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Abstract: The large-scale deployment of pervasive sensors and decentralized computing in modern smart
grids is expected to exponentially increase the volume of data exchanged by power system applications.
In this context, the research for scalable and flexible methodologies aimed at supporting rapid decisions
in a data rich, but information limited environment represents a relevant issue to address. To this aim,
this paper investigates the role of Knowledge Discovery from massive Datasets in smart grid computing,
exploring its various application fields by considering the power system stakeholder available data and
knowledge extraction needs. In particular, the aim of this paper is dual. In the first part, the authors
summarize the most recent activities developed in this field by the Task Force on “Enabling Paradigms
for High-Performance Computing in Wide Area Monitoring Protective and Control Systems” of the
IEEE PSOPE Technologies and Innovation Subcommittee. Differently, in the second part, the authors
propose the development of a data-driven forecasting methodology, which is modeled by considering
the fundamental principles of Knowledge Discovery Process data workflow. Furthermore, the described
methodology is applied to solve the load forecasting problem for a complex user case, in order to
emphasize the potential role of knowledge discovery in supporting post processing analysis in data-rich
environments, as feedback for the improvement of the forecasting performances.

Keywords: smart grids computing; knowledge discovery; power system data compression,
high-performance computing

1. Introduction

On-line smart grid operation asks for quickly identifying reliable decisions in a complex data rich, but
information-limited domain [1]. In this context, the data streaming generated by the network of pervasive
sensors distributed along the entire power system do not always provide smart grids operators with the
necessary information to react to external disturbances in the time-frames required to minimize their
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impacts. Even in the presence of fast computing algorithms aimed at converting data into information, the
smart grid operator must face the challenge of not having a clear picture of the information context and,
therefore, the obtained information cannot be deployed with any high degree of confidence [2].

To address this complex issue, the most promising research directions are oriented toward the
conceptualization of improved information processing paradigms and smart decision support systems
aimed at enhancing standard operating procedures. A set of interactive information services, which could
promptly provide the right information at the right moment to the right decision maker, are adopted based
on predefined grid conditions and static operating thresholds [3]. Advanced techniques and algorithms for
reliable power system data acquisition and processing, which should support semantics and content-based
data extraction and integration from heterogeneous sensor networks, should be developed in order to
effectively support the deployment of these services in modern smart grids [4]. The integration of these
computational intelligence-based tools in online smart grid applications, Knowledge Discovery, which is
the process of extracting features, complex relationships, and patterns from large heterogeneous datasets
generated by pervasive sensor networks and distributed information sources, is one of the most promising
enabling methodologies. The large scale deployment of Knowledge Discovery-based techniques allows
processing and classifying the large data-streams generated from various sources, which include grid
sensors, SCADA systems, and phasor measurement units, in order to build domain specific knowledge,
which can be discovered and shared. The latter process allows for converting data into information, and
actionable intelligence at different application domains. To this aim, novel computing algorithms aimed at
providing interactive tools for data management, storage, compression, and inference are necessary in
order to enable resource discovery, generating semantic metadata.

Armed with such a vision, in [5], formal methods for knowledge discovery from a large quantity
of data aimed at reducing the complexity of optimal power flow problems have been conceptualized.
The proposed knowledge-based paradigms allow for extracting complex features, hidden relationships,
and useful hypotheses characterizing the regularities in the optimal power flow solutions from historical
power system operation data. The actionable intelligence extracted by these paradigms is then used to
formalize the problem into a transformed domain, where the problem equations can be solved more
effectively because the problem cardinality is sensibly reduced, and the corresponding solutions can be
obtained more efficiently.

In [6], a big-data visualization platform for knowledge discovery from massive smart grid data
has been applied in the task of solving solving operation, control, and situation awareness problems.
To discover the hidden knowledge from the large volume of heterogeneous data streaming, an open source
cluster computing framework has been designed, and a high-speed communication architecture, which is
based on the Open System Interconnection model, has been designed to visualize and present the data to
the operators.

The role of knowledge discovery processes in real-time stability monitoring, online control, proactive
operation, and optimal planning of modern smart grids has been outlined in [7]. In particular, starting
from the analysis of the new challenges induced by the emerging elements characterizing modern power
system operation, this research work outlines the inadequacy of conventional analysis tools in effectively
addressing the main system operation problems, identifying the cutting-edge computational intelligence
techniques, and their potential role in solving these problems.

The important role that computational intelligence-based techniques can play in knowledge discovery
from smart grids data has been confirmed in [8], which conceptualizes a holistic distributed stream
clustering for decision support and data analytic in user-centric power systems. This holistic clustering
paradigm could be used to effectively solving several mart grid intelligent layer research problems, as far
as contingency analysis, asset management, and dynamic energy pricing are concerned.
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Although the effectiveness of these knowledge discovery-based paradigms have been successfully
assessed in the task of solving specific smart grid problems, their global integration in realistic decision
support systems requires the development of ontology middleware, which provides functionalities aimed
at facilitating operational data acquisition and handling in interoperable formats, enabling information
services through a coordinated process chain [9]. These functions can be obtained by processing
heterogeneous smart grids data-sets by ontology-based techniques, and smart reasoning system, which
enable access to the information content rather than keyword-based searches. This paradigm allows for
accomplishing knowledge discovery, providing decision support to smart grid operators by focusing on
making computing systems more closely interact at human conceptual levels, modeling the semantics of
the data, instead of just relying on the syntactic and structural representations. These features allow the
ontology middleware to become a flexible and extendable platform for knowledge management solutions
in smart grids.

According to the research directions identified by these papers, the Task Force on “Enabling Paradigms
for High-Performance Computing in Wide Area Monitoring Protective and Control Systems” of the IEEE
PSOPE Technologies and Innovation Subcommittee analyzed the open problems, the challenging issues,
and the most promising enabling technologies for knowledge discovery from smart grids data. The main
results of this analysis are analyzed in this paper, and the experimental results obtained on an complex
case study are presented and discussed in order to emphasize the potential role of computational and
cognitive techniques for situation awareness in smart grid applications.

