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Abstract: The backbone of a conventional electrical power generation system relies on hydro-thermal
coordination. Due to its intrinsic complex, large-scale and constrained nature, the feasibility of
a direct approach is reduced. With this limitation in mind, decomposition methods, particularly
Lagrangian relaxation, constitutes a consolidated choice to “simplify” the problem. Thus, translating
a relaxed problem approach indirectly leads to solutions of the primal problem. In turn, the dual
problem is solved iteratively, and Lagrange multipliers are updated between each iteration using
subgradient methods. However, this class of methods presents a set of sensitive aspects that often
require time-consuming tuning tasks or to rely on the dispatchers’ own expertise and experience.
Hence, to tackle these shortcomings, a novel Lagrangian multiplier update adaptative algorithm is
proposed, with the aim of automatically adjust the step-size used to update Lagrange multipliers,
therefore avoiding the need to pre-select a set of parameters. A results comparison is made against
two traditionally employed step-size update heuristics, using a real hydrothermal scenario derived
from the Portuguese power system. The proposed adaptive algorithm managed to obtain improved
performances in terms of the dual problem, thereby reducing the duality gap with the optimal
primal problem.

Keywords: hydro-thermal coordination; Lagrangian relaxation; Lagrangian dual problem;
Lagrange multipliers; subgradient methods; step-size update algorithm

1. Introduction

The objective of short-term hydro-thermal coordination is to optimize electricity generation [1],
meaning to find an optimal generation dispatch, or close to ideal, for all the thermal and hydro
units available in a system. This ensures the total operation cost is minimized within horizons
ranging from one day to one week (168 h), taking into account the entire system and its individual
constraints [2–5] and with a planning period (discrete time-step), typically set from hour to hour [5].
In other words, this crucial process is responsible for scheduling the start-up and shutdown of
thermal units (binary level decisions), in coordination with hydro plants, to ensure the continuity of
electricity supply with appropriate levels of spinning reserve, while minimizing the operating costs [6].
This scheduling constitutes a unit commitment (UC) problem, where the dispatch policy of the thermal
units is made in such a way that the total cost (operating cost, starting cost and shut down cost) is
minimal over a pre-defined time-horizon. In addition, a series of operational constraints needs to be
fulfilled, thus reducing the freedom of choice to turn a thermal unit on or off. In this regard, we are
primarily speaking about the load balance constraint, i.e., ensuring that our electric energy demand
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is satisfied, yet further constraints include spinning reserve constraints, minimum connected time,
minimum time off, generation capacity limits, group restrictions, water restrictions, etc. [7].

Therefore, we can understand why short-term hydro-thermal coordination, in a framework where
hydro and thermal power plants are the backbone of conventional power systems (consolidated power
generation technologies), is such an important subject for power producers. Moreover, is one of the
most complex problems to solve in power system engineering [1,8] due to its inherent large-scale and
non-linear and combinatorial nature. This explains why, over the last decades, it has been the subject
of intense research in the fields of operation and optimization of electric power systems [1,2,9,10].

Thus, a broad spectrum of methods has tried to solve short-term hydro-thermal coordination,
and they can be generally divided into two categories: mathematical methods and deterministic
methods [5,7]. In the realm of conventional approaches we can highlight Benders Decomposition [11],
Lagrangian Relaxation [1,2,12], Improved LR [13], Dynamic Programming (PD), Nonlinear
Programming [14], Dynamic Non-Linear Programming [15], Augmented Lagrangian [16], mixed integer
linear programming [17–19], logarithmic size mixed-integer linear programming [20] and nonlinear
programming [21], among several others. However, even with this wide array of classical optimization
methods a perfectly tailored solution is hard to find, and in general terms the complexity of short-term
hydro-thermal coordination has a negative effect on the computing efficiency [19]. Besides, problems
of different nature arise with the use of classical approaches, which may impact the performance,
mainly scheduling problems [22], slower convergence, premature convergence, computational cost,
problems to deal with the nonlinearity and non-convexity, the need to perform problem simplifications,
etc. In addition, classical deterministic methods typically rely upon single path search methods, which
may help in terms of convergence speed but can be tricky in the presence of non-smooth surfaces [23].

A consolidated trend has been the growing application of evolutionary/heuristic methods and
methods of artificial intelligence, in addition to new deterministic heuristics. Hence, we can mention
neural networks [24], Cuckoo Search [25], Differential Evolution [26,27], Grey Wolf Optimizer [28],
Improved Bacterial Foraging Algorithm [29] and a hybrid approach combining Artificial Bee Colony
and the Bat algorithm [22], among others. For example, in [30] by using two different case studies,
with and without pumping-storage capability and considering different constraints, the authors tested
the effectiveness of different Accelerated Particle Swarm Optimization variants. In another instance,
an Improved harmony search algorithm was employed on a non-linear, non-convex, short-term
hydrothermal scheduling [31], among many others. However, in general these machine learning
and population-based methods require a significant computational effort to solve the problem for
an hourly discretized weeklong time-horizon, i.e., for large-scale problems (with a high number of
dimensions) its effectiveness drops significantly. In addition, they can frequently end up finding only
suboptimal solutions [4,21]. Besides, these metaheuristic methods often rely on a population search to
find an optimal solution, turning them into large-scale problems (many dimensions and numbers of
search agents), and occasionally several runs are required to find an optimal solution, as premature
stagnation or slow convergence may occur.

Due to the presence of multiple sets of constraints, decomposition techniques appear as a natural
option to solve this problem [1,10]. Consequently, Lagrangian Relaxation (LR) is one of these preferred
decomposition techniques to tackle the short-term hydro-thermal coordination problem [6,12,32,33].
The fundamentals behind LR are to use Lagrange multipliers to relax system constraints such as load
demand and reserve requirements. The primal problem is then converted into a two-level structure
(subproblems). Given a set of multipliers, all subproblems are resolved at the low level, one for
each unit, and the multipliers are updated at the high level. Multipliers are obtained by solving the
dual problem, and the feasibility of solving the primal problem is usually obtained based on the dual
solution [2,3], i.e., the primal problem is a byproduct of the dual problem solution. Finally, the solution
is translated in dispatch generation decisions to meet the demand.

To update Lagrange multipliers, a common approach is to apply subgradient methods, where the
step-size update procedure represents a sensible decision and often depends on ad-hoc testing.
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This easy-to-implement approach, however, has some limitations, particularly the computational
inefficiency and tendency for oscillating solutions. Two other common alternatives are the
Bundle method, which in essence is another subgradient method based on a bundle of subgradients
from previous iterations, and the Cutting Plane method, which adds new constraints to reduce the size
of the feasible region. For example, in [34,35] evolutionary programming with a Gaussian mutation is
used to update the multipliers, and in both, parameters are chosen considering convergence criteria.
Following the vast existing literature on this subject, and to avoid sensible user dependence concerning
the parameter choice, an adaptative algorithm is proposed in this work for an enhanced use of the
LR technique for short-term hydro-thermal coordination. Additionally, it is important to refer that
this paper is an extended version of work published in [36]; we expand on the formulation and the
framework of the short-term hydro-thermal coordination problem, add a second case study, refine the
results analysis and improve the figures.

