.2. RNN 

RNNs are specially designed for analyzing sequential data and have been successfully used in 

fields such as speech recognition, machine translation, and image captioning [19]. RNN processes 

sequence data by elements and preserves a state to represent the information at time steps [20]. A 

Tanh f (x) = tanh(x)

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

1

( )
n

n j j

j

A w I b


    (1) 

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias. 

The output value varies with the activation function. The activation function, also known as the 

transfer function, is a mathematical equation determining neurons’ output and can be divided into 

two types, namely, linear and nonlinear functions. A linear activation function generates the same 

linear result between the input and output layers. However, such a linear relationship is not enough 

for practical applications because the problems involve complex information and various parameters, 

such as image, video text, and sound. A neural network with a nonlinear activation function can 

tackle the limitations of the linear activation function. The commonly used activation functions are 

shown in Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear 

activation function because the slope is not constant for all values. Especially for ReLU, the slope is 

always either 0 for negative values or 1 for positive values. 

Table 1. Activation functions of the neural network. 

Activation Function Equation Plot 

Linear  f x x  

 

ReLU    max 0,f x x  

 

Leaky ReLU    max 0.1 ,f x x x   

 

Tanh    tanhf x x  

 

Sigmoid  
1

1 x
f x

e



 

 

3.2. RNN 

RNNs are specially designed for analyzing sequential data and have been successfully used in 

fields such as speech recognition, machine translation, and image captioning [19]. RNN processes 

sequence data by elements and preserves a state to represent the information at time steps [20]. A 

Sigmoid f (x) = 1
1+e−x

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

1

( )
n

n j j

j

A w I b


    (1) 

where An is the output, n is the number of input, wj is the weight, Ij is the input, and b is the bias. 

The output value varies with the activation function. The activation function, also known as the 

transfer function, is a mathematical equation determining neurons’ output and can be divided into 

two types, namely, linear and nonlinear functions. A linear activation function generates the same 

linear result between the input and output layers. However, such a linear relationship is not enough 

for practical applications because the problems involve complex information and various parameters, 

such as image, video text, and sound. A neural network with a nonlinear activation function can 

tackle the limitations of the linear activation function. The commonly used activation functions are 

shown in Table 1. Note that the rectified linear unit (ReLU) and leaky ReLU are examples of nonlinear 

activation function because the slope is not constant for all values. Especially for ReLU, the slope is 

always either 0 for negative values or 1 for positive values. 

Table 1. Activation functions of the neural network. 

Activation Function Equation Plot 

Linear  f x x  

 

ReLU    max 0,f x x  

 

Leaky ReLU    max 0.1 ,f x x x   

 

Tanh    tanhf x x  

 

Sigmoid  
1

1 x
f x

e



 

 

3.2. RNN 

RNNs are specially designed for analyzing sequential data and have been successfully used in 

fields such as speech recognition, machine translation, and image captioning [19]. RNN processes 

sequence data by elements and preserves a state to represent the information at time steps [20]. A 



Energies 2020, 13, 6623 6 of 23

3.2. RNN

RNNs are specially designed for analyzing sequential data and have been successfully used in
fields such as speech recognition, machine translation, and image captioning [19]. RNN processes
sequence data by elements and preserves a state to represent the information at time steps [20].
A traditional neural network assumes that all units of the input vectors are independent. Consequently,
the traditional neural network is ineffective for predicting using sequential data.

The architecture of RNN with three main components (input, hidden neuron, and activation
function) is shown in Figure 4.

Energies 2020, 13, x FOR PEER REVIEW 6 of 23 

 

traditional neural network assumes that all units of the input vectors are independent. Consequently, 

the traditional neural network is ineffective for predicting using sequential data. 

The architecture of RNN with three main components (input, hidden neuron, and activation 

function) is shown in Figure 4. 

 

Figure 4. The structure of the recurrent neural network. 

Previous hidden state (ht) can be formulated as 

 1tanht t th U x W h      (2) 

where xt is the input at time t, ht is the hidden neuron at time t, U is the weight of the hidden layer, 

and W is the transition weights of the hidden layer. The input and previous hidden states are 

combined to produce information as the current and previous input go through the tanh function. 

Then, the output is the new hidden state, performing as the neural network memory because it holds 

information from the previous network. 

Training regular RNNs can be challenging because of vanishing and exploding gradient 

problems. In the case of the exploding gradient, the problem can be solved after the backpropagation 

is closed at a certain point. However, the result is not optimal because all the weights are not updated. 

In the case of the vanishing gradient, it can be fixed by initializing the weights to reduce the possibility 

of vanishing gradient. However, an alternative treatment to solve the problem is to use LSTM, which 

we discuss later. 

3.3. LSTM 

LSTM is a time RNN proposed by Hochreiter et al. [21] to learn the long-term dependence of 

information. An LSTM has a similar flow as an RNN. The difference is the operation inside the cells. 