2. Knowledge Discovery from Massive Data

The recent technological advancements in data storing and processing allow the growth of electronic
archives, coupled to a large and pervasive diffusion of online sensors, which transmit high frequency
information streams about the operation states of complex and distributed systems [10]. Online processing
of these massive data allows for improving the knowledge about the behavior of complex systems
characterized by large uncertainty sources, which make the deterministic modeling of the analyzed system
difficult [11].

Unfortunately, the massive increase of data volume has deteriorated the effectiveness of the traditional
approaches employed to extract useful information. Indeed, a large amount of data is not guaranteed to be
a reliable source of information, but in the majority of cases, the data need to be processed to reveal their
true intrinsic knowledge value [12]. Furthermore, the process of acquisition and storing data are related to
a certain cost in terms of equipment and storage technologies. For this reason, the extraction of the most
profitable information from them is playing a strategic role in modern complex systems analysis [13]. In
this context, the main objective of the data analyst is to develop strategies aimed at giving value to this
process, promoting reliable software and hardware architecture able to effectively perform this task.

For this reason, when the cardinality of heterogeneous data becomes too large for a complete human
management or traditional approaches, it is time for Artificial Intelligence (Al) to support analysts in
extrapolating reliable and useful information [14]. In this domain, Knowledge Discovery in large Database
(KDD) represents a strategic solution as it allows the identification of valid, novel, potentially useful, and
ultimately understandable patterns in data [15]. Valid, novel and potentially useful data or anything, such as
models or relation, represent an added value with respect to a certain aspect. Finding prediction models
or deeper insights about an economy or product system that allow a better management of them are
explicative examples.

This research is necessary because large datasets cannot be understood immediately, containing more
information than they appear to have. Trends, regularities, and patterns can be revealed only after a
complex procedure of data processing. In particular, the KDD process is an activity made of different
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interaction and retrieval steps, which requires the human action in certain phases. The process is commonly

confused with Data Mining, which is one of the KDD steps. The interactivity of the KDD process is related

to the crucial role played by humans in supervision and validation of the discovered information. Its

contribution is related both to its expertise with mining tools and its knowledge domain, which means the

ability to exploit the understanding of data to filter knowledge from irrelevant and incorrect data [15].
In particular, according to [15], the main steps composing the KDD process are:

e Definition of the KDD process goal from the customer point of view. Understanding of the domain
and of the a priori knowledge;

®  Selection of the target data from the available ones performing the KDD process;

¢ Data cleaning and preprocessing: it includes the basic operation of noise removal, the collecting and
merging procedures of samples, and the accounting of date and time information;

e  Data reduction and projection: the features of the samples are processed by adopting cardinality
reduction or feature selection techniques aimed at either reducing the set of data to the most relevant
feature or finding invariant transformation of data;

*  Goal matching of the KDD process to the choice of a particular data mining methods (e.g., clustering,
regression, classification, etc.);

¢ Data mining algorithm selection to find patterns in the data in consideration of the goal and
data available;

¢  Performing the data mining algorithm to search for patterns in data;

*  Mined pattern interpretation, it involves the possibility to visualize the results of mining and coming
back to the previous steps to adjust patterns or select a different algorithm to improve the results;

*  Knowledge consolidation, it consists of processing data in the most suitable form for either successive
KDD processees or visual report generation for the customer.

The data mining step is the core of a KDD process involving a repeated iteration of data mining
algorithms, where the kind of applied algorithm depends on the goals to pursue, where the latter can be
classified as verification and discovery. When the objective is simply validating the user hypothesis, the
goal is called ‘verification’, whereas, when it is necessary that the developed system will find new patterns,
the goal is called ‘discovery’. Furthermore, prediction refers to the following data mining tasks:

*  Prediction: the goal is the patterns development for the prediction of the behavior of certain features
given a forecasting horizon;

¢ Description: the goal is the patterns development aimed at presenting data in a more
understandable form.

Nevertheless, the described classification between the possible goals of data mining the boundary
between them is not sharp. Indeed, the description models could be employed also for predicting further
classification and vice versa. The data mining methods range between a wide spectrum of techniques,
where the employment of one or more methods depends on the considered objective. The canonical
classification considers the following family of methods [15]:

®  C(lassification: learning a function that maps a data to a certain class;

*  Regression: learning a function that finds a relation between an observed set of input-output data
discovering possible functional relations;

®  Clustering: grouping data in a given set based on their similarity, by identifying samples (or patterns)
with similar features;

®  Summarizing: finding compact representation of multi-variate data;
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* Dependency Modeling: learning model describing the dependencies; between variables in
probabilistic and graphical terms;

®  Change and Deviation Detection: learning model to find differences or strong deviation measured in
a flow process.

The outlined KDD process goals can be reached by the construction of specific algorithms, which are
characterized by a large variety of typologies, all decomposable in three key concepts [15]:

*  model representation;
e model evaluation criteria;
e search method.

In this case, model representation is the employed language to describe discoverable patterns and it
includes the data analyst knowledge about the assumption done related to the application of a certain
model. This is fundamental because too simplistic hypothesis about the process to study will lead to poor
results independently from the amount of data and training time.

The model evaluation criteria are the quantitative representation of how well a discovered pattern
meets the goal of the KDD process, where the case of predictive models is limited to evaluating the accuracy
of the estimated quantities with respect to the observed ones for each case. In the case of descriptive
models, the evaluation concerns assessment on the novelty, utility, and understandability of the fitted
model. Finally, once the models are selected and evaluation criteria fixed, the search method is aimed at
finding the parameters/family of models, maximizing the fixed objectives, and reducing the task to an
optimization problem. In particular, the employed data mining methods are classifiable in the following
families [15]:

*  Decision Trees and Rules;

*  Nonlinear Regression and Classification methods;
¢  Data-driven models;

®  Probabilistic Graphic Dependency models;

¢  Relation Learning Models.

