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Abstract: The prediction of phase transformation of biomass ashes is challenging due to the
highly variable composition of these fuels as well as the complex processes accompanying phase
transformations. The AFT (Ash Fusion Temperature) model was performed in Statistica 13.1 software.
This model was divided into three separate submodels, which were designed to predict the
characteristic ash melting temperatures for raw and modified biomass. It is based on the chemical
composition of fuel and ash as obtained using ash analysis standards. For the discussed models,
several coefficients describing multiple regression parameters are presented. The AFT model
discussed in this article is suitable for predicting ash fusion temperatures for biomass and allows for
the prediction of the temperature with an average error of <±70.05 ◦C for IDT; <±51.98 ◦C for HT;
<±47.52 ◦C for FT for raw biomass. For some of the additionally tested biomass, a value higher than
the average difference between the measured temperature and the designated model was observed
(<90 ◦C). Moreover, morphological analyses of the structure SEM-EDS for ash samples with and
without additive were performed.

Keywords: ash fusion temperature (AFT); biomass combustion; fuel additives; AFT statistic model;
prediction of ash temperature

1. Introduction

Complex physical and chemical reactions of the mineral matter take place during the biomass
combustion process, over which significant amounts of inorganic compounds are released.
These phenomena are still not well understood, despite extensive research and literature studies [1–7].
Ash deposits collected from different places in the boilers differ significantly in terms of their composition
and compounds [8].

Deposit formation, erosion and corrosion are at the same time occurring issues that are regarding
the quantity and composition of fuel mineral matter and frequently cause incorrect operation of the
combustion system and boiler efficiency decrease. The ash agglomeration might limit the heat transfer
and gas flow within the boiler and thus limit productivity and provide mechanical damages which may
stop further boiler operation. Two types of deposit formation phenomena can be recognized: slagging
and fouling. Slagging can be noticed within the high-temperature and refractory sections of the boiler
like chamber walls or other surfaces that are located in the radiant section of the boiler. It appears
as a result of radiative heat transfer, which is principally noted there and causes the occurrence of
molten ashes. Slagging decreases the heat absorption in the chamber and then leads to growth in
the furnace exit gas temperature. Whereas, fouling takes place in the furnace outlet and convective
heat transfer sections of the boiler. Consequently, there are two forms of deposits. The first one
is the high-temperature deposit (usually a result of slagging) which can appear where the flue gas
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temperature is in the range of 1300–900 ◦C. Slagging is accompanied by the generation of semi-fused
and sintered ash deposits. The second is the low-temperature deposit which can generally be a result
of fouling. This kind of deposit is related to the generation of powdery or gently sintered deposits.
Fouling occurs in sections where the flue gas temperature is between 900–300 ◦C [9–13]. The position
of these two kinds of deposition phenomena in the pulverized fuel boiler can be seen in Figure 1.

Figure 1. Slagging and fouling areas on the example of the PF boiler (Figure created based on [10,11]).

Biomass is a carbon-neutral fuel. Due to this, the exploitation of this kind of fuel brings several
advantages. On the other hand, agglomeration, slagging and fouling or chlorine corrosion are technical
issues that are associated during combustion or co-combustion of this type of fuel. For example,
in comparison with conventional fuel combustion, a decrease in boiler efficiency can appear. The high
content of alkali metals in biofuels (K and Na) can cause severe technical problems. In particular,
the high potassium content is considered to be the most negative. Due to the presence of alkali
metals in biomass, chlorine and silica, alkali silicate would be created with the presence of sulfur.
These created compounds are represented by a low melting and softening point (Table 1). Because of
this, the most serious and common problems that biomass boilers suffer from is rapid deposit formation
(mainly slagging) on the surfaces of boiler heat exchangers [5,13–16].

Table 1. Melting and eutectics points which occur during the combustion of biomass in power
boilers [17].

Compound Melting Temperature, ◦C Eutectics Eutectic Point, ◦C

ZnCl2 283 KCl-ZnCl2 230
PbCl2 489 NaCl-ZnCl2 262
FeCl2 673 KCl-FeCl2 355

ZnSO4 730 NaCl-FeCl2 370
KCl 775 K2SO4-ZnSO4-Na2SO4 388

NaCl 801 KCl-PbCl2 412
CrCl2 821 NaCl-PbCl2 415

Na2SO4 884 NaCl-CrCl2 437
NiCl2 1001 KCl-CrCl2 462
K2SO4 1076 KCl-NiCl2 508
CaSO4 1400 NaCl-NiCl2 560
PbSO4 1170 KCl-NaCl 657
ZnCl2 283 KCl-ZnCl2 230
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Commonly, the ash deposition process can arise through four mechanisms: inertial impaction,
condensation, thermophoresis, and chemical reactions [18,19]. The first of them (inertial impaction)
occurs when particles are bigger than 10 µm. Because of adequate inertia, these particles follow
the gas flow and during this, can hit the heat transfer surfaces by inertial forces. The second is the
condensation process, which can appear when vapors pass across the cool surfaces. During this
mechanism, they condense on already deposited particles or surfaces with a colder temperature in
comparison to the gas flow. Next, the thermophoresis is related to the local temperature. This process
takes place when particles are transported because local temperature gradients cause the movement
of the particles. Finally, chemical reactions involve heterogeneous reactions between gas species
and deposits. The most important chemical reactions which are connected with ash deposition are
sulphation, oxidation, alkali absorption and generation of eutectics [11,18–24].