Hence, we can summarize the main contributions of this work as follows:

1. Identify a weakness in the classical update mechanism of the step-size used in the
subgradient method.

2. Propose an adaptative Lagrangian multiplier update algorithm that, as its name suggests,
dynamically updates the step-size value and subsequently the Lagrange multipliers, so that the
dual function converges towards its optimum in a pre-arranged number of iterations.

3. The LR technique is then used with the proposed adaptative update algorithm to solve a
real large-scale, short-term hydro-thermal coordination problem, using data from the largest
Portuguese electric utility company in two different scenarios.

4. For validation purposes, the algorithm is tested against two traditional step-size update heuristics
with different initial parameter values.

5. Finally, the results comparison in both case studies revealed a sizeable advantage in terms of
dual problem solution (error reduction) in favor of the proposed adaptative algorithm, therefore
reducing the duality gap with the primal problem. Thus, a better allocation of the complex and
vast hydro and thermal resources is obtained.

The rest of this paper is organized as follows. Section 2 provides a brief description of the
primal problem. Section 3 explains the Lagrangian dual problem. Section 4 introduces subgradient
methods and the motivation for the proposed algorithm, introduced in Section 5. Results and discussion
for the two case studies are provided in Section 6, and finally, Section 7 presents the conclusion of
this work.

2. The Primal Problem

The hydro-thermal coordination problem is a non-linear, large-scale, non-convex and combinatorial
problem by nature. It can be understood as the task of establishing a map of feasible operations for each
generation unit available in an electrical power system at the lowest cost for a predefined time horizon,
in order to satisfy the expected load demand and a set of other system restraints. Typically, the time
horizon considered is from one to seven days, and the discrete time-step (in which decisions are made)
is a one-hour period. This problem is treated as deterministic, and whenever it is necessary to include
stochastic quantities such as load diagram and reservoir inflows, their expected values are used.

In this manner, a primal problem (P) is non-convex and non-linear and can be mathematically
formulated as shown in Equations (1)–(6). The total operating cost for all resources (units) and over
the entire considered period, K, is defined in Equation (1) and is the problem’s objective function,
i.e., evaluates the performance of each admissible solution. The cost function, Cik

(
xi,k−1, pik, uik

)
, is a

measure that evaluates the decision made in each state, since there is an operating cost associated
with the state transition (from xi,k−1 to xik), which delivers the power pik, determined by the control
decision uik, for each unit i at time k. The following three Equations (2)–(4) represent the set of global
constraints. Firstly, Equation (2) translates the (global) demand–supply balance restraint, where Dk
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is the required load demand that needs to be served by the power output of each resource i in hour
k, pik. Moreover, for simplicity purposes transmission losses were not considered. In turn, Inequality
(3) represents all the hourly system capacity requirement constraints, i.e., constraints like the spinning
and operating reserve requirements. Rmi translates the capacity contribution function associated with
resource i for the system capacity requirement of type m, while Rreq

mk is the mth-type system capacity
requirement in hour k [5].

Additionally, Inequality (4) represents all the cumulative constraints, such as the limitation on
emission by a group of units over the scheduling time horizon or the amount of consumed fuel,
whereHn stands for the set of thermal units on the nth cumulative constraint, Hni is the function which
describes a contribution of thermal unit i–nth cumulative constraint, Hreq

n is the upper bound on nth
cumulative constraint and N is the set of cumulative constraints [37].

In turn, Equations (5) and (6) represent the set of local constraints, the state Equation (5) of each
resource i at a time k. This equation allows us to obtain the state of each resource xik and its contribution
pik to satisfy demand, whatever the decision uik. Last of all, in (6) the domain of admissible values for
the control variables, as well as for the initial and final state, are defined for each individual resource i.

P
Min

u

K∑
k=1

I∑
i=1

Cik
(
xi,k−1, pik, uik

)
(1)

Subject to
I∑

i=1

pik = Dk i = 1, . . . , I ∧ k = 1, . . . , K (2)

I∑
i=1

Rmi(xik, pik) ≥ Rreq
mk m = 1, . . . , M (3)

K∑
k=1

∑
i∈Hn

Hni(xik, pik, uik) ≥ Hreq
n n = 1, . . . , N (4)

and wherein
(xik, pik) = Aik

(
xi,k−1, uik

)
i = 1, . . . , I ∧ k = 1, . . . , K (5)

uik ∈ Uik xi0 ∈ X0
i xik ∈ XK

i
i = 1, . . . , I ∧ k = 1, . . . , K

(6)

Although the objective function is a separable function in resources and hours, this problem,
by its formulation and due to collective constraints, does not allow this separability, providing extreme
complexity to the minimization problem. In other words, the optimum value cannot be found by the
sum of the various suboptimal (separately) results from each resource. Thus, we are facing a problem
of unrestrainable dimension, for which a direct approach is not viable.

The primal problem defined in this study approaches the short-term hydro-thermal coordination
considering the generation resources available to the electric utilities company, to match the system-wide
load demand over a weekly time-period, while fulfilling a set of other global and local constraints.

3. Lagrangian Dual Problem

As discussed, the primal problem is difficult to solve using conventional nonlinear optimization
techniques. A preferable path is to decompose the problem constraints and transfer them to the
objective function, i.e., to solve the dual problem, rather than solving the primal problem directly.
We know beforehand that the optimal solution of the relaxed problem is a lower bound (good estimate)
of the optimal solution of the initial problem [2,10,38].
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This is achieved by relaxing the constraints, i.e., weakening of the problem (P), that in practical
terms means open the possibility to breach the imposed constraints. However, relaxed restrictions are
not completely ignored since its violations are linearly penalized in the Lagrange function (an added
cost associated with violating each constraint).

We can write the Lagrange function (L) for problem (P) by relaxing its global constraint,
as expressed in Equation (7), where λ, µ and γ are the Lagrange multiplier vectors associated with the
load-balance constraint, capacity constraints and cumulative constraints, respectively. These Lagrange
multipliers are expressed in units of cost per unit of the parameters of their associated constraint,
which in the case of Equation (2) is given in $/GW.

L

(
xi,k−1, pik, uik,λ,µ,γ

)
=

K∑
k=1

I∑
i=1

Cik
(
xi,k−1, pik, uik

)
+

K∑
k=1

λk

(
Dk −

I∑
i=u

pik

)
+

M∑
m=1

K∑
k=1

µmk

(
Rreq

mk −
I∑

i=1
Rmi(xik, pik)

)
+

N∑
n=1

γn

Hreq
n −

K∑
k=1

∑
i ∈ Hn

Hni(xik, pik, uik)


(7)

That is, to now solve the unit commitment problem, L is minimized, where
Min

u
L

(
xi,k−1, pik, uik,λ,µ,γ

)
is subject to local system constraints, i.e., Equations (5) and (6).