An LSTM unit comprises forget, input, and output gates (Figure 5). The forget gate categorizes the 

information that should be thrown away or kept. The input gate updated the cells, and the output 

gate decides the next hidden state. Furthermore, LSTM has an internal memory unit and gate 

mechanism to overcome both the vanishing gradient and explosion gradient problems in the training 

process of RNN [22]. 

 

Figure 5. The structure of a long short-term memory network. 

Figure 4. The structure of the recurrent neural network.

Previous hidden state (ht) can be formulated as

ht = tanh(U · xt + W · ht−1) (2)

where xt is the input at time t, ht is the hidden neuron at time t, U is the weight of the hidden
layer, and W is the transition weights of the hidden layer. The input and previous hidden states are
combined to produce information as the current and previous input go through the tanh function.
Then, the output is the new hidden state, performing as the neural network memory because it holds
information from the previous network.

Training regular RNNs can be challenging because of vanishing and exploding gradient problems.
In the case of the exploding gradient, the problem can be solved after the backpropagation is closed at
a certain point. However, the result is not optimal because all the weights are not updated. In the
case of the vanishing gradient, it can be fixed by initializing the weights to reduce the possibility of
vanishing gradient. However, an alternative treatment to solve the problem is to use LSTM, which we
discuss later.

3.3. LSTM

LSTM is a time RNN proposed by Hochreiter et al. [21] to learn the long-term dependence of
information. An LSTM has a similar flow as an RNN. The difference is the operation inside the cells.
An LSTM unit comprises forget, input, and output gates (Figure 5). The forget gate categorizes the
information that should be thrown away or kept. The input gate updated the cells, and the output gate
decides the next hidden state. Furthermore, LSTM has an internal memory unit and gate mechanism
to overcome both the vanishing gradient and explosion gradient problems in the training process
of RNN [22].
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The calculation formulas related to the LSTM structure in Figure 4 are as follows:

ft = σ
(
W f ·Xt + U f · ht−1 + b f

)
(3)

it = σ(Wi ·Xt + Ui · ht−1 + bi) (4)

St = tanh(Wc ·Xt + Uc · ht−1 + bc) (5)

Ct = it ∗ St + ft ∗ St−1 (6)

ot = σ(Wo ·Xt + Uo · ht−1 + Vo ·Ct + bo) (7)

ht = ot ∗ tanh(Ct) (8)

The mathematical symbols in the above equations are as follows:

1. Xt is the input vector to the memory cell at time t.
2. Wi, Wf, Wc, Wo, Ui, Uf, Uc, Uo, and Vo are weight matrices.
3. bi, bf, bc, and bo are bias vectors.
4. ht is the value of the memory cell at time t.
5. St and Ct are the values of the candidate state of the memory cell and the state of the memory cell

at time t, respectively.
6. σ and tanh are the activation functions.
7. it, ft, and ot are values of the input gate, the forget gate, and the output gate at time t.

The forget gate (ft), input gate (it), and output gate (ot) in Equations (3), (4) and (7) have values
from 0 to 1 through the sigmoid function (σ). A value of one means that all input information passes
through the gate, but a value of 0 shows that no input information passes [23]. The values of the
candidate state of the memory cells in Equation (6) calculate the new information at time t, and its
output through the tanh function has a value between −1 and 1. The state of the memory at the cell,
controlled by the forget and input gates, is calculated as variable Ct of time t (Equation (7)). The selected
values are converted into output by multiplying them by ot and output becomes ht (Equation (8)).

3.4. GRU

Cho et al. [24] first proposed GRU as a simpler RNN architecture than LSTM, resulting in
easier computation and implementation. GRU is similar to LSTM in terms of remembering valuable
information and capturing long-term dependencies. The strength of GRU is that the computational
time is more efficient with less complexity because of fewer parameters than LSTM [25]. GRU also only
has two gates, namely, a reset and an update gate. The update gate is the same as the forget and input
gate in LSTM because it selects what information should be stored or erased. Meanwhile, the reset
gate decides the amount of information that must be forgotten. Therefore, the training time of GRU is
faster than LSTM.

The structure of GRU is shown in Figure 6, and the relationship between the input and output for
GRU can be written as:

rt = σ(Wr ·Xt + Ur · ht−1 + br) (9)

Zt = σ(Wz ·Xt + Uz · ht−1 + bz) (10)

At = tanh(Wh ·Xt + Uh · (rt ∗ ht−1) + bh) (11)

ht = (1−Zt) ∗ ht−1 + Zt ∗At (12)

where rt is the reset gate, Zt is the update gate, At is the memory content, σ and tanh are the activation
functions, and ht is the final memory at the current time step. The reset (rt) and update gate (Zt)
have values from 0 to 1 through the sigmoid function (σ) in Equations (9) and (10). Meanwhile,
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the memory content (At), using the rest gate to store the relevant information from the past, has a value
between −1 and 1 through tanh.
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3.5. The Hybrid Model (CNN–LSTM)

CNN is a deep learning algorithm by considering spatial inputs. Identical to other neural networks,
CNN neurons have learnable weights and biases. However, CNN is mainly used for processing data
with a grid topology, giving it a specific characteristic of its architecture [26].