The combustion of biomass fuels, which came from the agricultural sector or contaminated waste
materials intensify the ash-related trouble. There are some methods that have been found to reduce
these problems that appear during biomass combustion, such as fuel mixing, the use of additives,
and leaching out trouble elements [5,25–28]. One of these promising methods is using additives to
reduce boilers problems [25–32]. In the literature, there are many descriptions connected to materials
that have been inspected as reduction additives for boilers problems [25–28,31–36]. Mixing with fuel
aluminosilicate additives such as halloysite may be an answer for biomass usage challenges.

The prediction of phase transformation of ashes from the combustion process is a topic often
discussed by researchers around the world [37–41]. The estimation of the slagging ability of fuels
is used in power boilers, waste incineration plants, and gasification installations. The excessive
occurrence of hardly removable ash deposits reduces the heat exchange between steam and flue gases
as a result, leading to a decrease in boiler efficiency. Deposit formation is also associated with corrosion
and other technical problems. The easiest way to estimate the risk of slagging and fouling is to use the
AFT test (Ash Fusion Temperature test) and learn about the deformation temperature or the softening
temperature. Such models allow for estimating the behavior of ashes subjected to high-temperature
processes based on the chemical composition of ash and/or fuel. The prediction of phase transformation
of biomass ashes is challenging, due to the highly variable composition of these fuels, as well as the
complex processes accompanying phase transformations [6]. Until now, a model with high reliability
for biomass samples has not been developed. The existing models mainly use available databases,
such as [37,42,43], with the chemical composition of ash samples combined with experimental results
of phase transformations.

One of the first is the Seggiani model [37] successfully dedicated to predicting AFT (Ash Fusion
Temperature) for ash from coal combustion. The model was built based on multiple regression,
based on data containing 433 samples of coal ash and some biomass ash. This model calculates
the characteristic temperatures of phase transitions: IDT—the temperature of initial deformation
of ash, ST—softening temperature, HT—hemisphere temperature, FT—flow temperature and
Tcv—critical viscosity temperature for coal ash samples. The model is characterized by temperature
prediction with a standard error of less than 90 ◦C, using 49 independent variables.

The next one is a Holubcik model, also based on multiple regression to predict the characteristic
melting temperatures of biomass ashes with additives [38]. However, in this model, a small population
of N = 21 samples with nine independent variables was used, which may indicate the limited
applicability of this model for a wider range of biomasses. The standard error of temperature
estimation for the Holubcik model was below 70 ◦C.

For the prediction of phase transformations, models are also made based on neural networks,
such as the Miao model [39]. This model predicts softening temperatures ST based on the chemical
composition of 200 coal ash samples. In the best version, this model contains five variables and allows
ST prediction with an average error not exceeding 3.59%.

Another author, Yang [40], based his nonlinear model on a database containing 77 samples of coal
ashes. This model was built based on the SVM (Support Vector Machine) package from MATLAB®



Energies 2020, 13, 6543 4 of 21

software. This calculates the softening temperature ST for the tested samples with an accuracy of
86.7%.

Phase transition temperatures can also be determined based on thermodynamic equilibrium
calculations, often using the FactSage® software [41,44] for STA (Simultaneous Thermal Analysis)
and equilibrium thermodynamic calculations to predict characteristic fusion temperatures [41].
The predicted temperature of ash sample deformation is near the designated temperature T30 (30% of
the mass of the sample occurs in the liquid phase). In the described tests, the results differ by less
than 100 ◦C for straw and wood bark. By using the same model, the predicted temperatures of ash
deformation from miscanthus and beech trees differed by less than 200 ◦C. Thus, it can be said that the
model is sensitive to the type of biomass and the chemical composition of it.

The authors have not identified any other similar studies on the prediction of AFT (Ash Fusion
Temperature) using the model dedicated to halloysite modified biomass. Additionally, the authors
would like to point out the AFT model can be used as a productive tool in computational works
which can be performed by engineers for raw and modified biomass. This model can also be used for
necessary simulations in in the frame of the modern Industry 4.0 concept.

2. Ash Fusion Temperature Model

The AFT (Ash Fusion Temperature) model developed in this work was performed in Statistica
13.1. A software package containing statistical analysis using multiple progressive regression was used.
This model is divided into three separate models, which are designed to predict the characteristic
ash melting temperatures: IDT—initial deformation temperature, HT—hemisphere temperature,
FT—flow temperature. It is based on the chemical composition of fuel and ash as is the standard [45].
IDT, HT, and FT temperatures are dependent variables in the discussed models. The model calculating
shrink temperature SST was not made due to the incomplete database in this area. The regression model
was made at the significance level ofα= 0.05. For the discussed models (IDT, HT, FT), several coefficients
describing multiple regression parameters are presented, such as the F—statistical significance level by
Fisher–Snedecor test and p—corresponding probability level, R2—model determination coefficient,
and Se—standard error of estimation. The models are designed to predict AFT for biomass (raw and
modified using fuel additive). Additionally, the co-authors used artificial neural networks to predict
the same three biomass ash fusion temperatures. These results were presented separately in [46].