Decision Trees are one of the most common methods employed in data mining for classification [16].
The goal of the method is to train a model for assigning a class to a sample by considering the values
of its features. The model is based on the partitioning of the domain in sub-domains by applying tree
branching. The process is extended to the class of regression problems when the values domain lies in
that of real numbers where the methods are called ‘regression trees’ [17]. Nonlinear regression is instead
based on developing predictive models, which combine basic functions, such as polynomial, sigmoid, and
spline [18]. The polynomial regression is one of the simplest approaches, and it aims at fitting a model
by using curves of order n > 2 (quadratic, cubic, etc.), while the spline approach aims at producing a
piecewise model in which each model is trained with only the value lying in a specified interval.

Artificial Neural Network (ANN) is the most representative class in the data-driven learning
domain [19]. ANNSs are based on parametric regression and classification models whose structure imitates
the behavior and the topology of biological nervous systems, in particular their connections, and where
parameters are estimated in a supervised fashion by means of input—output examples of the task to be
accomplished. In early traditional ANNSs, the number of layers is limited and they are also called shallow
neural networks. ANNSs can also be used in combination with fuzzy logic to implement fuzzy neural
networks that are able to deal with the uncertainty of data more naturally [20]. Some recent studies
considered the application of such networks to the prediction of load forecasting [21], where the robustness
of fuzzy logic to handle noisy and unreliable measures is exploited with the characteristic of ANNs to
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learn by means of numerical examples rather than by linguistic rules (as in the case of general fuzzy
inference systems).

As an extension of shallow ANNSs, deep ANNs have been proposed in the context of deep learning,
which finds a large application in solving complex classification tasks typically involving a huge amount of
data as in the case of image-based datasets and information processing [22]. Here, the word ‘deep’ stands
for emphasizing the learning process based on successive layer representation of data. In most cases,
the data transformation consists of hundreds of successive representation layers [23]. The enormous
data size increment has pushed the emerging of deep learning algorithms and architectures in many
power system applications. The most common architectures employed in the deep learning field is the
Convolutional Neural Network (CNN) [24], which has shown great capability to deal with large spatial
data. Many developed libraries, such as TensorFlow, Torch/PyTorch, and Theano, have been developed for
several programming languages, allowing a reliable application of deep learning for their specific needs
on CPU/GPU architectures. CNNs are largely employed in computer vision and for dealing with data
having spatial relationships. The name derives from the convolution mathematical operation, which is
employed in specific convolutional layers. The data processing in a CNN aimed at extracting progressively
features from sub-samples of the original data, which have to be arranged in an input tensor. According to
their capability, they have been strongly employed in spatial load forecasting applications such as in [25].

A special kind of ANN is the Recurrent Neural Network (RNN), which is capable of keeping the
memory of the past in an internal state while it incrementally processes data; for this reason, RNN has a
big potential for managing time series. It was developed based on the [26] proposal in the framework of
‘Reservoir Computing’, acquiring even more consideration in speech and text recognition due its capability
to consider all the dynamic process under study. In a basic RNN architecture, the output is generated by a
combination between the input data and a recurrent correlation. An RNN can be equivalently considered
as many feed-forward ANNs operating sequentially to supply outputs over the time sequence to predict.
Starting from randomized versions of shallow ANN architectures, as in the case of the Echo State Network
(ESN) [27], over the years, several advancements have been developed in order to overcome the RNN
unit limits in the deep learning field. The Long Short-Term Memory (LSTM) network is the most popular
approach to this end [28]. It is based on computational units whose basic structure is composed by a cell,
which keeps the memory in the unit, and three regulators or gates, which manage the information flow
inside the sequential units. They are called input, output, and forget gate, but they are not present in all
architectures. LSTSM is particularly suited to deal with the vanishing of gradient, a typical problem of
deep learning [29]. Furthermore, another type of RNN unit, called a Gated Recurrent Unit (GRU) unit,
has been developed in order to avoid overfitting issues, by increasing the forecasting accuracy as shown
in [30].

Among data-driven approaches to solve the regression/classification task, there are also
nonparametric models based, for instance, on Case Base Reasoning [31] and Nearest Neighbors regression
or classification [32]. One of the main critical issues in this kind of application is adopting a well-defined
metric for weighting the similarity between the stored examples with respect to the query sample properties.
Because of the increase in the amount of the databases’ cardinality, these kinds of methods often also
consider the support of techniques for cardinality reduction to avoid the so-called curse of dimensionality [33].

Probabilistic Graph models are employed for characterizing the dependency between variables,
where the variable dependencies are taken into account via graph structure. This approach has been
initially employed by considering categorical discrete variables, for it then to be successively extended
to continuous variables with Gaussian density. One of the most employed models is that, based on
Bayesian networks, where the graphical relation between variables is expressed in the form of conditional
probabilities, which can be assigned by the expert system, or by applying inference procedures, by learning
the parameters from the observed data [34]. Finally, the Relation Learning Models combines machine
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learning with the logic of first order, defining the Inductive Logic Programming. It is a form of investigation
aimed at finding patterns and discovering insights in data. It is based on the employment of clausal first
order logic as a representation language for both data and hypothesis [35].

Research and Application Challenges in Smart Grids

The KDD process allows for harnessing the effectiveness of big data in power systems for a large
number of research fields, where the possible applications range over the entire chain of power electric
infrastructure. In particular, the big data employment in power systems can be seen from a holistic point
of view, where the improvements produced by the discovered knowledge for each component of the
system allow for improving the reliability and flexibility of the overall system [36]. The main data stream
in power system operation is generated by Supervisory Control and Data Acquisition (SCADA), Phasor
Measurement Units (PMU), and Advanced Metering Interface (AMI) [10]. The SCADA system is widely
spread in power stations and power grids (transmission and distribution) and its measurement frequency
is on the order of few seconds. The system collects a wide range of variables depending on the monitored
system type.

The PMU is a measurement device operating at higher sampling frequency (30-60 measurements
per second), which allows for acquiring the voltage and current phasors synchronized with a common
time reference (e.g., provided by a Global Positioning System). These devices are mainly deployed
in transmission networks, where they represent the backbone of the WAMSs (Wide Area Monitoring
Systems) [37], and, more recently, in active distribution networks, where they are typically referred as
“micro-PMU” [38]. Moreover, AMI is a system interacting with multiple metering sources (electric, heat,
gas), which allows for collecting multiple heterogeneous variables in distribution networks. It is one of the
most promising enabling technologies for demand response-based frameworks by allowing interaction
with home devices, and IoT-based sensors [39].