CNN is a feedforward network because information flow occurs in one direction only, that is,
from their inputs to their outputs [27]. The CNN model uses three main layers, namely, the convolutional,
pooling, and fully connected layers (Figure 7). The convolutional and pooling layers are used to
reduce the computational complexity. Meanwhile, the fully connected layer is the flattened layer
connected to the output. Various pooling techniques are available in the architecture of CNN. However,
max pooling is mostly used in CNN layers, where the pooling window contains the maximum value
from each element [28].
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Figure 7. The structure of the convolutional neural network.

CNN–LSTM was developed for visual time series prediction problems and generating textual
descriptions from the sequences of images. The CNN–LSTM architecture uses CNN layers for feature
extraction on input data and combines with LSTM to support sequence prediction. Specifically,
CNN extracts the features from spatial inputs and uses them in the LSTM architecture to output the
caption. The architecture of the CNN–LSTM model is illustrated in Figure 8.

The applications of this hybrid model have been used to solve many problems, such as rod
pumping [29], particulate matter [30], waterworks [31], and heart rate signals [32]. Studies have
demonstrated promising results; for example, Xingjian et al. [33] predicted the future rainfall intensity
in a local region over a relatively short period. The experiments show that the CNN–LSTM network
captures spatiotemporal correlations better and consistently outperforms the fully connected LSTM
(FC-LSTM) model for precipitation forecasting.
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Figure 8. Illustration of convolutional neural network (CNN)–long short-term memory
(LSTM) architecture.

4. Evaluation Metrics

Evaluation metrics are critical for explaining the forecast performance of deep learning models [34].
The metrics provide feedback regarding the accuracy of the forecasting to improve the models until a
desirable accuracy is achieved. Various evaluation metrics are available for calculating the accuracy of
prediction. The typical evaluation metrics for solar irradiance and PV power forecasting are summarized
in Table 2. Here, Ppred, Pmeas, and n represent the forecasted values at each time, the measured values at
each time, and the number of sample data for the period, respectively.

Table 2. Evaluation metrics.

Evaluation Metric Equation

Error Ppred − Pmeas

Mean absolute error (MAE) 1
n

n∑
i=1

∣∣∣Ppred − Pmeas
∣∣∣

Mean absolute percentage error (MAPE) 1
n

n∑
i=1

∣∣∣∣Ppred−Pmeas

Pmeas

∣∣∣∣ · 100

Mean bias error (MBE) 1
n

n∑
i=1

(
Ppred − Pmeas

)
Relative Mean bias error (rMBE)

n∑
i=1
(Ppred−Pmeas)

n∑
i=1

Pmeas

· 100

rRMSE

√
1
n

n∑
i=1
(Ppred−Pmeas)

2

1
n

n∑
i=1

Pmeas

· 100

RMSE

√
1
n

n∑
i=1

(
Ppred − Pmeas

)2

Forecasting skill 1− RMSEmodel
RMSEpersistence

Mean absolute error (MAE) measures the average magnitude of error in a set of predictions using
the absolute value. If the absolute sign is removed, the evaluation metric becomes MBE, capturing the
average bias in the prediction, such that positive and negative values represent overprediction and
underprediction, respectively. However, root-mean-square error evaluation metric (RMSE) measures
the deviation from the measurement, and thus, the smaller, the better. When mean values vary with
location or system, a direct comparison of evaluation metrics could lead to a misunderstanding. In such
cases, the percentage or relative metrics such as Mean absolute percentage error (MAPE) and relative
root-mean-square error (rRMSE) are more useful. Forecasting skill measures the forecasting model over
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the persistence model regarding RMSE, where the persistence model assumes that the atmospheric
conditions are stationary. A positive forecasting skill value means that the model is outperforming
the persistence model. Note that measurement data include uncertainty by nature, and thus, the true
values are unknown. Hence, researchers prefer to use differences, such as root-mean-square difference
(rRMSD) and relative mean bias difference (rMBD) [35].

5. Analysis of Past Studies

In this section, we present notable findings in forecasting solar irradiance and PV power after
analyzing the published studies based on RNN, LSTM, GRU, and CNN–LSTM hybrid models. In total,
35 papers from 2005 to 2020 were collected and plotted by the publication year (Figure 9). From 2005
to 2017, only a few papers were published because these deep learning models were unpopular then.
However, the number of publications increased dramatically since 2018. The number of publications
grew by 250%, from 4 in 2018 to 14 in 2019. Meanwhile, only the publications until early 2020 were
collected, and more publications are expected by the end of the year.
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and photovoltaic (PV) power from 2005 to 2020.