2.1. Fuel Database

To build the AFT model, a database describing 104 biomass samples of various types were taken
from [47]. This paper provides information on the chemical composition of biomass samples as it
collects data from available scientific references. Additionally, in the present study the fuel database
was supplemented with experimental analyses carried out in the external laboratory. All of the analysis
were performed in accordance with the official methodology that is established by the European
Standard Technology Committee. Each sample is characterized by a complete data set (complete
ash oxide analysis, AFT experiment results for IDT, HT, FT, sulfur and chlorine content in fuel).
Incompletely analyzed samples were omitted.

Additionally, the database was extended by four samples of biomass which were tested during
our own investigations (marked as BZ—herbaceous pellets, DM—miscanthus, DS—cereal straw,
SPK—wheat straw). Four samples of biomass without additive (BZ0, DM0, DS0, SPK0) and
four samples of biomass with the halloysite additive (BZ2, DM4, DS4, SPK4) were investigated
(“0”—without halloysite, “2”—2 wt.% of halloysite, “4”—4 wt.% of halloysite). Table 2 shows the
analyses of used fuels. Proximate and ultimate analysis results for fuels without additive were
carried out according to the international standards. In particular, proximate analysis was performed
according to standards for biomass fuels, such as PN-ISO 18134, PN-EN-ISO 18122, PN-EN-ISO 18123.
Ultimate analysis was carried out by the external laboratory by using a high-temperature combustion
method with IR detection. The LCV was determined by the calorimetric method according to PN-EN
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14918. Theoretical analyses for fuel-additive mixtures were performed from the individual as-received
fuel analysis and the halloysite additive analysis results. Additionally, major oxide analysis (performed
with the Thermo iCAP 6500 Duo ICP plasma spectrometer) and ash fusibility analysis (performed
according to CEN/TS 15370-1:2007), for investigated fuels, are shown in Tables 3 and 4.

Table 2. Results of proximate and ultimate analysis of investigated fuels.

Proximate Analysis wt.% (As-Received State)

No. BZ0 BZ2 * DM0 DM4 * DS0 DS4 * SPK0 SPK4

Moisture 9.20 9.30 10.20 10.30 11.70 11.80 13.60 13.70
Ash 3.83 5.83 3.86 7.86 9.13 13.13 4.73 8.73

Volatiles 68.11 66.55 69.21 65.99 61.12 58.03 63.44 60.34
Fixed Carbon 18.86 18.32 16.73 15.85 18.05 17.04 18.22 17.23

Ultimate Analysis wt.% (As-Received State)

C 43.34 42.34 43.34 41.67 38.98 37.01 39.69 37.75
H 5.38 5.25 5.38 5.17 4.85 4.60 5.03 4.78
S 0.09 0.09 0.09 0.09 0.11 0.11 0.08 0.07
N 2.68 2.62 2.68 2.58 0.76 0.72 0.47 0.76
Cl 0.08 0.08 0.08 0.07 0.38 0.36 0.15 0.38
Na 0.03 0.03 0.02 0.02 0.07 0.07 0.02 0.07
K 0.91 0.89 0.49 0.47 1.26 1.21 0.74 1.26
O 34.47 33.68 33.87 31.87 32.76 31.09 33.68 32.76

LCV (MJ/kg) 16.52 16.14 16.52 15.88 14.37 13.64 14.99 14.26

* Theoretical (calculated) fuel state is presented.

Table 3. Major oxide analysis of investigated ashes (as-received state).

Component/Fuel BZ0 BZ2 DM0 DM4 DS0 DS4 SPK0 SPK4

SiO2, wt.% 46.17 46.06 62.54 53.61 56.46 54.93 62.46 53.55
Fe2O3, wt.% 2.07 7.86 0.77 8.82 1.87 3.91 0.85 8.58
Al2O3, wt.% 4.92 13.48 1.05 14.64 4.21 13.40 1.26 13.18
Mn3O4, wt.% 0.31 0.36 0.09 0.26 0.07 0.12 0.22 0.34

TiO2, wt.% 2.51 3.15 0.08 1.19 0.22 0.58 0.10 1.22
CaO, wt.% 15.69 10.46 9.54 6.66 9.76 7.60 7.66 5.35
MgO, wt.% 4.33 2.98 1.52 1.08 2.90 2.26 2.21 1.64
SO3, wt.% 4.11 2.71 2.56 1.36 2.22 1.50 2.48 1.64

P2O5, wt.% 4.46 3.20 4.52 3.38 2.84 2.38 3.35 2.62
Na2O, wt.% 1.03 0.82 0.33 0.32 0.97 0.84 0.32 0.25
K2O, wt.% 14.22 8.72 16.94 8.61 18.40 12.36 18.97 11.53
BaO, wt.% 0.13 0.15 0.03 0.05 0.05 0.07 0.08 0.09
SrO, wt.% 0.05 0.04 0.02 0.02 0.04 0.04 0.02 0.02

Table 4. Results of ash fusibility experiments of investigated fuels.