The availability of different data sources, which characterize different subsystems in power grids,
causes a deep heterogeneity in the corresponding data streams. In particular, the latter can be classified as:

e Raw waveform data (voltage and currents, exchanged active, reactive power at bus, conductor
temperature, etc.);

¢ Preprocessed waveforms (voltage and currents, weather parameters over the grid);

. Status variables of system components;

*  Consumer consumption/distributed generation data;

e  Power Plants operation and energy bidding data;

¢ Electricity Market data.

To extract actionable information from this large set of heterogeneous data, many papers outline
the potential role of big-data based knowledge discovery in solving several power system operation
problems. Predictive maintenance, process and control optimization, analysis, and prediction of the
electricity-market prices have been solved by recurring to the KDD process. Furthermore, the spreading
of Variable Renewable Energy (VRE) power plants has extended the application of KDD in time and
spatial prediction of the wind /solar power profile for several forecasting horizons [40—42]. In addition,
the harness of visualization and data description in KDD process allows for introducing advanced and
exhaustive analysis of the forecasting performance, by adopting a rigorous comparison of metric and
statistical tests for accuracy and performance analysis.

The enhancement of accuracy in VREs forecasting is a clear example of the previously described
holistic approach, where a reduction in uncertainty in the power generation amount leads to benefits for
all systems, by reducing the cost related to the reserve procurement. Furthermore, KDD is useful in the
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estimation and forecasting of the water amount in hydroelectric power stations. In transmission networks,
the role of KDD is related to the detection [43], classification, and analysis of faults, detection of the most
sensitive substation to disturbances [44], impact of severe weather events on the network for resilience
study, and analysis of conductor temperature for Dynamic Thermal Rating (DTR) application.

Generally, the distribution networks still do not have the same density of installed sensors with
respect to the transmission networks. Anyway, the increasing in Distributed Generation (DG) and complex
load active in demand response require an effort in the improvement in the communication infrastructure
of the distribution grid [45,46]. In this sense, the role of KDD is enabling in extracting precious information
on the limited number of data stream available. An example is related to power system state and topology
estimation, where the graph configuration of the distribution network is identified by analyzing voltage
measure at buses in the presence of radial networks with active connections and switchable root nodes [47].

The KDD process supplies an important support in characterizing the load profiles in distribution
grids, especially for those hosting a large capacity of DG [48]. In particular, the Net Load characterization
(Demand minus DG) and its forecasting represents one of the greatest challenges in the management of
grid flexibility. A large support for the energy consumer profile is supplied by approaching the problem
with clustering techniques and auto-correlation analysis [49]. Finally, the KDD process is employed for
electricity market analysis by both power generation companies and customers in order to reveal useful
insights to be used in developing advance bidding strategies in electricity markets [50].

3. Cardinality Reduction and Data Compression

The large scale diffusion of sensor networks in Smart Grids represents a severe issue to address in
data storing and transmission, which affect many online applications, such as load flow studies, state
estimation, and contingency analysis. Despite the improvements in data transmission capabilities, these
massive amount of data streaming may cause bottlenecks in communication networks, which are not
infrequent in Smart Grids where the development of dedicated wide area communication networks is
not feasible due to the presence of large dispersed energy resources on both customers and distributed
generation side. In this context, the adoption of techniques for reducing the volume of data is crucial
to satisfy the time constraints in supplying the required data processing. Clearly, the typology of data
compression depends on the specific needs, such as the data type (numerical or categorical variables), if
the process is lossy or lossless, etc. [51].

In particular, the reduction process for the data compression can perform on: (i) features; (ii) samples.
The compression is performed by aging of the features of the processed dataset. Most employed
linear techniques are Factor Analysis (FC) and Principal Component Analysis (PCA), whereas nonlinear
approaches include Locally Linear Embedding (LLE), Isomap, and derivatives [51]. The aim of these
methods is transforming the original variables in new ones through a combination of them according to
the principles of the adopted method, where the result is the reduction of the data cardinality by deleting
the most irrelevant or redundant features. Further techniques, such as minimum Redundancy Maximum
Relevancy (mRMR) [52], aim to extract a subset of the variables from the original dataset. The extracted
variables have the highest mutual dependency with respect to a target in a dataset by using statically
information metrics.

Differently, sample reduction involves the following techniques applied to data mining:

¢ sampling;
*  squashing;
¢ clustering;

*  binning.
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The data sampling is basically the simplest form of sample reduction because it acts on a naive
extraction from the original dataset of a subset of samples by considering non-complex rules [53]. On the
contrary, data squashing produces artificial samples having the same statistical moments characteristics
of the original data [54]. Data clustering aims at grouping samples with common features. The number
of developed clustering is very wide with effective results in the task of classification. Binning methods
consist of transforming a continuous variable in a category where the approach ranges from the naive
method to the statically based.

In this domain, the Principal Component Analysis is one of the most employed methods for linear data
reduction [55]. It performs this through an unsupervised process that projects the data from the original
space into a lower dimensional one where the axes, called Principal Components (PCs), of this new space
are computed by combining the original variables. The first PC is oriented along the direction with the
maximum variance of data [18]. This mathematically corresponds to find the vector a = [al, e, an] cR"
which a generic data pattern x is projected onto, so as to maximize the variance of the projection z:

Z=mx1 4+ apky =alx. @)

It is proved that a value maximizing the variance of z is obtained when a is the eigenvector of var(x)
corresponding to its largest eigenvalue; thus, in the case of basic PCA, the algorithmic procedure is the
following for a given matrix X with dimensions [N, f], where N and f are the number of samples and
features, respectively:

1. Normalize the data matrix X so that each column of X will assume a null mean and unitary variance;
Compute the Singular Value Decomposition on X:

X =UDVT. )

where U is the orthogonal matrix of order N, D is a rectangular diagonal matrix with dimensions
[N, f], where the diagonal elements of D assume values dp >dy > ... >4d r and V is an
orthogonal matrix of order f;
3. The new variables in lower dimensional space are computed by choosing the first k < f columns of
matrix Z where:
Z =XV =UD. ©)]

There are many ways to choose the optimal number of PC, where one of them is to take into account
the percentage amount of variance in the chosen components where a value greater than 95% is
considered satisfactory.