Subgradient of the Dual Function

The Lagrangian dual problem is obtained by forming (L), and its solution provides the primal
variables as functions of the Lagrange multipliers, which are labeled dual variables. Hence, the new
problem is to maximize the objective function with respect to the multipliers under the derived
constraints on the dual variables. This implies, by decomposition, that each resource becomes a single
entity and is individually optimized, rather than a combined optimal resource allocation. Therefore,
the dual function is defined in Equation (8), presenting concave and sub-differentiable traits (resulting
in inferiorly limited variables).

q(λ,µ,γ) =
Min

u
L

(
xi,k−1, pik, uik,λ,µ,γ

)
(8)

Given that Lagrange’s dual function is a concave function with simple bounds on the variables,
a local optimum is also the function global optimum. Therefore, our task is to find the Lagrangian
multipliers, λ,µ and γ, that maximize the dual function. Nonetheless, this does not mean that solving
the dual function is a trivial task (far from it actually), since the function is not smooth and is not
given by an easy-to-compute expression [5]. For this purpose, we resort to subgradient methods,
which benefit from the fact the subgradients of q are easily derived system constraint deviations.
Consequently, we can define the subgradient of the dual function g (9) for each hour k as follows:
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g =



· · ·

Dk −
I∑

i=1
pik

· · ·

− − − −−−−−−−−

· · ·

Rreq
mk −

I∑
i=1

Rmi(xik, pik)

· · ·

− − − −−−−−−−−−−

· · ·

Hreq
n −

K∑
k=1

∑
i ∈ Hn

Hni(xik, pik, uik)

· · ·



(9)

Moreover, by the weak duality theorem for a single set of multipliers, the optimal value of the
Lagrange dual problem q(λ∗) and the optimal value of the primal minimization problem p(λ∗) are
related by q(λ∗) ≤ p(λ∗), and the difference between the values is called a duality gap. This implies
that the dual problem offers a good indirect root to solve the primal one, since the gap in most practical
cases is relatively small [6,12,39].

For all the reasons above, this approach to the problem is advantageous since it lessens the
computational burden of the primal problem.

4. Subgradient Methods

As we saw earlier, obtaining the Lagrange dual function optimal value goes hand-in-hand with
the Lagrange multiplies choice/update method, i.e., at the outset, this choice determines how close we
are to the solution of the dual problem and, ultimately, how close we are from reaching the primal
problem best solution. To perform this task several methods are described in the literature [5]; however,
regarding our problem in particular, subgradient methods prevail as the most fitting solution by
achieving higher accuracies. Further benefits include their simplicity as well as the computational ease
with which the Lagrange dual function subgradient (solution deviation from the imposed constraints)
is calculated.

These methods update the multipliers according to the subgradient direction and in a manner
proportional to the violation of the corresponding constraints. Besides, a distinctive trademark of
these methods concerns the step-size update heuristic, where again several approaches have been
followed [5]. However, the downside of these conventional updating heuristics is that a long-winded
trial-and-error procedure as well as a highly specialized operator are frequently required. The simplest
and most common subgradient method formulation is given by

λv+1 =

[
λv + sv gv

‖gv‖

]+
(10)

where gv is the subgradient g(pλv), sv is a positive scalar that defines the step-size at the current
iteration v and, lastly, [.]+ represents the projection in the set of feasible values Λ. Nonetheless, there is
no guarantee that after iteration v + 1, independently from the chosen step-size, the dual function
value will actually improve (walk towards the optimal dual function value), meaning that in some
occasions we will have

q

[λv + sv gv

‖gv‖

]+< q(λv), ∀ s >0 (11)
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Though, if the step value is sufficiently small, the distance between the obtained point in the
current iteration and the optimum value can always be reduced. The following proposition offers an
estimate for the step-size domain (range):

Proposition 1. If λv does not lead to the optimum value of the dual function, then for λ∗, which corresponds
to the dual function optimum value, the inequality ‖λv+1

− λ∗‖ < ‖λv
− λ∗‖ is valid for all step-sizes,

sv
∈ ]0, 2(q(λ∗)−q(λv))

‖gv‖ [. Therefore, this suggests a step-size equal to the middle value of the inequality range, i.e.,

sv =
(q(λ∗)−q(λv))

‖gv‖ .

Since this requires knowledge of the dual function optimal value q(λ∗), which is exactly the
unknown we want to find, this approach is unviable in our case, and we resort to heuristics that
determine the step-size. In this regard, a popular choice is decreasing step-size rule-based approaches,
mainly due to its simplicity and effectiveness.

Considering a decrease in step-size, sv, towards zero, meaning that lim
v→∞

sv = 0 ∧ sv > 0, while at

the same time satisfying
∑
∞

v=1 sv = ∞, the method can “travel” as far as possible (up to infinity) in
order to converge to the optimal dual function value. Thus, under these assumptions, we can infer
a 2nd proposition, from which we can conclude that it is possible, by appropriately updating the
step-size, to reach the dual function maximum value [21].

Proposition 2. For the sequence of all multiplier values {λv
} we have lim

v→∞
Max q(λv) = q∗. However, this

analysis does not lead to a finite procedure, pointing to an initial value of the step, as well as a mechanism for
decrementing it to zero. As such, for comparison purposes against the proposed new heuristic, the two most
widely employed expressions are introduced in Equations (12) and (13), to update the step-size at each iteration v.

sv =
a1

1 + v× a2
(12)

sv =
a1

1 + va2
(13)

where a1 and a2 are control parameters of the heuristic process. Moreover, the chosen initial step is a highly
sensitive matter, since small initial steps can prevent the method from reaching the desired optimum value in a
reasonable number of iterations. Whereas, using a large initial step may cause the method to oscillate erratically
in the early phase, leading to poor convergence. As a result, although the obtained value is stabilized, it could
still be improved by running further iterations. This fact is more pronounced in Equation (12) rather than
Equation (13), given that a2 > 1 implies a rapid decrease in the step-size. Consequently, selecting the values to
assign to parameters a1 and a2 is a difficult task, with direct influence on the obtained results. This could be
facilitated if a good initial estimate for the dual variable vector λ0 is available, that is, if q(λ0) is already close to
the solution of the dual problem.

Therefore, we can conclude that it is an intrinsically lengthy (experimentation-based) heuristic
process that is highly dependent on the user’s experience. Precisely to mitigate this scenario, a new
algorithm will be proposed next.

5. Proposed Adaptative Algorithm

When applying subgradient methods, the existence of good estimates for the multipliers and
careful tune-up of the subgradient step-size are considered essential to improve the computational
effectiveness of the method. Subsequently, motivated by the previously exposed shortcomings from
the classical subgradient optimization approaches, an adaptative heuristic is proposed in order to
automatically update the Lagrange multipliers, thereby removing the need to rely on a user’s past
experiences or time-consuming trial-and-error tasks. This means that the step-size, sv, is automatically
determined (avoiding lengthy trial-and-error procedures) by the adaptative algorithm when solving
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the dual problem with a subgradient method. The different stages of the algorithm that lead to a dual
problem solution are illustrated in Figure 1; subsequently, the rationale behind them is detailed below:

(1) define the initial step-size, s0 = 1, and choose an initial value for the dual variable vector, λ0;

then compute the initial dual function and subgradient values, q0
(
λ0

)
and g0(pλ0), respectively;

(2) update Lagrange multipliers according to Equation (10);
(3) determine the new step-size as follows:

if qv(λv) > qv−1
(
λv−1

)
then

α ∈ v+
δ
(1)

else
α ∈ v−δ (1)

end, where,
v+
δ
(1) = {α1 : 1 < α < 1 + δ}

v−δ (1) = {α2 : 1− δ < α < 1}

and the step-size is given by
sv = αsv−1

(4) compute the current (iteration) dual function and subgradient values, qv(λv) and gv(pλv);
(5) if the termination criterion is met:

a. terminate the algorithm;
else
b. proceed to the next iteration, v = v + 1;
c. return to (2);

end

Regarding the (above) adaptative algorithm, the following clarifications are made:
In (1) the initial dual variable vector positioning only impacts the convergence speed of the

subgradient method; thereby, it can be considered arbitrary. On the contrary, for the step-size
update expressed by Equations (12) and (13), this initial positioning benefits heavily from a nearby
optimum value (derived from past experiences or other heuristics) in order to guarantee the method’s
performance, thereby translating an important advantage of the proposed strategy.