Oxidizing Conditions

Temp. ◦C/ Fuel BZ0 BZ2 DM0 DM4 DS0 DS4 SPK0 SPK4

IDT 1100 1120 780 930 790 930 750 910
ST 1110 1230 940 1210 1080 1160 960 1200
HT 1130 1250 1170 1260 1150 1210 1070 1260
FT 1140 1260 1260 1270 1290 1260 1170 1280

Moreover, morphological analyses of the structure of ash samples with and without halloysite
were performed. Analytical samples with a particle size of <425 µm were prepared from the fuels
specifically tested in this work. Initially, samples of biomass fuels were crushed to a fraction of
<1000 µm in the LMN-240 knife mill, and then to a size <425 µm in the LMN-100 grinder. Mass doses
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of halloysite 2 wt.% or 4 wt.% were added to the biomass. The halloysite used in the research was
characterized by a particle size of <350 µm and was added in an as-received state. The mixing of
fuels with the addition of halloysite was carried out in a drum mixer. The sample homogenization
time was 2 hours. Analytical biomass with and without additive was ashed at 550 ◦C. The samples
prepared in this way were subjected to SEM-EDS microscopic analysis. The surface structure of the
samples was tested in a Zeiss Supra 35 high-resolution scanning electron microscope, equipped with
the Trident XM4 system by EDAX (EDS, WDS, EBSD) at a maximum accelerating voltage of 20 kV and
magnification up to 50,000×. The qualitative and quantitative analysis of the chemical composition
in the microareas of the tested sample surfaces was carried out with the use of EDS scattered X-ray
energy detection. A structural examination of the sample surface was performed with the use of
SE (secondary electron) imaging. The analysis included a raw sample of halloysite (HA-I–HA-VI),
samples from biomass combustion without the addition of halloysite (BZ0, DM0, DS0, SPK0) and with
the addition of halloysite (BZ2, DM4, DS4, SPK4). The results of the SEM-EDS analysis are presented
later in this article.

Finally, Table 5 shows the min and max values of individual ash and fuel components entering
the AFT model. The ranges of data entered are very wide—e.g., content of silica in the ash is in the
range of 0.00–94.48 wt.%, potassium content: 0.23–63.90 wt.%, phosphorus content: 0.00–40.94 wt.%,
sodium content 0.00–29.82 wt.%, sulfur content: 0.01–2.33 wt.%, chlorine content: 0.00–3.13 wt.%,
etc. This demonstrates the potentially wide applicability of the AFT model for biomass with different
chemical compositions, as well as for biomass with fuel additives.

Table 5. Min and max—content of individual ash and fuel components.

Formula Min Max

SiO2 (wt.%) 0.00 94.48
CaO (wt.%) 0.97 72.39
K2O (wt.%) 0.23 63.90
P2O5 (wt.%) 0.00 40.94
Al2O3 (wt.%) 0.01 25.02
MgO (wt.%) 0.19 38.22
Fe2O3 (wt.%) 0.00 36.27
SO3 (wt.%) 0.36 45.89

Na2O (wt.%) 0.00 29.82
TiO2 (wt.%) 0.00 21.96
S d (wt.%) 0.01 2.33
Cl d (wt.%) 0.00 3.13

d—dry state.

2.2. Basics of Multiple Regression

The multiple regression is one of many ways to match a linear function to empirical data.
The least-squares method is used in this regression, by means of which the regression line is selected
that the sum of squares of the distance for measurement points from the regression line is as small as
possible, this can be written as follows (1) [48]:

n∑
i−1

(yi − ŷi)
2 = min (1)

Through the application of this criterion, it is possible to choose practical structural parameters of
the regression model β0, β1. The multiple regression model is described by Equation (2) [37,38]:

Y = β0 + β1X1 + β2X2 + βnXn (2)
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where:

Y—dependent variable,
X1, X2, Xn—independent variables,
β0, β1, βn—structural coefficients, assigned to successive independent variables.

There are several assumptions in the regression model. The model assumes the linearity of parameters
and the stability of the relationship between the studied phenomena. Additionally, the random component
is a random variable with a normal distribution N (0, σ2) [48]. To verify the fit of the model to the
empirical data, the determination coefficient R2 is most often used. R2 is calculated from the following
Equation (3) [49]:

R2 =

∑n
i=1

(
ŷi − y

)2

∑n
i=1

(
yi − y

)2 (3)

where:

ŷi—the predicted value of the dependent variable;
y—the average value of the dependent variable y.

The numerator of the above formula defines the variability of ŷi and the predicted value, while the
denominator checks the variability of the observed values of yi. This means that the determination
coefficient R2 is a measure of matching the variable y to the predicted value. The R2 coefficient
takes values in the range of 0.0–1.0. The closer to 1.0, the better fit of the model to the empirical
data. However, using only R2 is not enough to assess the correctness of model prediction. A suitable
parameter is the adjusted determination coefficient R2

adj (4). It evaluates the number of significant
independent variables used in the model. The removal of irrelevant independent variables has the
effect of increasing the R2

adj ratio [50]:

R2
adj = 1−

(
(1−R2)(n− 1)

n−m− 1

)
(4)

where:

n—number of observations;
m—number of independent variables in the model excluding the constant.