PCA-based methods have been applied for reducing the computational burden in a large number
of smart grid applications. In particular, in [5], the PCA has been applied in order to solve power flow
and optimal power flow problems in large-scale power systems. In this study, a new formalization of the
system equations in the PCA domain allowed for reducing the problems cardinality by identifying the
hidden relations between the state variables obtained from the analysis of the historical problem solutions.
Furthermore, the application of PCA has proved to be effective in wide-area smart grid monitoring, where
it allows for developing effective online power system security analysis, by reducing the complexity of
the contingency screening process [56]. Other interesting application domains include the definition of
strategic bidding strategies for wind power generators, where PCA has been applied in the task of finding
hidden correlations between spatially distributed wind farms [57], and the development of spatial and
temporal wind power forecasting tools based on Knowledge Discovery from large datasets [41].
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If cardinality reduction does not supply adequate results, an alternative is represented by the feature
selection ones. Differently from these former, the latter does not transform the original variables, but they
subset the original dataset to the most relevant features according to a certain metric [29]. In literature,
the research started to explore selecting the best features in order to choose those that maximize the
mutual information between them and a target variable, and this is called maximum relevancy strategy.
Unfortunately, several works of literature have proved that the best selected features by maximum
relevancy do not guarantee the best prediction accuracy [58]. The reason for this is related to the neglecting
of feature redundancy. Considering this, a trade-off between lesser redundancy and greater maximum
relevancy was considered through the development of the minimum Relevancy Maximum Redundancy
technique [59] to overcome the maximum relevancy limit. Mathematically, applying the mRMR technique
corresponds to maximizing the following function:

1
max I(x;;0) — —— I(x;; x; (4)
xj€X—By ( I ) d—lxﬁ%ﬂil ( / l)

where X is a set of generic features, B is a set of the features already considered, 4 is the number of desired
best features, v is a generic target variable, I(.) is the mutual dependency function, and x; and x; a generic
feature of B and X, respectively. In (4), the left member in the parenthesis is the relevancy between the jth
feature and the target variable, whilst the right member is the redundancy between the jth feature and the
others of B.

4. Proposed Methodology

The Knowledge Discovery Process aims at extracting useful hidden information from the available
data. Usefulness stands for the quality of having something to supply an advantage to the user. In
particular, revealed information is useful when it is used either for gaining a direct knowledge from its
visualization or for being processed in a further information process in order to extract new knowledge.
For this reason, the proposed methodology aims at proving the capability to develop an accurate
full data-driven model based on KDP for multi-temporal forecasting. Hence, revealed information
is useful when it is processed for visualization or to be used for further data processing, as in case of the
prediction models.

When the number of time step ahead to predict increases, the challenge is to characterize the behavior
of the signal to predict in order to catch correlations for different periods. Hence, harnessing the hidden
information content of the available data is crucial for developing a good forecasting model, since raw
data are seldom suitable for an immediate effective use. For this reason, the proposed methodology, whose
workflow scheme is reported in Figure 1, includes: (i) a tool for transforming date and time information in
numerical predictor variables; (ii) a procedure of feature engineering; (iii) a tool for adapting the time series
prediction problem in a supervised learning one; (iv) a procedure of feature selection; (v) two predictive
model based on based on random forest and lazy learning; (vi) time rolling windows validation; (vii)
statistical analysis of the results.
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Figure 1. Visualization of the described methodology workflow.

1. Time referenced datasets about load consumption acquired by smart meters and customer substations
are precious information sources to extract in order to catch the user behavior profile. Generally,
electric load trajectory shapes assume similarity patterns according to the season, the day type
(workweek, weekend, and annual holidays), and load type (households, tertiary sector, industrial,
etc.). Electric prices, weather conditions, and spot social events complete the phenomena list affecting
the electric load. It is clear that much of this information such as date—time are available in string or
character format, needing adequate transformations to allow the application of regression models.
Given a date-time sample, a simple preprocessing step allows for extracting several useful codified
variables, including their type and timestamp, which are relevant to season, month, day of the week,
day of the month, and so on.

2. A raw time series matrix Y(, which is characterized by ny samples and ¢y variables (or features),
is often characterized by noise or chaotic behavior, which do not allow a clear understanding of
the signal trajectory over the time. Excessive volatility needs to be managed in order to have more
stable signals, which are able to catch the time series trend. For this reason, the application of
feature engineering moves toward this direction, by allowing the extraction of a large number of
hidden features and smooth signals from the original time series, producing the matrix Y, which
has dimensions [ng, ¢], with ¢ > ¢¢. In this sense, Table 1 summarizes the main smoothing variables
used in the literature and the corresponding variable. For the sake of clarity, matrix dimensions are
summarized in Table 2.

3. The supervised learning approach for time series forecasting requires a transformation of data, which
are usually arranged in a matrix form. Preparing data for this approach requires producing a couple
of input-output set for each sample ¢ (the jth rows of matrix Y), which considers a portion of the
predictor trajectories (how many samples in the past are considered as process memory) and the
forecasting horizon of the target variables (how many samples ahead we want to predict) (Figure 2).
The embedding procedure is a map between the samples of a time-series, which produces two
matrices P, whose dimensions are 1 and p, and R, whose dimensions are 77 and 7, called predictors
and target matrices, respectively, given an input matrix Y, once assigned an auto-regressive lag L, a
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delay d, and a forecasting horizon H. The parameter r is computed by the product between c, and H,
where ¢, is the number of variables in Y to predict. The delay is crucial since it shifts the most recent
available sample in the past at time . A rough indication about number of L can be chosen on the
basis of the signal auto-correlation analysis. P and R were consequently split into P, Py, Ry, and Ry,
which are the training and test set of the predictors and target matrices. For the sake of clarity, the
variable list is summarized in Table 2.