In turn, stage (3) depicts the original step-size update mechanism, where the rationale behind it
is to dynamically update the step based on the dual function value, i.e., if this value improves then
the step should be augmented; in contrast, if this value does not improve then the step should be
diminished. Moreover, to prevent a large step-size increasing the distance between the new point
and the optimum value, this step-size should be increased smoothly; this fact is less sensitive when
reducing step-size. Additionally, it was found that the ideal domains for variables α1 and α2 are
[1.01, 1.05] ⇒ δ = [0.01, 0.05] and [0.83, 0.95]⇒ δ = [0.05, 0.17] , respectively.

Lastly, the stop criterion mentioned in (4) is traditionally run a specific number of iterations, which
was also the case in this work.
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Figure 1. Flowchart of the proposed adaptative algorithm.

6. Numerical Results

The behavior of the subgradient method is analyzed in this section. The step value is updated
according to the adaptive algorithm, proposed in Section 5, and then benchmarked against a classical
approach. The step-size is updated using Equations (12) and (13) and, consequently, the Lagrange
multipliers. The software used in this work was written in Fortran using the development environment
(IDE) Microsoft Visual Studio ®.

As previously mentioned, the unit commitment (primal problem) corresponding to the solution
of the Lagrange dual problem does not always lead to a feasible solution. As such, the average
subgradient norm, ‖g(pλ)‖/K, is defined as a quantitative metric of how a solution is accurate in
terms of the primal problem. This means the lower the value, the closer we will be to a good solution,
and typically a value on the order of 0.5% of the peak load typically means that a good solution to the
primal problem was found.

The data employed in this work concern the real short-term hydro-thermal coordination problem
that the main Portuguese electric utility companies face. Data include all generation parameters and
auxiliary variables, i.e., a large-scale study comprising six thermal power plants and 26 hydro power
plants (amounting to over 80 individual generation units), which serve the majority of the Portuguese
electric power demand. Two different case studies will be considered, diverging over the selected
weekly periods, size and characteristics of the system, as well as the economic strategies behind the
cost curves. Additionally, the specified parameters will be kept fixed for both case studies.
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6.1. Case Study I

For this case study, unit costs are the sole result from the associated generation costs, with no
other parallel costs. Consequently, both the evolution of the dual function q(λ) value as well the
evolution of the average subgradient norm ‖g(pλ)‖/K will be evaluated over the course of iterations.
Figures 2a,b and 3 show the evolution of the dual function value (left axis) and its step value (right axis).
Figures 4a,b and 5 show the evolution of the average subgradient norm. Figures 2a and 4a illustrate
the behavior of the subgradient method using a classical step-size update, given by Equation (12). In
the same fashion, Figures 2b and 4b illustrate the behavior when using Equation (13). Lastly, the new
adaptive algorithm results are shown in Figures 3 and 5.

Energies 2020, 13, x FOR PEER REVIEW 9 of 19 

 

reducing step-size. Additionally, it was found that the ideal domains for variables ߙଵ and ߙଶ are ሾ1.01, 1.05ሿ  ⟹ ߜ = ሾ0.01, 0.05ሿ and ሾ0.83, 0.95ሿ ⟹ ߜ = ሾ0.05, 0.17ሿ, respectively. 
Lastly, the stop criterion mentioned in (4) is traditionally run a specific number of iterations, 

which was also the case in this work. 

6. Numerical Results 

The behavior of the subgradient method is analyzed in this section. The step value is updated 
according to the adaptive algorithm, proposed in Section 5, and then benchmarked against a classical 
approach. The step-size is updated using Equations (12) and (13) and, consequently, the Lagrange 
multipliers. The software used in this work was written in Fortran using the development 
environment (IDE) Microsoft Visual Studio ®. 

As previously mentioned, the unit commitment (primal problem) corresponding to the solution 
of the Lagrange dual problem does not always lead to a feasible solution. As such, the average 
subgradient norm, ‖݃(݌ఒ)‖/ܭ, is defined as a quantitative metric of how a solution is accurate in 
terms of the primal problem. This means the lower the value, the closer we will be to a good solution, 
and typically a value on the order of 0.5% of the peak load typically means that a good solution to 
the primal problem was found. 

The data employed in this work concern the real short-term hydro-thermal coordination 
problem that the main Portuguese electric utility companies face. Data include all generation 
parameters and auxiliary variables, i.e., a large-scale study comprising six thermal power plants and 
26 hydro power plants (amounting to over 80 individual generation units), which serve the majority 
of the Portuguese electric power demand. Two different case studies will be considered, diverging 
over the selected weekly periods, size and characteristics of the system, as well as the economic 
strategies behind the cost curves. Additionally, the specified parameters will be kept fixed for both 
case studies. 

6.1. Case Study I 

For this case study, unit costs are the sole result from the associated generation costs, with no 
other parallel costs. Consequently, both the evolution of the dual function (ߣ)ݍ value as well the 
evolution of the average subgradient norm ‖݃(݌ఒ)‖/ܭ will be evaluated over the course of iterations. 
Figure 2a,b and Figure 3 show the evolution of the dual function value (left axis) and its step value 
(right axis). Figure 4a,b and Figure 5 show the evolution of the average subgradient norm. Figures 2a 
and 4a illustrate the behavior of the subgradient method using a classical step-size update, given by 
Equation (12). In the same fashion, Figures 2b and 4b illustrate the behavior when using Equation 
(13). Lastly, the new adaptive algorithm results are shown in Figures 3 and 5. 

  
Figure 2. Evolution of the dual function value (blue plots), (ߣ)ݍ, and its step value (red plots), using 
the heuristics expressed by Equations (12) and (13) for (a) and (b), respectively. The following 
parameter values are imposed: (a) solid line, ܽଵ = 20, ܽଶ = 2; dashed line, ܽଵ = 10, ܽଶ = 1.5; (b) 
solid line, ܽଵ = 20, ܽଶ = 1.5; dashed line, ܽଵ = 5.5, ܽଶ = 1.05. 