The proportion of publications by deep learning models for predicting solar irradiance and PV
power individually is shown in Figure 10. In both cases, the LSTM accounts for most publications,
with RNN and GRU following. Meanwhile, the CNN–LSTM hybrid model shows the lowest
contribution. The popularity of the LSTM model is higher than that of the other standalone models
because it provides promising accuracy in the case of solar energy forecasting. The CNN–LSTM also
has a better performance than other models. However, the percentage of publications using this model
is smaller than using other models because the CNN–LSTM is a new solar energy forecasting model.

It should be noted that we did an independent review for solar irradiance and PV power because
the units and range values are different. Solar irradiance refers to the amount of solar radiation per
unit area; meanwhile, PV power refers to the use of solar radiation as thermal energy through PV cells
in the solar panel. The total solar radiation on the earth’s atmosphere is approximately 1360 W/m2,
called the solar constant. This value is attenuated to the earth’s surface through a complex series of
reflections, absorptions, and remissions. Solar irradiance fluctuates because it is affected by several
factors such as atmosphere condition, geographic location, season, and time of day. Although the
amount of power generated by PV at a particular location depends on how much of the solar irradiance
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reaches it, the PV power output also relies on the solar panel’s size and efficiency. Therefore, it is
essential to describe the specification of the solar panel for getting accurate PV output information.
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Figure 10. Distribution of studies using deep learning models to predict (a) solar irradiance and (b)
PV power.

5.1. Accuracy

The prediction accuracy is the most critical factor in selecting a forecast model. We chose RMSE as
the basic evaluation metric because it is most popular in solar energy forecasting. Because the mean
value of solar irradiance or PV power differs by factors such as location and system size, rRMSE is a
better measure to compare the accuracy between studies. Unfortunately, only a few studies presented
rRMSE. We selected the best accuracy out of all the studied cases. Tables 3 and 4 list the accuracy of the
papers, including forecast horizon, time interval, input parameters, and the size of PV systems in the
case of PV forecasting.

Table 3. Solar irradiance forecasting.

Authors and
Ref.

Forecast
Horizon

Time
Interval Model Input Parameter

Historical
Data
Description

RMSE
(W/m2)

Cao et al.
[38] 1 day hourly RNN -Solar irradiance 1995–2000

(2192 days) 44.326

Niu et al.
[37]

10 min ahead
every 10 min RNN

-Global solar radiation
-Dry bulb temperature
-Relative humidity
-Dew point
-Wind speed

22–29 May
2016
(7 days)

118

30 min ahead 121
1 h ahead 195

Qing et al.
[39] 1 day ahead hourly LSTM

-Temperature
-Dew Point
-Humidity
-Visibility
-Wind Speed

March
2011–August
2012
January
2013–December
2013
(30 months)

76.245

Wang et al.
[25]

1 day ahead every 15 min CNN–LSTM
-Solar irradiance

2008–2012
2014–2017
(3013 days)

32.411

LSTM 33.294
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Table 3. Cont.

Authors and
Ref.

Forecast
Horizon

Time
Interval Model Input Parameter

Historical
Data
Description

RMSE
(W/m2)

Aslam et al.
[40]

1 h ahead

hourly

LSTM

-Solar irradiance
2007–2017
(10 years)

108.888
GRU 99.722
RNN 105.277

1 day ahead
LSTM 55.277
GRU 55.821
RNN 63.125

Ghimire et al.
[36] 1 day ahead every 30 min CNN–LSTM -Solar irradiance

January
2006–August
2018

8.189

Husein et al.
[3] 1 day ahead hourly LSTM

-Temperature
-Humidity
-Wind speed
-Wind direction
-Precipitation
-Cloud cover

January
2003–December
2017

60.310

Hui et al.
[41] 1 day ahead hourly LSTM

-Temperature
-Relative humidity
-Cloud cover
-Wind speed
-Pressure

2006–2015
(10 years) 62.540

Byung-ki et al.
[42] 1 day head hourly LSTM

-Temperature
-Humidity
-Wind speed
-Sky cover
-Precipitation
-Irradiance

(1825 days) 30.210

Wojtkiewicz et al.
[43] 1 h ahead hourly GRU

-GHI
-Solar zenith angle
-Relative humidity
-Air Temperature

January
2004–December
2014

67.290

LSTM 66.570

Yu et al.
[44] 1 h ahead hourly LSTM

-GHI
-Cloud type
-Dew point
-Temperature
-Precipitation
-Relative humidity
-Solar Zenith Angle
-Wind speed
-Wind direction

2013–2017 41.370

Yan et al.
[45]

5 min ahead

every 1 min

LSTM

-Solar irradiance 2014

18.850
GRU 20.750

10 min ahead
LSTM 14.200
GRU 15.200

20 min ahead
LSTM 33.860
GRU 29.580

30 min ahead
LSTM 58.000
GRU 55.290

Regarding solar irradiance forecasting in Table 3, the forecast horizon ranges from 5 min to 1 day
ahead. Meanwhile, the time interval data vary from every 5 min to 1 h. Generally, the CNN–LSTM
as the hybrid model performs better to predict solar irradiance for one day-ahead forecasting.
Ghimire et al. [36] have the best performances of all the studies with RMSE values of 8.189 W/m2.
For LSTM and GRU, the best performance was the prediction of solar irradiance for 10 min ahead at
5 min intervals. However, RNN tends to result in lower accuracy than other models for day-ahead
hourly forecasting.