However, this coefficient always takes values lower than R2. Another parameter describing the
model fit to the empirical data is the standard error, also called the standard deviation of the residuals
Se. It is a very popular statistical parameter and determines the average difference between measured
and predicted values. It is described by the following Equation (5) [51]:

S2
e =

∑n
i=1 ei

2

n− k− 1
(5)

where:

n—number of observations;
k—the average value of dependent variable y.

The next simple parameters verifying the correctness of model prediction include the absolute error
∆x (6) and the relative error δ (7). These parameters are useful when analyzing specific prediction results.

∆x = |x− x0| (6)

δ =
|x− x0|

x
·100% (7)
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where:

x—value from measurement;
x0—predicted value.

One of the basic methods of verifying the statistical significance of the multiple regression model
is the use of the F-Fisher—Snedecor test [52]. It consists of checking whether there is a relationship
between the dependent variable and the system of independent variables. The zero hypothesis H0
is tested for which the independent variables βn are 0 (H0: βn = 0) (hypothesis of no regression).
An alternative is a hypothesis H1for which the regression coefficients reach values different from 0
(H1: βn , 0), [53]. Next, the value of the F-Fischer–Snedecor test Femp is calculated from Equation (8);
the Fcrit value is read from the Fisher–Snedecor test table and they are compared [52,53]. If Femp > Fcrit,
then H0 must be rejected—the hypothesis of no regression. There is a linear regression relationship
between the dependent variable and the independent variables system. If Femp < Fcrit, then H0 cannot
be rejected. This would mean that the regression equation does not have a strong linear relationship.
If the value of p (test probability) is lower than the adopted level of statistical significance, the structure
of the model is correct and its assumptions are satisfied, the null hypothesis can be rejected. In the
designated model, the H0 hypothesis is a hypothesis of no regression [54,55].

Femp =

Sxy
2

SSy
·(n− 2)

SSy −
Sxy2

SSy

(8)

where:

SSx—the sum of squared deviations for the X (independent variable);
SSy—the sum of squared deviations for the Y (dependent variable);
Sxy—the sum of squared deviations for the X and Y characteristics (dependent and independent variable);
n—the number of freedom degrees.

2.3. Indicators

Mathematical indicators that are more commonly used in the literature for the prediction of fuel
slagging and fouling tendencies were compared. Despite the limitations related to these procedures,
they are constantly used to estimate the tendency of biomass fuels to form deposits. Finally, the AFT
model is based on several indicators selected from 103 tested independent variables. After all
considerations and calculations, 42 independent variables were chosen for IDT and HT, and 40 for
FT. The IDT, HT, FT indicators are presented in Table 6. Independent variables that have a significant
statistical impact (for which the probability of test statistics reached p < 0.05) are marked in red.

Below, there are indicators that have more complex equations which cannot be included in the
Equations (9)–(20). They were obtained from the literature [7,37–39,47,56]:

Dr =
CaO + MgO

SiO2 + CaO + K2O + MgO + Al2O3
(9)

Dix =
SO3 + Sd

Sd + SO3 + Fe2O3 + 100
(10)

fph =
CaO + MgO + K2O

SiO2 + Al2O3
(11)

fCMK =
CaO + MgO

K2O
(12)

SV =
SiO2

SiO2 + Fe2O3 + CaO + K2O + MgO
(13)
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R250 =
SiO2 + Al2O3

SiO2 + Al2O3 + Fe2O3 + CaO
(14)

B = Fe2O3 + CaO + MgO + Na2O + K2O + P2O (15)

A = SiO2 + Al2O3 + TiO2 (16)

BAI =
Fe2O3

Na2O + K2O
(17)

Rs =
B
A
·Sd (18)

Fu =
B
A
·(Na2O + K2O) (19)

Sr =
SiO2·100

SiO2 + Fe2O3 + CaO + MgO
(20)

Table 6. List of independent variables used in regression equations and structural parameters which
were assigned to them for IDT, HT, and FT models [7,37–39,47,56].

IDT HT FT

N = 92 β N = 92 β N = 92 β

Constant 3209.07 Constant 153.64 Constant 2307.76
(SiO2 + Al2O3)·K2O −1.35 K2O·SiO2 −0.17 Sr 1026.70

P2O5 −35.62 Fe2O3 158.02 (SiO2 + Al2O3) K2O −0.16
B/A·BAI 396.66 Na2O2 −0.67 Fe2O3 37.94
Na2O2 −0.66 SiO2·CaO 0.11 P2O5 −8.00

2·Sd/(K2O + Na2O) −1295.60 P2O5 0.20 Na2O2 −0.46
Fu2 −0.01 CaO2 0.20 SiO2·CaO −0.10

B/A·fph 0.33 B/A·BAI −32.31 CaO2 0.17
Fe2O3·CaO·K2O −0.50 Al2O3 47.73 Dix −6387.02

Fe2O3·MgO 6.73 Dix −9908.07 Fe2O3·CaO −1.94
R2502 −2993.99 (CaO + MgO)/Al2O3 1.68 Al2O3