1 100 200 300
Iterations

max q( )
q( )

0

1

2

3

4
a)

s

0 100 200 300
Iterations

b)

max q( )
q( )

0

1

2

3

4
b)

s

Figure 2. Evolution of the dual function value (blue plots), q(λ), and its step value (red plots), using the
heuristics expressed by Equations (12) and (13) for (a) and (b), respectively. The following parameter
values are imposed: (a) solid line, a1 = 20, a2 = 2; dashed line, a1 = 10, a2 = 1.5; (b) solid line, a1 = 20,
a2 = 1.5; dashed line, a1 = 5.5, a2 = 1.05.
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Figure 3. Evolution of the dual function value (blue plot), q(λ), and its step value (red plot), using the
adaptative algorithm, with the following parameter values: α1 = 1.05, α2 = 1.10.
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Figure 4. Evolution of the average subgradient norm, ‖g(pλ)‖/K, corresponding to the values of the
dual function represented in Figure 2 (classical step-size equations). (a) purple solid line, a1 = 20,
a2 = 2; blue dashed line, a1 = 10, a2 = 1.5; (b) purple solid line, a1 = 20, a2 = 1.5; blue dashed line,
a1 = 5.5, a2 = 1.05. The green dot-dashed line highlights the achieved minimum gradient norm value.
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Figure 5. Evolution of the average subgradient norm (purple solid line), ‖g(pλ)‖/K, corresponding to
the values of the dual function represented in Figure 3 (proposed adaptative algorithm). The green
dot-dashed line highlights the achieved minimum gradient norm value.

Regarding Figure 2a,b we can observe the following: (i) achieving convergence in more or less
iterations is heavily dependent on the choice of the different parameters; (ii) using a smaller initial
step-size increased the number of iterations needed to achieve convergence, maxq(λ) (dashed line);
(iii) the use of a slightly larger initial step leads to some oscillation, still, without compromising
convergence, represented by the solid lines; (iv) the step-size evolution is strictly decreasing, and the
rate of descent depends on the considered parameters.

With respect to the adaptive algorithm, the evolution of the dual function increases as the value
of the step increases, as shown in Figure 3, until a value is reached in the vicinity of the maximum
dual function value. From this point onwards, the step value decreases towards zero, but then again
it slightly increases whenever the dual function value does not improve compared to the previous
iteration. This dynamically adjusted (based on the dual function current value) step-size clearly
contrasts with the monotone evolution that occurs with the traditional step update formulation.

We can verify that, in all scenarios, the dual function maximum value was reached, and differences
reside in the number of iterations necessary to achieve convergence (which was relatively similar).
Nevertheless, the proposed algorithm shows a more robust approach when applying the subgradient
method since it did not require educated guesses to converge on an acceptable number of iterations.

Concerning the obtained minimum average subgradient norm, Figures 4 and 5 are presented,
where the secondary axis (magnified) provides a greater resolution regarding the convergence of each
error curve to its recorded minimum value. Additionally, to summarize the respective minimum values
achieved by the different step-size update mechanisms with different initial parameters, Table 1 is
also presented.

Table 1. Minimum average subgradient norm, ‖g(pλ)‖/K, and its corresponding iteration, achieved by
the different step-size update mechanisms for case study I.

Min ‖g(pλ)‖
K [MW] Iteration Step-Size Update Mechanism

22.97 186 Equation (12) with a1 = 20 and a2 = 2

24.59 299 Equation (12) with a1 = 10 and a2 = 1.5

22.49 261 Equation (13) with a1 = 20 and a2 = 1.5

23.74 298 Equation (13) with a1 = 5.5 and a2 = 1.05

20.95 297 proposed adaptative algorithm

As we can see in Figure 4a,b, both processes led to similar final results, with a (best) value close to
23 MW by employing both classical step-size update equations. Nevertheless, the first combination in
Table 1 ensured the fastest convergence (186 iterations). As for the proposed Lagrangian multiplier
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update algorithm, we noticed an improved (smaller) error of ~21 MW, which in this relatively curtailed
error scenario represents an improvement above 8%. These values represent approximately 0.53% of
the peak load, which, as mentioned, usually leads to a good solution to the primal problem. Besides,
note that once the dual function maximum value or its proximities are reached, the average subgradient
norm has not yet reached its minimum value, and it continues to oscillate up and down over the next
iterations. This can be explained since small variations in the multipliers can cause large variations in
the solutions in terms of the primal problem. Thus, emphasizing the fact that even when reaching
the maximum value of the dual function, we may not end up with the best solution in terms of the
primal problem.

Moreover, this average subgradient norm oscillation is further accentuated in the adaptative
algorithm since, in contrast to the previous two step-size update expressions, it does not have a strictly
decreasing behavior. This behavior can lead to a lower convergence speed and, therefore, constitutes
a limitation of the proposed adaptive algorithm. Notwithstanding, it is worth noting that a slow
convergence is preferred over a premature convergence.

Lastly, regarding the solution in terms of the primal problem (Figure 6), corresponding to the
solution of the dual problem for the (achieved) lowest average subgradient norm value. The same
was obtained using the adaptive algorithm, since is easy to understand from previous figures that
all primary solutions would be similar, so their presentation is redundant. The algorithm used in
solving the primal problem based on Lagrangian relaxation, as we saw earlier, does not lead to an
optimal solution. The obtained primal solution reveals the existence of Lagrangian duality. That is,
we can say that good results were obtained since the generation profile (solid green line) was almost
coincident with the desired load demand profile (dashed red line), but it did not match it completely.
After solving the dual problem, several methods have been used to look for feasibility [5]. However,
if we succeed when solving the dual problem, then we can also get, in terms of the primal problem,
a good solution. In fact, in some cases it is enough to carry out an economic dispatch of thermal
units to obtain a (close) feasible strategy, which is exactly what happens in the presented case study,
where the difference between the maximum generation capacity (dotted orange line) and the allocated
thermal unit generation (dashed magenta line) is sufficient to compensate for the mismatch (deviation)
between the load profile and the obtained generation profile.

Energies 2020, 13, x FOR PEER REVIEW 12 of 19 

 

results were obtained since the generation profile (solid green line) was almost coincident with the 
desired load demand profile (dashed red line), but it did not match it completely. After solving the 
dual problem, several methods have been used to look for feasibility [5]. However, if we succeed 
when solving the dual problem, then we can also get, in terms of the primal problem, a good solution. 
In fact, in some cases it is enough to carry out an economic dispatch of thermal units to obtain a (close) 
feasible strategy, which is exactly what happens in the presented case study, where the difference 
between the maximum generation capacity (dotted orange line) and the allocated thermal unit 
generation (dashed magenta line) is sufficient to compensate for the mismatch (deviation) between 
the load profile and the obtained generation profile. 

 
Figure 6. Solution in terms of the primal problem (case study I). In the upper portion the solid green 
and dashed red lines are almost coincident: the obtained generation profile and the load demand, 
respectively. Dotted orange line: maximum generation capacity of the affected thermal units. Dashed 
magenta line: thermal units generation profile. Dash-dot blue line: hydro units generation profile. 

6.2. Case Study II 

A second case study is considered with the purpose of further validating the proposed adaptive 
algorithm. For this scenario, the units’ cost curves result is not the sole result of the generation costs 
but is also from additional economic strategies. Furthermore, the peak demand power (delivered to 
the grid) was 45% higher than in case study I. Thus, it constitutes a case with greater dimensions, 
with extra hydro and thermal plants considered. However, the parameters required for Equations 
(12) and (13) and the adaptive algorithm are the same as those specified in case study I, so we can 
compare the performance between these different methods of updating the step-size value. 