4. The previous steps cause a huge increase in the number of variables; indeed, L new predictors (the
lagged variables in the past) are produced for each starting variable (columns of Y). Unfortunately,
the consequence of this cardinality growth may cause collateral effects on the prediction accuracy,
since a large dimension of data causes the previously described “curse of dimensionality”, which
causes critical issues in the right operation of learning models. For this reason, techniques for
cardinality reduction, as PCA, and feature selection, as MRMR, were considered. As described, the
main difference between them is that the former produces a new set of uncorrelated variables in
the PCA domain, whilst the latter extracts the most correlated and lesser redundant variables with
respect to a target variable without transforming the original dataset. The reduced predictor training
and test matrices are defined as P;, and Py,.

5.  Two different machine-learning models such as Lazy Learning [60] and Random Forest
Regression [61] are assessed in this methodology. Random Forest (RF) origins arise from the bootstrap
aggregation (bagging), which is a technique aimed at reducing the variance of the prediction function
by averaging several prediction functions trained with random extracted samples from the dataset.
RF extended this concept to the features in order to build decorrelated trees, where a random selection
of variable is considered for each split. On the contrary, a Lazy Learning model as the K-Nearest
Neighbors is based on local regression, where the predictor training set is used to extract the nearest
neighbor samples given a query one. These latter and the corresponding targets are consequently
used for building a local learner that supplies the prediction. Since the nearest neighbors are chosen
by discriminating them considering a distance metric, the reduction of cardinality is crucial to reduce
the number of dimensions (features) to consider in the distance computation. According to the
multi-step nature of the problem, a direct strategy was applied, which, even if it requests a more
computational effort with respect to an iterative approach, is less subject to the error explosion.
Hence, the multi-step load forecasting problem was decomposed in H MISO problems, one for each
time step ahead.

6.  An exhaustive proposed methodology validation requires testing on a large number of cases in order
to appreciate the spreading of accuracy performance at the changing of training and test sets. For this
reason, a time-rolling window validation was employed to slice Y in the ith training and test sets,
according to a sequence of splitting points.

7. The model performance data were analyzed in order to assess the effectiveness of the proposed
methodology, where a Naive model was considered as a benchmark. The tests were performed by
progresswely increasing the forecasting horizons. The MSE was computed for both sample (jth row

of R ) and wth target variable over the considered forecasting horizon span according to the (5):

MsE® — | A (RO (o RO (o ’
SE; % 7 2 (R (=1 H+ 1] =Ry [f, (w—1)H + ] (5)
h
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where IA{Z(,i) is the predicted value matrix for the ith test case, w € [1, ¢;] is an indexing variable used
for slicing over the columns both Rz(f) and Rz(,l) in order to extract the forecasting horizon span for the
wth target, where 1, is the row number of RSJ) and RS,I):
1 Ny  Cr .

Yy MmseY ©)

NN-MSE() = e
Mo Cr i S wm '

8.  Aggregate data are performed by considering statistical tests as Friedman tests [62]. The aim is to
assess if the model performs differently or not. In particular, the Friedman test is a non-parametric
randomized block of analysis of variance, where the null hypothesis Hy considers all methods having
the same error distribution. The test does not assume any hypothesis about data distribution. If the
test rejects the null hypothesis, the Tukey-based Post Hoc test is performed in order to analyze the
difference between the performance of each couple of models. In particular, the Tukey’s test supplies
an upper triangular matrix where the elements are sorted by an accuracy rank. This information is
processed for producing useful visualizations for the choice of the best model.

t-4 t-3 t-2 t-1 t-8 t+1 t+2
-0.2- . -
n
= N T I
-0.4-
i d
0.5- 1 !
o -
1 2 3 4 5 6 7 8 9 10
t
H

Figure 2. Visualization of key parameters in time-series supervised learning.

Table 1. Most common smooth univariate features.

Feature Equation Notes
1 m t and z are the generic time sample

smoothing average ] Z Y[t —7,z] and raw variable, respectively

m+ v=0 m is the size of the rolling window
rolling upper bound max (Y[t —v,z])

r€[0,m]
rolling lower bound min (Y[t —,2])

ye[0,m]
1st order difference Y[t z] — Y[t —1,Z]

absolute 1st order difference |Y[t, z] — Y[t — 1,z]|

inf{x cR: p< F(x)} _ where X is the population of

p-quantile Y[t —v,z]Vy € [0,m]
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Table 2. Matrix relation in a Supervised Learning strategy for Time Series Forecasting.

Matrix No. of Samples No. of Variables Notes

(Rows) (Columns)
Yy no o raw signal matrix
signal matrix after feature engineering process
Y 1o c c=c¢o-(1479),
g is the number of features made per variable of Yj
Y () n c slice of Y used in the ith case test

' predictor matrix
140 ny p m=n—(L+H+d-1); p=(c—c)-L
where ¢, is the number of target variables

RO n , :aigit m;trlx
=¢, -
i training predictor matrix
t ! P ny =ng+ny

Pg) Ny p training predictor matrix
Rgi) ng r test target matrix
Rg,” ny r test target matrix

) reduced training target matrix
szr) ng f f << pis the number of selected features/Principal

Components by applying MRMR / PCA

PUZ,Z ny f reduced test target matrix

5. Case Study

The proposed methodology was tested in the task of analyzing a large dataset generated by a
pervasive smart meter network deployed on a large commercial user located in the south of Italy, whose
main features are summarized in Figure 3. In particular, the heat maps show the consumption level of
active/reactive power, and the power factor over the whole day considering a full month. The active
power heat map (above inset) reveals the highest consumption level is mainly related to time window
8-18. The central inset shows the reactive power level, which the observed pattern deflates from the active
power ones. This is confirmed by the below inset, which depicts the distribution of power factor over
the day.

The sample time resolution is 5 min for a period of one month. The considered dataset includes
the following time referenced measurements: apparent [kVA], active [kW], and reactive [kVAR] three
phase power, line current [A], and phase—voltage [V], and Total Harmonic Distortion [%] for each phase.
The date and time column was decomposed into day of the week (0-6), of the month (1-30), in hours
and minutes. The target variable is the active power for an assigned forecasting horizon. Furthermore,
according to the data, the time resolution at the 1 h forecasting horizon corresponds to 12 steps ahead.
The simulations were performed on an Intel®17-9700 CPU, by running a single core instance of R.
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Figure 3. Visualization of the analyzed utility distinctive features.