In this case, the main factor causing changes in solar irradiation is the presence of clouds.
Unfortunately, only some studies explained the condition of the sky. For example, Wang et al. [25]
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demonstrated that the CNN–LSTM hybrid outperformed the single LSTM to predict one day-ahead
solar irradiation at 15 min intervals on sunny days, showing the small error where the RMSE value is
less than 34 W/m2. Meanwhile, Niu et al. [37] have the largest error in forecasting solar irradiance using
the RNN model where the RMSE value is 195 W/m2; however, the sky conditions are not mentioned in
the present study. Hence, further study regarding deep learning models to predict solar irradiance is
required to create a concrete solution.

The performances for PV power forecasting are listed in Table 4. Most publications focused on
predicting PV power in intra-hour forecast horizons. The RMSE reveals a wide variation from 0.044 to
15,290 kW because PV power generation is proportional to system size. Accuracy comparison is more
difficult in PV power forecasting than in solar irradiance forecasting, suggesting an increasing need for
evaluation based on rRMSE. For the LSTM models in references (Zhang et al. [46]; Wang et al. [47];
Li et al. [48]), the RMSE value increases as the PV size increases. The values are 0.139, 0.398, and 0.885 kW
for the PV size of 60.00, 153.48, and 199.16 m2, respectively.

Table 4. PV power forecasting.

Authors and
Ref.

Forecast
Horizon

Interval
Data Model Input Variable Historical Data

Description
RMSE
(kW) PV Size

Vishnu et al.
[49]

1 h ahead
hourly CNN–LSTM

-Irradiation
-Wind speed
-Temperature

March
2012–December
2018

0.053
N/A1 day

ahead 0.051

1 w ahead 0.045

Gensler et al.
[50]

1 day
ahead hourly LSTM -PV power (990 days) 0.044 N/A

Wang et al.
[51] 1 h ahead hourly GRU

-Total column
liquid water
-Total column
ice water
-Surface
pressure
-Relative
humidity
-Total cloud
cover
-Wind speed
-Temperature
-Total
precipitation
-Total net solar
radiation
-Surface solar
radiation
-Surface thermal
radiation

April 2012–May
2014 68.300 N/A

Zhang et al.
[34]

1 min
ahead

every
1 min LSTM -Sky images

-PV Power 2006 0.139 10 × 6 m2

Abdel-Nassar
et al.
[52]

1 h ahead hourly LSTM -PV power (12 months) 82.150 N/A

Lee et al.
[53] 1 h ahead hourly LSTM -PV power

June
2013–August
2016
(39 months)

0.563 N/A

Lee et al.
[54] 1 h ahead hourly RNN

-Temperature
-Relative
humidity
-Wind speed
-Wind direction
-Sky index
-Precipitation
-Solar altitude

June
2017–August
2018

0.160 N/A
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Table 4. Cont.

Authors and
Ref.

Forecast
Horizon

Interval
Data Model Input Variable Historical Data

Description
RMSE
(kW) PV Size

Li et al.
[55]

15 min
ahead N/A

RNN

-PV power
January
2015–January
2016

6970

N/ALSTM 8700
30 min
ahead

RNN 15,290
LSTM 15,570

Li et al.
[48] 1 h ahead

every
5 min

LSTM
-PV power

June 2014–June
2016
(743 days)

0.885
199.16 m2GRU 0.847

RNN 0.888

Wang et al.
[56]

5 min
ahead

every
5 min

LSTM
-Current phase
average
-Wind speed
-Temperature
-Relative
humidity
-GHI
-DHI
-Wind direction

2014–2017
(4 years)

0.398

4 × 38.37
m2CNN–LSTM 0.343

Wen et al.
[57] 1 h ahead hourly LSTM

-Temperature
-Humidity
-Wind speed
-GHI
-DHI

1 January–1
February 2018 7.536 N/A

Sharadga et al.
[58]

1 h ahead
hourly LSTM -PV power January–October

2010

841
N/A2 h ahead 1102

3 h ahead 1824

5.2. Types of Input Data

The type of input data, endogenous and exogenous, can classify forecasting models. In the
endogenous model, the type of input and output data is identical. That is, historical PV power data are
used for forecasting future PV power. However, the exogenous model uses other data types, such as
ambient temperature, humidity, wind speed, wind direction, and sun position, besides the type of
output data. It should be noted that the cited references used historical data prediction as input rather
than numerical weather prediction data. The time period of input data is also summarized in Tables 3
and 4. The number of publications by exogenous and endogenous inputs, and the forecast horizon is
illustrated in Figure 11. For the intra-hour and day-ahead forecast horizons, the endogenous model
outnumbers the exogenous model.