In the same manner as in case study I, we started by analyzing the evolution of the dual function 
value, (ߣ)ݍ, and the correspondent step-size values. From looking at Figure 7a,b we can see that the 
maximum value of the dual function, using both classical step-size update equations, had not been 
reached. Indeed, when compared to the value obtained using the adaptive algorithm (Figure 8), this 
value falls short by roughly 0.7% for the parameters illustrated by the solid line, whereas for the ones 
represented by dashed lines an evident lack of convergence can be spotted. 

0 24 48 72 96 120 144 168
Hours

0

2

4

Figure 6. Solution in terms of the primal problem (case study I). In the upper portion the solid green and
dashed red lines are almost coincident: the obtained generation profile and the load demand, respectively.
Dotted orange line: maximum generation capacity of the affected thermal units. Dashed magenta line:
thermal units generation profile. Dash-dot blue line: hydro units generation profile.
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6.2. Case Study II

A second case study is considered with the purpose of further validating the proposed adaptive
algorithm. For this scenario, the units’ cost curves result is not the sole result of the generation costs but is
also from additional economic strategies. Furthermore, the peak demand power (delivered to the grid)
was 45% higher than in case study I. Thus, it constitutes a case with greater dimensions, with extra
hydro and thermal plants considered. However, the parameters required for Equations (12) and (13)
and the adaptive algorithm are the same as those specified in case study I, so we can compare the
performance between these different methods of updating the step-size value.

In the same manner as in case study I, we started by analyzing the evolution of the dual
function value, q(λ), and the correspondent step-size values. From looking at Figure 7a,b we can see
that the maximum value of the dual function, using both classical step-size update equations, had not
been reached. Indeed, when compared to the value obtained using the adaptive algorithm (Figure 8),
this value falls short by roughly 0.7% for the parameters illustrated by the solid line, whereas for the
ones represented by dashed lines an evident lack of convergence can be spotted.Energies 2020, 13, x FOR PEER REVIEW 13 of 19 
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Figure 7. Evolution of the dual function value (blue plots), q(λ), and its step value (red plots),
using heuristic expressed by Equations (12) and (13) for (a) and (b), respectively. The following
parameter values are imposed: (a) solid line, a1 = 20, a2 = 2; dashed line, a1 = 10, a2 = 1.5;
(b) solid line, a1 = 20, a2 = 1.5; dashed line, a1 = 5.5, a2 = 1.05, respectively.
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Figure 8. Evolution of the dual function value (blue plot), q(λ), and its step value (red plot), using the
adaptative algorithm, with the following parameter values: α1 = 1.05, α2 = 1.10.

In turn, the adaptative algorithm updates the step-size value dynamically and adapts to the
current dual function value. That is, as mentioned above, if the dual function value improves then
the step should be increased; on the contrary, if this value does not improve then the step should be
decreased. Thus, in Figure 8 we can see that the step value increased until the dual function value
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approached its maximum value; thereafter, the step value was modified accordingly, which enabled
convergence with the maxq(λ) in both case studies, and ultimately led to good primal solutions.

These results anticipate a higher minimum value of the average subgradient norm for the classical
update expressions, which inevitably compromises the solution in terms of the primal problem.
This effect should be particularly pronounced for the parameters represented by the dashed plots
in Figure 7a,b. Therefore, a clear contrast to the results from the first case is established, where the
maximum value of the dual function is relatively similar for the different mechanisms used to update
the Lagrange multipliers (as shown in Table 1).

As expected, this preliminary assessment is fully backed by examining the evolution of the average
subgradient norm, as shown below in Figure 9a,b, as well as in the summary Table 2, which presents
the respective minimum values achieved by the different step-size update mechanisms with different
initial parameters, represented by each individual error plot in Figures 9 and 10. The results reveal
sizeable minimum average subgradient norm values, even for the scenarios where the dual function
closed in on its maximum value (~99.3% of the maxq(λ)), presenting values of 318 MW and 317 MW,
respectively. These results differ from the ones achieved using the adaptive algorithm (Figure 10),
where a much improved ‖g(pλ)‖/K minimum value was recorded, 38 MW (~8.3 times smaller),
i.e., roughly representing only 0.64% of the peak power demand versus >5% with the classic heuristics.
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Figure 9. Evolution of the average subgradient norm, ‖g(pλ)‖/K, corresponding to the values of the
dual function represented in Figure 7 (classical step-size equations). (a) Purple solid line, a1 = 20,
a2 = 2; blue dashed line, a1 = 10, a2 = 1.5; (b) purple solid line, a1 = 20, a2 = 2; blue dashed line,
a1 = 5.5, a2 = 1.05. The green dot-dashed line highlights the achieved minimum gradient norm value.

Table 2. Minimum average subgradient norm, ‖g(pλ)‖/K, and its corresponding iteration, achieved by
the different step-size update mechanisms for case study II.

Min ‖g(pλ)‖
K [MW] Iteration Step-Size Update Mechanism

318.33 205 Equation (12) with a1 = 20 and a2 = 2

1889.21 33 Equation (12) with a1 = 10 and a2 = 1.5

317.17 75 Equation (13) with a1 = 20 and a2 = 1.5

1499.30 299 Equation (13) with a1 = 5.5 and a2 = 1.05

38.37 278 proposed adaptative algorithm
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Figure 10. Evolution of the average subgradient norm (purple solid line), ‖g(pλ)‖/K, corresponding to
the values of the dual function represented in Figure 8 (proposed adaptative algorithm). The green
dot-dashed line highlights the achieved minimum gradient norm value.

Furthermore, we can also notice that some of the parameters led to a fast but also premature
convergence when using traditional heuristics, contrasting with the slower convergence exhibited by
the proposed adaptative algorithm due to a more refined step-size update. Thereby, the inferences
highlighted for case study I are confirmed. Despite the significant improvement by several orders of
magnitude compared to the more modest improvement in case study I, this improved error value is
still slightly above the one obtained in the previous case study, which translates to added difficulty
when considering additional dispatch strategies. These characteristics will ultimately impact the task
of obtaining a feasible solution in terms of the primal problem. Nevertheless, the proposed adaptative
algorithm was able to converge to a good solution, and, in comparison, it will result in a smaller
duality gap. Besides, it reinforces the mentioned need to thoroughly adjust the control parameters or
rely upon educated guesses in order to achieve a good result when using classic heuristics versus the
proposed automated algorithm.

Moving on towards the primal problem solution, Figure 11 is presented, revealing a higher peak
demand as well as a larger usage of the thermal capacity in direct comparison to its counterpart in
case study I, Figure 6. Further, it can be noted that the hydro generation follows the load profile
on a smaller scale, and the hydro-thermal generation profile obtained moves further away from the
load profile. Thus, the economic dispatch of thermal units is not sufficient for the solution, in terms
of the primal problem, to be feasible. In other words, contrary to the first case study, the difference
between the maximum generation capacity (dotted orange plot) and the allocated thermal units’
generation (dashed magenta plot), illustrated in Figure 11, is insufficient to address the mismatch
between the load profile and the obtained generation profile. Additionally, we can see that around
1–3 h and 147–149 h the hydro generation registered a negative value, which is explained by a sporadic
period of power consumption (pumping) during an off-peak occurrence.