2 −0.05
SiO2·Fe2O3·K2O 0.18 B/A·Sr −104.79 B/A·BAI 42.30

SiO2/CaO 27.96 K2O2 −0.22 Fe2O3·Al2O3 −0.09
Cld·Rs 9.72 MgO2 0.02 Fe2O3·MgO 6.19
B/A·Fu 0.40 B/A·fph −1.09 MgO −43.39

Dr −1785.53 Fe2O3·CaO −1.68 SV −2934.82
Fu −2.46 B/A·Dix 406.96 B/A·Sr −87.46

B/A·Sr 102.05 Na2O·(B/A) −3.96 B/A·Dix 375.20
CaO+MgO −53.80 SO3 75.32 Na2O·(B/A) −2.04

SV2 7604.73 Na2O 20.82 SO3 39.85
SiO2·Rs 0.10 Fu2 0.00 TiO2

2 −1.26
(SiO2 + P2O5 + K2O)/(CaO + MgO) −28.57 B/A 3.81 TiO2 −94.82

B 39.65 B/A·Fu −0.01 CaO −13.46
B/A·Dix 293.00 Fe2O3·MgO 1.50 (CaO + MgO)/Al2O3 1.81

Al2O3·CaO·K2O 0.12 CaO·MgO −0.26 Al2O3·CaO 0.02
B/A·fcmk 0.00 K2O·MgO 0.30 CaO·MgO·K2O 0.02

Na2O·(B/A) −1.23 Cld·Rs 19.62 (Al2O3 + SiO2)/(Na2O + K2O) −5.65
BAI·Fu −11.37 K2O·BAI −51.85 SiO2·Fe2O3 0.32

SiO2·CaO·K2O 0.06 Fe2O3·Al2O3 −2.06 SV2 1340.11
SV −7785.94 K2O·Fe2O3 −1.57 fph −18.00

exp(10−2
·SiO2·Al2O3) 0.00 K2O 31.22 K2O·TiO2 4.93

Fe2O3/CaO −429.15 SiO2
2 0.40 Fu 0.37

TiO2 −4.89 SV −615.34 K2O·SO3 −0.23
Dr

2 3363.29 Fe2O3
2 −1.27 Cld 2 7.54

Al2O3 + SiO2/(Na2O + K2O) −16.84 Al2O3 + SiO2/(Na2O + K2O) −14.49 P2O5
2 −0.34

Cld 40.41 Dr
2 693.36 K2O·BAI −24.06

P2O5
2 −0.26 Al2O3·CaO −0.21 Fe2O3·Al2O3 −1.41

exp(10−4
·SiO2

·Al2O3) −2071.35 Sd 2 −124.35 Fe2O3
2 −1.21

R250 4298.52 Sr 1015.75 K2O·P2O5 0.33
Al2O3·CaO −1.41 fph 7.61 MgO2 0.30
abs(B/A-1) −80.32 SV2 857.03 K2O·CaO −0.26

MgO2 −0.43 2Sd/(K2O + Na2O) 492.90
Al2O3 40.42 SiO2 + Al2O3 −33.15
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2.4. Model Limitations

To calculate IDT, HT, FT temperatures, complete oxide composition should be given and normalized
to 100 wt.% (SiO2 + CaO + K2O + P2O5 + Al2O3 + MgO + Fe2O3 + SO3 + Na2O + TiO2 = 100 wt.%),
as well as the sulfur content in the fuel in dry state Sd (wt.%) and chlorine content in dry fuel in dry
state Cld (wt.%). Below, the assumptions for model limits were described.

• The analytical biomass sample should be fired in a muffle furnace at 550 ◦C in accordance with
PN-EN ISO 18122: 2016-01 [57];

• Oxide analysis of the ash sample must be in accordance with the procedure described in [58] and
normalized to 100 wt.%;

• The content of individual ash components must be kept in the min/max range, which is given
in Table 5;

• Analysis of sulfur and chlorine content in the fuel must be in accordance with the procedure
described in [59] and given in wt.% of the dry matter content;

• The model calculates the characteristic fusion temperatures (IDT, HT, FT) of the ash sample
under the oxidation atmosphere in the temperature range 700 ◦C ≤ x ≤1500 ◦C (AFT experiment
range [45]); results outside should be rejected as unreliable.

3. Results and Discussion

3.1. Fuel Database—Morphological Analyses of the Structure for Ash Samples

Microscopic photos in various scales of 1, 2, 5, 10, 20, 100, 200, 500 µm depending on the size of
the tested material particles were taken and subjected to EDS analysis. Morphological studies of the
halloysite sample (six different photos were taken: HA-I÷HA-VI) indicate that the tested additive
takes the form of oval grains rather than platelets and nanotubes. Photos of the halloysite sample are
shown in Figures 2–7. Further on, Figures 8–11 present selected photos of DS4 and SPK4 samples on
the 1 and 2 µm scale (with the addition of halloysite).