Li et al. [55] presented RNN and LSTM models using endogenous inputs for predicting PV power
output in the very short term. They used both PV power data from the previous day and previous
forecasting data as the input. The results demonstrated that the average RMSE, MAPE, and MAE
outperform the other models such as SVM, radial basis function (RBF), back propagation neural
network (BPNN), and persistence in the 15 and 30 min forecasting horizons.

Husein et al. [3] proposed an LSTM model using exogenous inputs to forecast day-ahead solar
irradiance. The models used dry bulb temperature, dewpoint temperature, and relative humidity as
input from six locations. The results showed that LSTM outperforms the feedforward neural network
(FFNN) for data from all locations. They also simulated a one-year operation of a commercial building
microgrid using the actual and forecasted solar irradiance, and the results showed that using the
forecasting approach increases the annual energy savings by 2% compared with FFNN.
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Figure 11. The number of publications based on the origin of data and forecast horizon.

We investigated the exogenous input parameters from 25 publications (Figure 12). The less
frequently used parameters include visibility, sky images, column ice water, column liquid water,
and pressure. However, it shows that temperature, humidity, and wind speed are used more frequently
because they are easier to collect than other parameters.
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Figure 12. Percentage of the input parameters used to predict solar irradiance and PV power.

The period of historical data also affects the performance of the prediction. If the time series is
too short, it will lead to a lack of information for learning, and if the time series is too long, it will
increase the complexity of the algorithm. However, the increase in time series data does not guarantee
better performance. Wang et al. [47] compared the errors of the LSTM and CNN–LSTM according to
input sequences (Table 5). The results show that errors increase from 0.5 to 2 years of input time series
data. The best accuracy was observed when three years of input sequences were used. Historical
data of more than three years degraded performances, implying that the period of input data must
be optimized.



Energies 2020, 13, 6623 16 of 23

Table 5. Root-mean-square error evaluation metric (RMSE) of LSTM vs. CNN–LSTM based on the
input sequence.

Input Sequence
(Years)

LSTM CNN–LSTM (kW)

RMSE (kW) MAE (kW) RMSE (kW) MAE (kW)

0.5 1.244 0.654 1.161 0.559
1 1.393 0.616 1.434 0.628

1.5 1.533 0.599 1.248 0.529
2 1.320 0.457 0.941 0.397

2.5 0.945 0.389 0.426 0.198
3 0.398 0.181 0.343 0.126

3.5 1.150 0.455 0.991 0.384
4 1.465 0.565 0.886 0.405

5.3. Forecast Horizon

The forecast horizon is the length of time into the future for which a model can predict, and it
strongly influences the performances and characteristics of the forecast. Forecasting horizons can be
divided into four types [59]:

1. Very short-term forecasting (1 min to several minutes ahead).
2. Short-term forecasting (1 h or several hours ahead to 1 day or 1 week ahead).
3. Medium-term forecasting (1 month to 1 year ahead).
4. Long-term forecasting (1 to 10 years ahead).

Yan et al. [45] studied LSTM and GRU’s performance to predict solar irradiance for very short-term
forecasting. The experiments were conducted in time ranges of 5, 10, 20, and 30 min and the four
seasons. The RMSE in Table 6 shows that LSTM and GRU’s smallest error occurred in winter for the
10 min forecast horizon. Generally, the two models showed a gradual increase of errors for the 10 to
30 min solar irradiance forecasting.

Table 6. RMSE of LSTM and gated recurrent unit (GRU) for very short-term forecasting.

Forecast
Horizon

(min)
Model

Spring Summer Autumn Winter

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

(W/m2) (W/m2) (W/m2) (W/m2)

5
LSTM 36.67 26.95 89.91 59.20 18.85 13.13 44.24 21.58
GRU 36.82 27.18 89.77 59.70 20.75 16.03 43.66 23.60

10
LSTM 41.02 29.65 42.23 32.96 53.01 33.62 14.20 11.09
GRU 44.71 34.42 41.08 30.92 55.00 38.35 15.20 12.83

20
LSTM 56.22 49.09 46.31 40.58 33.86 28.11 43.54 39.10
GRU 45.23 36.78 53.97 47.44 29.58 24.55 41.03 37.09

30
LSTM 58.77 47.54 58.00 47.82 81.75 59.08 61.68 52.29
GRU 60.42 49.65 55.29 50.52 82.12 60.71 62.33 54.13

Ghimire et al. [36] used the CNN–LSTM hybrid model and three standalone models for solar
irradiance forecasting. The forecasting errors for those models are listed in Table 7. CNN–LSTM
was used using 30 min interval data to predict solar irradiance for a 1 day up to 1-month forecast
horizon, as measured by RMSE and MAE. Compared with RNN, LSTM, and GRU, the hybrid model
outperforms other models to predict solar irradiance in all forecasting horizons.
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Table 7. Evaluation of predictive model (RMSE and MAE) over multiple forecast horizons.