For this reason, it makes sense to present, for this case study, the mismatch between the load profile
and the obtained generation profile as illustrated in Figure 12, where we can observe the non-feasibility
after the economic dispatch for a few hours. This behavior was more significant during the last
considered day (between 144 and 168 h), which is a weekend day, reaching a maximum above 65 MW
at time k = 149 h. This translates a mismatch around 1% of the peak demand, and it is justified by the
limited availability of thermal generation (orange and magenta lines in Figure 11 almost overlapping
during this period). Nonetheless, on average, the primal problem mismatch never exceeded 0.5% of
the peak load demand.
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Figure 11. Solution in terms of the primal problem (case study II). In the upper portion are
almost coincident solid green and dashed red lines: the obtained generation profile and the
load demand, respectively. Dotted orange line: maximum generation capacity of the affected
thermal units. Dashed magenta line: thermal units generation profile. Dash-dot blue line: hydro units
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Figure 12. Primal problem solution mismatch: non-feasibility periods of the thermal units’
economic dispatch.

7. Conclusions

In this paper, we explored the numerical performance of a novel Lagrangian multiplier update
algorithm for short-term hydro-thermal coordination. The step-size update mechanism is a vital
component for these methods, and classic approaches are heavily dependent upon a user’s experience
and fine-tuning procedures, i.e., selecting the appropriate parameters. The proposed algorithm had
an important advantage of not requiring parameter choices based on experimentation, and it is
subsequently compared against two classical update expressions. After a results assessment of both
case studies, we could infer that the adaptive algorithm produced considerably improved dual problem
solutions, seen through the percentage gains in terms of average subgradient norm and the respective
ratio between the average subgradient norm and peak demand. This ultimately means an improved
upper bound for the primal problem solution. Moreover, for most hours it led to feasible primal
solutions, which in turn translates into more cost-effective dispatch decisions. The significance of the
obtained results is magnified, especially when considering the differences in data prediction, such as
the expected inflows.

These improvements proved the algorithm’s ability to dynamically adapt the step value according
to the dual function value. We can see that during the initial iterations, the step value is incremented
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until approaching the vicinities of the dual function maximum. From then onwards, the step evolves
dynamically and adapts to the current dual function value, allowing convergence to the maximum dual
function value and to the average subgradient norm, which translates to a feasible or a near-feasible
primal solution. On the contrary, when using the classical update step-size update equations, it is
necessary to rely on educated guesses or perform adjustments over the control parameters (as illustrated
by case study II), through a trial-and-error process, in order to obtain a solution similar to the one
achieved by the new adaptative algorithm.

Finally, we see that for a high-dimensional optimization problem, the computational burden is
not exaggerated and not dependent upon initial guesses, especially considering that a weekly unit
commitment is performed.
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Nomenclature

k discrete time-step (an hour)
i ith generation resource
K total number of hours
I total number of resources
Cik cost function associated with resource allocation i at time k
xik resource state i at time k
pik power output by resource i at time k
uik control (decision) variable for resource i at time k
Dk load demand at time k
m mth-type system capacity requirement
Rmi capacity contribution function associated with resource i for system capacity requirement of type m
Rreq

mk mth-type system capacity requirement in hour k
M total number of capacity requirement constraints
n nth cumulative constraint
Hn set of all resources constrained by nth cumulative constraint
Hni function of the contribution of resource i to the nth cumulative constraint
Hreq

n lower bound on the nth cumulative constraint
N number of cumulative constraints
Aik state function associated with each resource i at time k
Uik control variables (decision) universe for resource i at time k
X0

i resource i initial state
XK

i resource i final state
L Lagrange function
λ Lagrange multiplier vector associated with the load-balance constraint
µ Lagrange multiplier vector associated with the capacity constraints
γ Lagrange multiplier vector associated with the cumulative constraints
q(λ,µ,γ) Lagrange dual function
g subgradient of the dual function
v current iteration of the subgradient method
s step-size of the subgradient method
a1 control parameter of the classic step update heuristic
a2 control parameter of the classic step update heuristic
α1 control parameter of the novel adaptative step update heuristic
α2 control parameter of the novel adaptative step update heuristic
δ indirect upper and lower bound parameter of the control parameters α1 and α2, respectively
‖g(pλ)‖/K average subgradient norm
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8. Başaran Filik, Ü.; Kurban, M. Solving unit commitment problem using modified subgradient method
combined with simulated annealing algorithm. Math. Probl. Eng. 2010, 2010, 1–15. [CrossRef]

9. Marmolejo-Saucedo, J.A.; Rodríguez-Aguilar, R. A proposed method for design of test cases for economic
analysis in power systems. J. Appl. Res. Technol. 2015, 13, 428–434. [CrossRef]

10. Diniz, A.L.; Sagastizabal, C.; Maceira, M.E.P. Assessment of Lagrangian relaxation with variable splitting for
hydrothermal scheduling. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting,
Tampa, FL, USA, 24–28 June 2007; pp. 1–8.

11. Lopez-Salgado, C.J.; Ano, O.; Ojeda-Esteybar, D.M. Hydrothermal scheduling with variable head hydroelectric
plants: Proposed strategies using benders decomposition and outer approximation. In Proceedings of the 2016
IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 19–20 February 2016; pp. 1–8.

12. Rodrigues, R.N.; da Silva, E.L.; Finardi, E.C.; Takigawa, F.Y.K. Solving the short-term scheduling problem
of hydrothermal systems via lagrangian relaxation and augmented Lagrangian. Math. Probl. Eng. 2012,
2012, 1–18. [CrossRef]

13. Che, P.; Tang, Z.; Gong, H.; Zhao, X. An improved Lagrangian relaxation algorithm for the robust generation
self-scheduling problem. Math. Probl. Eng. 2018, 2018, 1–12. [CrossRef]

14. Kumar, R.; Garg, V.; Lal, B. A review paper on hydro-thermal scheduling. Int. J. Emerg. Technol. Comput.
Appl. Sci. 2013, 5, 522–526.

15. Hoseynpour, O.; Mohammadi-Ivatloo, B.; Nazari-Heris, M.; Asadi, S. Application of dynamic non-linear
programming technique to non-convex short-term hydrothermal scheduling problem. Energies 2017,
10, 1–17. [CrossRef]

16. Beltran, C.; Heredia, F.J. Short-Term hydrothermal coordination by augmented Lagrangean relaxation: A new
multiplier updating. In Proceedings of the IX Congreso Latino-Iberoamericano de Investigación Operativa,
Buenos Aires, Argentina, 31 August–4 September 1998; pp. 1–6.