In Figure 8, an area with a high content of halloysite particles was identified. On the other
hand, in Figure 9, the halloysite particle present in the ash of the SPK4 sample was marked in points.
The following photos (Figures 10 and 11) show images of DS4 and SPK4 samples in the 500 µm scale.
Based on the microscopic examination alone, it cannot be clearly defined whether the selected ash
grain is a halloysite particle. Only using EDS analysis, it is possible to determine the mass elemental
composition of the studied area. Thanks to which, knowing the appropriate ratios of elements in the
raw particle of halloysite and the reaction products with its participation, it can be identified and the
sorption capacity of halloysite can be determined; for instance in the case of alkali metals (K and Na)
or heavy metals. Tables 7–9 presents the results of the EDS analysis of the tested samples.

Figure 2. HA-I, SEM photo, point, 1 µm scale.
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Figure 3. HA-II, SEM photo, point, 1 µm scale.

Figure 4. HA-III, SEM photo, surface, 200 µm scale.

Figure 5. HA-IV, SEM photo, surface, 20 µm scale.
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Figure 6. HA-V, SEM photo, surface, 10 µm scale.

Figure 7. HA-VI, SEM photo, surface, 20 µm scale.

Figure 8. DS4-II, SEM photo, surface, 1 µm scale (an area with a high content of halloysite particles
was marked).
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Figure 9. SPK4-II, SEM photo, point, 2 µm scale (point subjected to analysis was marked).

Figure 10. DS4-I, SEM photo, surface, 500 µm scale.

Figure 11. SPK4-I, SEM photo, surface, 500 µm scale.
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Table 7. SEM-EDS analysis results for raw halloysite samples (HA-I÷HA-VI).

No. Samples HA-I HA-II HA-III HA-IV HA-V HA-VI

Photo Scale, µm 5 5 1 10 1 1

Scanned Area Point Point Surface Surface Surface Surface

OK 35.92 37.53 41.80 42.57 41.17 40.28
MgK 0.00 0.00 0.00 0.00 0.00 0.00
AlK 26.86 25.93 19.66 20.37 20.12 20.41
SiK 33.95 30.93 24.99 25.60 25.70 26.65
PK 0.00 0.00 0.00 0.00 0.00 0.00
SK 0.00 0.00 0.00 0.00 0.00 0.00
ClK 0.00 0.00 0.00 0.00 0.00 0.00
KK 0.00 0.00 0.00 0.00 0.00 0.00
CaK 0.00 0.00 0.00 0.00 0.00 0.00
FeK 3.26 5.61 11.68 9.83 11.31 11.26
TiK 0.00 0.00 1.87 1.62 1.71 1.41
NaK 0.00 0.00 0.00 0.00 0.00 0.00
Al/Si 0.79 0.84 0.79 0.80 0.78 0.77

Table 8. SEM-EDS analysis results for samples which were ashed at 550 ◦C (SPK0, SPK4, DS0, DS4).

No. Samples SPK0-I SPK4-I SPK4-II DS0-I DS4-I DS4-II

Photo Scale, µm 500 500 2 200 500 1

Scanned Area Surface Surface Point Surface Surface Surface

OK 32.33 37.87 35.74 36.40 35.08 37.31
MgK 1.90 1.70 0.82 1.89 1.80 0.97
AlK 1.93 6.90 21.04 1.88 5.66 16.35
SiK 24.13 26.40 26.73 26.26 25.84 21.67
PK 1.94 1.67 0.49 2.60 1.61 0.00
SK 0.97 1.03 0.00 1.29 0.86 0.00
ClK 1.38 1.21 0.00 1.40 1.54 2.07
KK 16.10 11.26 13.18 14.57 13.54 17.49
CaK 8.96 6.59 0.00 10.48 9.11 1.30
FeK 1.91 4.81 1.99 2.87 4.54 2.04
TiK 0.00 0.85 0.00 0.00 0.00 0.00
NaK 21.12 0.00 0.00 0.00 0.00 0.80
Al/Si 0.08 0.26 0.79 0.07 0.22 0.75

Table 9. SEM-EDS analysis results for samples which were ashed at 550 ◦C (DM0, DM4, BZ0, BZ2).

No. Samples DM0-I DM4-I DM4-II DM4-III BZ0-I BZ2-I BZ2-II

Photo Scale, µm 200 500 10 20 200 500 2

Scanned Area Surface Surface Point Point Surface Surface Point

OK 39.89 39.86 23.70 37.64 38.05 34.60 38.90
MgK 3.46 0.91 0.46 - 4.24 4.60 6.25
AlK 0.71 7.18 10.89 23.95 0.96 5.05 10.78
SiK 17.25 28.15 15.38 29.25 16.17 10.43 12.79
PK 2.89 1.91 1.38 0.00 2.73 2.83 2.77
SK 1.65 1.17 0.78 0.00 1.78 2.33 1.62
ClK 1.06 0.51 0.00 0.00 1.63 1.07 0.95
KK 17.18 8.53 8.43 4.76 18.59 15.92 13.28
CaK 15.56 6.88 1.68 0.00 15.17 17.80 10.59
FeK 0.00 5.07 35.23 2.35 0.00 4.09 2.08
TiK 0.00 0.00 2.08 2.05 0.00 0.91 0.00
NaK 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al/Si 0.09 0.26 0.71 0.82 0.08 0.48 0.84
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Untreated halloysite samples are characterized by the Al/Si ratio in the range of 0.79–0.84 (Table 7).
The tested samples showed the content of Fe in the range of 9.83 wt.%–11.68 wt.%, and Ti
1.41 wt.%–1.87 wt.% for the surface tests. On the other hand, based on the chemical formula
and the molar mass of the two basic reaction products of halloysite with KCl—i.e., kalsilite (KAlSiO4)
and leucite (KAlSi2O6)—for which the Al/Si ratios are 0.96 and 0.48, respectively, an attempt can
be made to identify the compounds formed with some degree of probability. Nevertheless, there is
also a possibility of misidentification of a molecule with a similar Al/Si ratio and derived from
other compounds present in biomass ash, such as anorthite (CaAl2Si3O8), gehlenite Ca2FeAlSiO7,
gismondite (Ca2Al4Si4O16 · 9H2O), metakaolinite (Al2Si2O5), Na–melilite (NaCaAlSi2O7) [6,7].