Two case studies, named ‘A" and ‘B’, were conducted on the prediction of three-phase active power.
In particular, case A analyzed three forecasting horizons H = {12, 72, 144}, which are equivalent to 2, 6,
and 12 h ahead; for the sake of conciseness, the case study set-up was depicted in Table 3 with time
resolution of 5 min. Several forecasting horizons are chosen for assessing the methodology and accuracy
performance at the increasing of the different forecasting horizon. The considered values are related to the
most frequent time constraints for the submission of offers in electricity markets considering the possibility
for the utility to participate in energy/ancillary services markets. Clearly, this kind of forecasting may
be used to manage the utility, to schedule several activities considering external needs, such as to avoid
system stress conditions caused by huge load levels. For each forecasting horizon, the raw data were
processed according to the described pipeline.

The raw dataset Y( was normalized and smooth variables were computed for each dataset variable
for different lag time adding them to the available variable set. According to a generated splitting point
set, a subset of Y(?) is extracted in order to be transformed in the predictor and target matrices P() and T(*)

through the embedding procedure. Each one of these matrices was consequently split into Pgi) Pz(,i), Tgi),

Tgi), which are the training and test sets of the predictor and target matrices.
Since it is not reasonable that all predictors have the same information, PCA and MRMR were
considered to reduce the dataset to the most meaningful variables. As shown by preliminary results, we
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selected the MRMR since PCA has shown a reduced capability to reconstruct the predictor matrix test
set in the presence of high noisy data, reducing the prediction accuracy. Unfortunately, the adoption of a
direct prediction strategy has required the production of a number of models equal to the time steps ahead
to predict. Consequently, MRMR had to be performed the same number of times in order to find the most
correlated predictors to the /ith time step ahead. For this reason, a sub-optimal solution was to apply the
MRMR only one time between the predictors training matrix Pgi) and the nearest hth time step ahead to
the half width of the forecasting horizon, where the optimal number of selected features was chosen by a
preliminary analysis.

Once the f most meaningful predictors were selected, the training set matrices were processed by
supervised learning models to train them. In particular, Random Forest, Lazy Learning, and Naive were
compared. The Naive models supply each prediction over the forecasting horizons by averaging the
available samples according to (7):

-1
Y[t ] = ;gz Y[t — H—k 1] Vh € [1, H] @)
k=0

where h is the hth time step ahead and g is the number of samples considered for computing the
expected value.

Table 3. Experimental setup: Case A.

Parameter Value Parameter Value

H {24,36,144}  d 0

L 5-H f 5

NN 5 Mo ~8800

o 20 c ~100

Cr 1 p (c—cr)-L
ny ~2000 Ny ~4-H

Ntw Ny

The case study B changes the resolution of the described data from 5 min to 30 for reducing both the
high volatility of the time series, which is shown by Figures 2-5 and the computational costs. In particular,
the tested forecasting horizons are 2, 3, 6 h, which correspond to H = 4, 6, 12, and where the experimental
set-up is summarized in Table 4. In this case, RF and Lazy Learning are performed by reducing the
predictor training set by using both MRMR and PCA. An important difference in the described framework
between case A and B is related to the choice of the best features by MRMR. Indeed, considering the
reduced computational cost deriving by the reduction of time resolution, the application of MRMR for
each step of the forecasting horizon span becomes feasible. Furthermore, this case study includes a
further Naive model (Naive 2), where the predicted value for a certain time of the day is computed by
averaging the occurred values for the same time in the days behind. This model was added because it
works differently from the traditional time series forecasting model in order to try to catch some difference
in the performance behavior.
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Table 4. Experimental setup: Case B.

Parameter Value Parameter Value

H {4,6,12} d 0

L 5 fMRMR.fPca 6.5

NN 5 no ~600

co 20 c ~100

Cr 1 p (c—c)-L
ny ~700 Ny ~4-H

Nty Ny

6. Experimental Results

6.1. Case A

According to the analyzed case studies, Random Forest and Lazy Learning have shown a better prediction
accuracy than the Naive model, especially for large forecasting horizons as proved by boxplot visualization in
Figure 4. Particularly, the Naive model performs similarly to more complex ones as shown by the left plot
of Figure 4. Indeed, when the signal is much noisier, it may compromise the entire data processing system,
decreasing the prediction accuracy of the more complex models, which try to catch relationship inside data.
Differently, the latter does not affect Naive since it neglects any form of data analysis.

Obviously, the Naive model predicts the forecasting horizon by performing a simple moving average
of the available past samples of the signal to be predicted, revealing the dramatic detriment of its
performance at the increasing of forecasting horizon as shown in Figures 5 and 6. In particular, these latter
show the actual and predicted load trajectories for two samples of the forecasting horizon span, where the
volatility of the signal is well highlighted by the current signal trajectories (red lines).

The computational burden rises linearly at the increasing of the forecasting horizon, where the
maximum waiting time is 3 min for predicting a 300 time sample test target matrix with a 12 forecasting
horizon span per time sample. Each time sample ahead was predicted by applying a direct strategy for
both Random Forest and Lazy Learning models. According to the set-up of rolling window, the number of
test cases are 4, b, and c for 2, 6, and 12 h ahead case studies, respectively.

02 hours 06 hours 12 hours

0.20-

0.15-
w model
w
=010- &3 Lazy
= — Maive
= : T BS RF

0.05- T T

o E : 1 :
0.00- = '

Lazy Naive RF Lazy Naive RF Lazy Naive RF
model

Figure 4. Visualization of MM-MSE at the changing of Forecasting Horizon.
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Figure 5. Visualization of actual (ytest) and predicted load trajectories for a 6 h forecasting horizon.
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Figure 6. Visualization of actual (ytest) and predicted load trajectories for a 12 h forecasting horizon.