17. Gil, E.; Araya, J. Short-Term hydrothermal generation scheduling using a parallelized stochastic mixed-integer
linear programming algorithm. Energy Procedia 2016, 87, 77–84. [CrossRef]

18. Fu, B.; Ouyang, C.; Li, C.; Wang, J.; Gul, E. An improved mixed integer linear programming approach based
on symmetry diminishing for unit commitment of hybrid power system. Energies 2019, 12, 833. [CrossRef]

19. Kounalakis, M.E.; Theodorou, P. A hydrothermal coordination model for electricity markets: Theory and
practice in the case of the Greek electricity market regulatory framework. Sustain. Energy Technol. Assess.
2019, 34, 77–86. [CrossRef]

20. Jian, J.; Pan, S.; Yang, L. Solution for short-term hydrothermal scheduling with a logarithmic size mixed-integer
linear programming formulation. Energy 2019, 171, 770–784. [CrossRef]

http://dx.doi.org/10.5370/JEET.2014.9.6.1882
http://dx.doi.org/10.1016/0142-0615(89)90029-X
http://dx.doi.org/10.1109/59.744490
http://dx.doi.org/10.1155/2010/295645
http://dx.doi.org/10.1016/j.jart.2015.07.009
http://dx.doi.org/10.1155/2012/856178
http://dx.doi.org/10.1155/2018/6303596
http://dx.doi.org/10.3390/en10091440
http://dx.doi.org/10.1016/j.egypro.2015.12.360
http://dx.doi.org/10.3390/en12050833
http://dx.doi.org/10.1016/j.seta.2019.04.012
http://dx.doi.org/10.1016/j.energy.2019.01.038


Energies 2020, 13, 6621 19 of 19

21. Mariano, S.J.P.S.; Catalão, J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Optimising power generation efficiency
for head-sensitive cascaded reservoirs in a competitive electricity market. Int. J. Electr. Power Energy Syst.
2008, 30, 125–133. [CrossRef]

22. Ghosh, S.; Kaur, M.; Bhullar, S.; Karar, V. Hybrid ABC-BAT for solving short-term hydrothermal scheduling
problems. Energies 2019, 12, 551. [CrossRef]

23. Farhat, I.A.; El-Hawary, M.E. Optimization methods applied for solving the short-term hydrothermal
coordination problem. Electr. Power Syst. Res. 2009, 79, 1308–1320. [CrossRef]

24. Basu, M. Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems.
Electr. Power Syst. Res. 2003, 64, 11–15. [CrossRef]

25. Nguyen, T.T.; Vo, D.N. Modified cuckoo search algorithm for short-term hydrothermal scheduling.
Int. J. Electr. Power Energy Syst. 2015, 65, 271–281. [CrossRef]

26. Basu, M. Improved differential evolution for short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst.
2014, 58, 91–100. [CrossRef]

27. Zhang, H.; Zhou, J.; Zhang, Y.; Lu, Y.; Wang, Y. Culture belief based multi-objective hybrid differential evolutionary
algorithm in short term hydrothermal scheduling. Energy Convers. Manag. 2013, 65, 173–184. [CrossRef]

28. Das, S.; Bhowmik, D.; Das, S. A Modified Grey Wolf Optimizer Algorithm for Economic Scheduling of Hydrothermal
Systems; Springer: Cham, Switzerland, 2020; pp. 669–677.

29. Farhat, I.A.; El-Hawary, M.E. Short-Term hydro-thermal scheduling using an improved bacterial foraging
algorithm. In Proceedings of the 2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, QC,
Canada, 22–23 October 2009; pp. 1–5.

30. Fakhar, M.S.; Kashif, S.A.R.; Ain, N.U.; Hussain, H.Z.; Rasool, A.; Sajjad, I.A. Statistical performances
evaluation of APSO and improved APSO for short term hydrothermal scheduling problem. Appl. Sci. 2019,
9, 2440. [CrossRef]

31. Nazari-Heris, M.; Babaei, A.F.; Mohammadi-Ivatloo, B.; Asadi, S. Improved harmony search algorithm for the
solution of non-linear non-convex short-term hydrothermal scheduling. Energy 2018, 151, 226–237. [CrossRef]

32. Takigawa, F.Y.K.; Da Silva, E.L.; Finardi, E.C.; Rodrigues, R.N. Solving the hydrothermal scheduling problem
considering network constraints. Electr. Power Syst. Res. 2012, 88, 89–97. [CrossRef]

33. Petcharaks, N.; Ongsakul, W. Hybrid enhanced Lagrangian relaxation and quadratic programming for
hydrothermal scheduling. Electr. Power Compon. Syst. 2007, 35, 19–42. [CrossRef]

34. Padmini, S.; Jegatheesan, R.; Thayyil, D.F. A novel method for solving multi-objective hydrothermal unit
commitment and sheduling for GENCO using hybrid LR-EP technique. Procedia Comput. Sci. 2015,
57, 258–268. [CrossRef]

35. Nayak, C.; Rajan, C.C.A. An evolutionary programming embedded Tabu search method for hydro-thermal
scheduling with cooling banking constraints. J. Eng. Technol. Res. 2013, 5, 21–32. [CrossRef]

36. Bento, P.; Pina, F.; Mariano, S.; do Rosario Calado, M. Short-Term Hydro-Thermal Coordination by
Lagrangian Relaxation: A New Algorithm for the Solution of the Dual Problem. Available online: https:
//knepublishing.com/index.php/KnE-Engineering/article/view/7093/12770 (accessed on 14 September 2020).

37. Catalão, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. A practical approach for profit-based unit
commitment with emission limitations. Int. J. Electr. Power Energy Syst. 2010, 32, 218–224. [CrossRef]

38. Ruiic, S. Optimal distance method for Lagrangian mulitpliers updating in short-term hydro-thermal
coordination—Power systems. IEEE Trans. Power Syst. 1998, 13, 1439–1444.

39. Habibollahzadeh, H.; Brannlund, H.; Bubenko, J.; Sjelvgren, D.; Andersson, N. Optimal Short-Term Planning
of Hydro-Thermal Power System—Part II: Solution Techniques. Available online: https://www.sciencedirect.
com/science/article/pii/B9780408014687500527 (accessed on 14 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijepes.2007.06.017
http://dx.doi.org/10.3390/en12030551
http://dx.doi.org/10.1016/j.epsr.2009.04.001
http://dx.doi.org/10.1016/S0378-7796(02)00118-9
http://dx.doi.org/10.1016/j.ijepes.2014.10.004
http://dx.doi.org/10.1016/j.ijepes.2013.12.016
http://dx.doi.org/10.1016/j.enconman.2012.04.006
http://dx.doi.org/10.3390/app9122440
http://dx.doi.org/10.1016/j.energy.2018.03.043
http://dx.doi.org/10.1016/j.epsr.2012.02.005
http://dx.doi.org/10.1080/15325000600815449
http://dx.doi.org/10.1016/j.procs.2015.07.480
http://dx.doi.org/10.5897/JETR12.040
https://knepublishing.com/index.php/KnE-Engineering/article/view/7093/12770
https://knepublishing.com/index.php/KnE-Engineering/article/view/7093/12770
http://dx.doi.org/10.1016/j.ijepes.2009.07.006
https://www.sciencedirect.com/science/article/pii/B9780408014687500527
https://www.sciencedirect.com/science/article/pii/B9780408014687500527
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Primal Problem 
	Lagrangian Dual Problem 
	Subgradient Methods 
	Proposed Adaptative Algorithm 
	Numerical Results 
	Case Study I 
	Case Study II 

	Conclusions 
	References