Model
RMSE (W/m2) MAE (W/m2)

1 Day 1 Week 2 Weeks 1 Month 1 Day 1 Week 2 Weeks 1 Month

CNN–LSTM 8.189 16.011 14.295 32.872 6.666 9.804 8.238 13.131
LSTM 21.055 18.879 16.327 33.387 18.339 11.275 10.750 14.307
RNN 20.177 18.113 15.494 41.511 18.206 11.387 10.492 26.858
GRU 14.289 21.464 19.207 57.589 11.320 15.658 14.005 39.716

5.4. Type of Season and Weather

The accuracy of deep learning models has been proven for the different seasons and types of
weather. For example, Li et al. [48] used RNN, LSTM, and GRU models for short-term PV power
forecasting. The performance evaluations of the different models for each season and types of weather
are presented in Table 8. Except for winter, generally, the LSTM model outperforms the two other
models. In winter, the GRU model is better than LSTM and RNN for all types of weather.

Table 8. RMSE of PV power prediction based on the type of weather (sunny, cloudy, and rainy).

Season Type of Weather LSTM (kW) GRU (kW) RNN (kW)

Winter
Sunny 1.2541 1.2399 1.2468
Cloudy 1.1279 0.2206 0.2867
Rainy 2.2336 2.0876 2.1223

Spring
Sunny 0.1643 0.2456 0.3431
Cloudy 0.2759 0.6452 0.4222
Rainy 0.8107 1.0036 0.8604

Summer
Sunny 0.9701 1.0748 0.8514
Cloudy 0.8398 0.9323 0.8812
Rainy 0.3009 0.5805 0.4993

Autumn
Sunny 0.7395 0.8029 0.7778
Cloudy 1.0540 1.2110 1.1365
Rainy 2.4216 2.3687 2.4275

5.5. Training Time

Deep learning with many parameters requires distributed training, where training time is
critical [60]. Training time is the product of the deep learning models that must be performed to reach
the desired level of accuracy. Each deep learning model has a different training time to reach the best
performance. Hence, in this section, we compared the training time for each model to know which
model is more efficient in forecasting solar irradiation and PV power.

Wang et al. [25] conducted forecasting experiments for LSTM and GRU to experience information
training time in the best, worst, and average cases. LSTM and GRU’s training times in the three cases
are presented in Table 9, proving that GRU is better than LSTM because the longest training time of
GRU is shorter than the best training time of the LSTM.

Table 9. The training time of LSTM vs. GRU.

Model The Best Case/s The Worst Case/s The Average Case/s

LSTM 393.01 400.57 396.27
GRU 354.92 379.57 365.40

The training times of LSTM and GRU in Seoul and Busan in 2016 and 2017 are shown in Table 10.
Aslam et al. [40] measured LSTM and GRU’s performance as training time in a system with an AMD
Ryzen Thread ripper 2950X and 64 GB RAM. The mean values taken from 10 runs for accurate results
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were taken. GRU performed faster than LSTM in hourly and daily forecasting. For hourly prediction,
the difference in training time is more than 200 s, and for daily forecasting, it is less than 20 s in each
year and region.

Table 10. The training time of LSTM vs. GRU.

Region Year
Hourly Daily

LSTM (s) GRU (s) LSTM (s) GRU (s)

Seoul
2017 1251.23 1004.15 88.35 72.56
2016 1060.82 832.63 77.98 64.12

Busan
2017 1269.21 1028.43 90.42 75.44
2016 1023.27 830.54 75.99 64.29

The training times of LSTM and CNN–LSTM are compared in Table 11. The hybrid model has a
longer training time than LSTM, which is 983.71 s because the hybrid model must extract both the
temporal and spatial features of the data [47].

Table 11. Performance of LSTM vs. CNN–LSTM.

Model LSTM (s) CNN–LSTM (s)

Training time 70.490 983.701

5.6. Comparison with Other Models

In this section, RNN, LSTM, GRU, and CNN–LSTM are compared in Tables 11–15 with other
machine learning models and deep learning models. Pang et al. [61] proposed a hierarchical approach
to predict solar irradiance using ANN and RNN in Tuscaloosa, Alabama, USA. The data from 22
to 28 May 2016 were used to predict solar irradiance into three interval times (10, 30, and 60 min)
(Table 12). Consequently, RNN outperformed ANN in forecasting horizon data sampling, and the best
result for the forecast horizon is when the shortest horizon was considered.

Table 12. Comparison between Recurrent neural network (RNN) and artificial neural network (ANN).

Forecast Horizon (min)
RMSE (W/m2)

ANN RNN

10 55.7 41.2
30 63.3 53.3
60 170.9 58.1

Table 13. Comparison between LSTM and other models.