6.2. Case B

The case study B is focused on comparing the performance of PCA and MRMR in forecasting
applications. In particular, their effectiveness appears related to the type of coupled machine learning
algorithms as shown in Figure 7. Indeed, the PCA performs well in combination with Random Forest,
whereas the combination of PCA with Lazy Learning shows the worst performance for all forecasting
horizons. It is interesting noting that the MRMR-based model better performs than any PCA-based
model. These results are confirmed by observing the trajectories for the considered forecasting horizon
(Figures 8-10).
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Figure 7. Visualization of MM-MSE at the changing of Forecasting Horizon.
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Figure 8. Visualization of actual (ytest) and predicted load trajectories for a 2 h forecasting horizon.
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Figure 9. Visualization of actual (ytest) and predicted load trajectories for a 3 h forecasting horizon.
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Figure 10. Visualization of actual (ytest) and predicted load trajectories for a 6 h forecasting horizon.

The latter figures show the Lazy Learning-PCA lower accuracy than the others forecasting models
because it is unable to follow the true value (ytest). On the contrary, the employment of Lazy Learning in
combination with MRMR produces an accurate forecasting, where the actual and predictor trajectories are
often very close. The low-accuracy of PCA-based models may be related to the low capacity of PCA to
transform in the original domain new data, where Recursive PCA may improve the accuracy [63].

According to the workflow in Figure 11, the model performance aggregation is processed by
considering the Friedman’s test. Since for each forecasting horizon the null hypothesis is rejected, the
Tukey-based Post Hoc test for checking dissimilarities between each couple of models is performed.
In particular, as observed in Figure 11, the Post Hoc test outputs are fused in a heat map according to the
KDD principles. The latter has the models arranged according to the Post Hoc rank on both axes, where
each cell of the map is the result of Post Hoc test between two models. The first element of the rank is
arranged on the lower left corner. The green colored cell means that the model performs equally, whereas
the orange cell means that the model is statistically different. In particular, for H = 2 h, the MRMR-based



Energies 2020, 13, 6579 21 of 25

Lazy Learning model is the most accurate one, but its performance cannot be considered significantly
different from the second model in the rank, which is the MRMR-based Random Forest. The Post Hoc test
for H = 3hand H = 6 h does not show relevant differences with respect to H = 2 h. In conclusion, it is
clear that a similar visualization is effective because it allows a rapid understanding of the performance
differences between two models, supporting the decision maker in the analysis of the most suitable model.
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Figure 11. Visualization of a Post Hoc Test.

7. Critical Discussion

In particular, according to both methodology workflow description and the obtained results, the
main advantage of this framework is its generalization capability. Indeed, the authors similarly addressed
forecasting problems that applied to different environments such as in wind power forecasting [64].

Furthermore, as happens in every machine learning framework, one of the drawbacks is the prediction
accuracy, which depends on the training/validation set features. If out of knowledge patterns appear in
the validation set, it is highly probable that the forecasting accuracy will decrease. In this case, the decision
maker is supported by the KDD in the preliminary data-analysis steps, which allows for recognizing
possible seasonal cycles in the target profile. The latter allows for making a correct tune-up of the model,
by considering an adequate size of the training set or a certain number of smooth/lagged variables.

In particular, one of the potential limits is processing data evolving without a certain pattern over
the time. Indeed, in the case of utility load, where the consumption profile over the days assumes similar
schemes, the methodology works well also for high forecasting horizons since it not hard find correlation
between the predictor and the target over the time.

With the presence of high volatility data, a reasonable approach may be combined different models,
based on different learners or trained with different data features. In particular, adaptive ensemble
forecasting, where the forecasting is supplied by averaging the prediction of single learners according to
weights reflecting their local accuracy, may increase the prediction accuracy without recurring to complex
and time-consuming deep learning models.

8. Conclusions

In even more connected and liberalized power systems, the information volume exchange is
dramatically growing, causing the generation of massive data sets, which may deteriorate the effectiveness
of the traditional exploration and data mining tools in supplying useful knowledge to the power system
stakeholders. For this reason, we explored the current scenario about the employment of artificial
intelligence in smart grids, with particular interest to the decision support systems and data extraction.
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For this reason, we propose this review, which aims at characterizing the employment of artificial
intelligence in power systems, analyzing the main critical issues, and of the most relevant KDD-based
methodology in power systems, exploring their advantages and drawbacks. At the same time, we conduct
a critical analysis of a forecasting framework inspired by the KDD fundamental steps, analyzing it in a
data-driven load forecasting case study.

In particular, from the analysis of the literature, the Knowledge Discovery has emerged as a
fundamental tool in smart grid computing by allowing system operators to model the semantics of the
data, instead of just relying on the syntactic and structural representations, and to access the data resources
solving the heterogeneity problems. This could allow smart grids computing entities to closely interact
at human conceptual levels, providing functionalities for ontology management, query, and inference
services. In this context, the future research activities will be oriented toward the conceptualization of
an ontology middleware system, which processes real or near real-time data streaming generated by
heterogeneous data-sources, ontology-based services, and intelligent reasoning. In particular, they allow
for enabling a Knowledge Discovery process based on the information context instead of just keyword
based searches.

Furthermore, the second part of this manuscript, by analyzing a specific KDD-based methodology
for data-driven load forecasting, aims at analyzing its potential in a real case study, describing how the
KDD may improve the development of a decision support system. The conducted experimental analysis
allows for assessing the quality of the proposed KDD-based methodology for load forecasting, where the
obtained results clearly indicate the future research trends in this field.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AMI Advanced Metering Interface

ANN Artificial Neural Network

CNN Convolutional Neural Network

DG Distributed Generation

ESN Echo State Network

GRU Gated Recurrent Unit

KDD Knowledge Discovery Process

LSTM Long Short Term Memory unit

mRMR  Minimum Redundancy Maximum Relevancy
PCA Principal Component Analysis

PMU Phasor Measurement Unit

PSOPE Power System Operation, Planning, and Economics
RNN Recurrent Neural Network

SCADA  Supervisory Control And Data Acquisition
WAMS  Wide Area Measurement Systems
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