Model FFNN (W/m2) SVR (W/m2) LSTM (W/m2)

RMSE 0.160 0.110 0.086

Table 14. Comparison between CNN–LSTM and other models.

Model
RMSE (kW)

With Weather Data Without Weather Data

RFR 0.178 0.191
SVR 0.122 0.126

CNN–LSTM 0.098 0.140
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Table 15. Comparison between GRU and multilayer perceptron (MLP).

Season
RMSE (kW)

Winter Spring Summer Autumn Average

GRU 847 917 1238 1074 1035
MLP 916 1069 1263 1061 1086

In the case of LSTM, Alzahrani et al. [62] studied a machine learning approach in Chicago, USA,
where the study compared various prediction models on a test dataset using FFNN and support
vector regression (SVR). The data were collected over four days (24 March, 8 February, 8 October,
and 12 August) and split into three parts, namely, data training, data testing, and data validation in
portions of 70%, 15%, and 15%, respectively. The results in Table 13 show that LSTM has a better
performance in achieving an RMSE of 0.086 W/m2, whereas FFNN and SVR obtained 0.160 and
0.110 W/m2, respectively.

Lee et al. [63] compared CNN–LSTM, random forest regression (RFR), and SVR. They considered
two sets of inputs: a PV measurement incorporated with weather values from a nearby meteorological
station and only past PV measurements. They collected 18,620 hourly data time series and divided the
data training and data testing as 75% and 25%, respectively. The results in the first case show that
CNN–LSTM has the lowest error metrics with an RMSE of 0.098 kW. However, the excluded weather
data case shows that SVR is better than RFR and CNN–LSTM with 0.126 kW (Table 14).

Li et al. [48] presented their results for the comparison between GRU and multilayer perceptron
(MLP) in a different season (Table 15). They collected the data in DKASC, Alice Springs, Australia.
The generation of the PV system is 26.500 kW. In this case, they used the data from 1 June 2014 to
31 May 2015, as the training dataset, and the data for 12 June 2016, were used as the testing dataset.
The results show that MLP has a better performance than GRU only in the autumn, with a value of
1061 kW. However, the average value of GRU has the most representative attributes of all the seasons
compared with MLP.

6. Conclusions

This paper introduced deep learning models as techniques to predict solar irradiance and PV
power generation. To represent a complete review of the models, the evaluation for the PV power
and solar irradiance forecasting is made apart. The main reason because the output is different in
terms of function, unit, and range value. Although the value fluctuates because it is affected by several
factors such as atmosphere condition, geographic location, season, and time of day, the evaluation of
solar irradiance forecasting is uncomplicated to understand. Radiation from the sun that reaches the
earth’s surface is measured in power per unit area; hence it is possible to compare the solar irradiance
at different locations. However, apart from the main factors, the PV power output relies on the solar
panel’s size and efficiency. Therefore, in part of the review of PV power forecasting, the solar panel
size is described to obtain accurate PV output information.

RNN, LSTM, GRU, and CNN–LSTM have become the topics of research interest because of
their popularity in predicting solar energy. They also offer many advantages over other machine
learning models, especially regarding time series data forecasting. Each model has its strengths and
limitations to predict solar irradiance and PV power; therefore, it is challenging to decide which is
the best among all the models. However, from the studies reviewed in this paper, we propose the
following conclusions:

• In the case of the single model, most studies explain that LSTM and GRU show better performance
than RNN in all conditions because LSTM and GRU have internal memory to overcome the
vanishing gradient problems occurring in the RNN.

• The hybrid model (CNN–LSTM) outperforms the three standalone models in predicting solar
irradiance. More specifically, the evaluation metrics for this hybrid model are substantially smaller
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than those of the standalone models. However, the CNN–LSTM model requires complex input
data, such as images, because it has a CNN layer inside.

• The training time should be considered to recognize the performance of the models. This work
reveals that the statistics of GRU are more efficient than that of LSTM in the case of computational
time because the average time for LSTM to train the data is relatively longer than that for GRU.
Therefore, considering training time and forecasting accuracy, the GRU model can generate a
satisfactory result for forecasting PV power and solar irradiance.

• Comparisons between the deep learning models and other machine learning models conclude
that these models were better used in predicting solar irradiance and PV power (Section 5.6).
Most studies show that the accuracy of the proposed models is better than other models, such as
ANN, FFNN, SVR, RFR, and MLP.
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Abbreviation

ANN Artificial neural network
BPNN Back propagation neural network
CNN Convolutional neural network
DHI Diffuse horizontal irradiance
FFNN Feedforward neural network
GHI Global horizontal irradiance
GRU Gated recurrent unit
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MLP Multilayer perceptron
PV Photovoltaic
RBF Radial basis function
ReLU Rectified linear unit
RFR Random forest regression
RMSE Root-mean-square error
RNN Recurrent neural network
rRMSE Relative root-mean-square error
SVR Support vector regression
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