By analyzing the results in Table 8, for the SPK0-I sample (scanned surface), the Al/Si ratio was
0.08. However, for the SPK4-I sample (scanned area) it was 0.26. The increase in the Al/Si ratio is
due to the presence of halloysite in the sample. This growth trend is maintained for all other DS4,
BZ2 and DM4 samples compared to the samples without halloysite (DS0, BZ0, DM0). Changes in
the shares of individual elements for enriched ashes result from the dosing of halloysite to the fuel.
It is particularly important to determine the chlorine content in samples with and without halloysite
using EDS. Tables 8 and 9 show the results of point samples (SPK4-II, DM4-II, DM4-III) which were
identified as molecules of reaction products with halloysite for which the Al/Si ratio is in the range
0.96–0.48. No chlorine was found in these samples. On the other hand, for the image of the sample
area for the 1 µm scale (marked as DS4-II Figure 8) a significant Cl content was identified at the level of
2.07 wt.% (higher than for the 500 µm area—DS4-I, amounting to 1.54 wt.% and also higher than for
samples without halloysite DS0-I—1.40 wt.%). It can be concluded that the reaction of halloysite with
KCl was not completed, meaning that unreacted KCl, KCaCl3 or the chlorine content may come from
CaCl or NaCl, which were included in the scan area. Analyzing the chlorine content from photo BZ2-II
(point) from Table 9, which is 0.95 wt.% with a significant Ca content of 10.59 wt.% and K equal to
13.28 wt.%, and in the absence of Na, the presence of chlorine may be caused by KCl, KCaCl3 or CaCl.

It should also be noted that the results of the EDS analysis were normalized to 100 wt.% of the
mass, eliminating the determined carbon content from the carbon strip, which is used as a base for the
ash sample. Moreover, the presence of additional amounts of carbon element resulting from possible
unburnt carbon presence in the ash sample cannot be completely excluded.

3.2. AFT Model

The prediction of characteristic ash fusibility temperatures is a complicated issue due to the
complex processes occurring during combustion and the interaction of ash components between them.
It is possible to predict the phase transitions of ash from biomass, based on its chemical composition,
but only with a certain approximation. Table 10 shows the results for three separate models—IDT,
HT, and FT—which were prepared for the fuel database. For all models, the value of the statistics
made with the Fisher–Snedecor Femp test is in the range of 11.10–10.20 above Fcrit with probability
levels p < 0.05. Obtained R2 determination coefficients for IDT, HT, and FT are 0.907, 0.906, and 0.897,
which means that the variability of the model-dependent variables were explained in 90.7% for IDT;
90.6% for HT, 89.7% for FT.

Table 10. Summary of AFT regression results for temperatures: IDT, HT, and FT.

IDT HT FT

R multiple 0.952 R multiple 0.952 R multiple 0.947
R2 multiple 0.907 R2 multiple 0.906 R2 multiple 0.897

R2
adj 0.825 R2

adj 0.825 R2
adj 0.816

Femp (42.49) 11.12 Femp (42.49) 11.20 Femp (40.51) 11.10
p 4.98 × 10−14 p 2.68 × 10−14 p 1.74 × 10−14

Se 70.05 Se 51.98 Se 47.52
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In turn, the R2
adj parameter was obtained at the level of 0.825 for IDT and HT and 0.816 for FT,

which describes the influence of significant independent variables used in the model on the obtained
results of characteristic ash fusibility temperatures. Predicted temperatures IDT, HT and FT are
characterized by the following standard estimation errors: 70.05; 51.98; 47.52. One can conclude
that the use of the AFT model allows for the prediction of the temperature with an average error
of <±70.05 ◦C for IDT; <±51.98 ◦C for HT; <±47.52 ◦C for FT. The results of the IDT, HT and FT
models (which were presented in Table 10) describe the models with results which are out of the scope
of the AFT experiment (700 ◦C ≤ x ≤ 1500 ◦C). For models of IDT, HT, FT respectively, 12, 11 and
13 prediction results were out of range. Prediction results of characteristic fusion temperatures are
shown in Figure 12, where on the abscissa there are results from the experiment and, on the ordinate,
there are results of the predicted temperature using the model. After the removal of predicted values
outside the experimental range AFT 700 ◦C ≤ x ≤ 1500 ◦C, the determination coefficient R2 for IDT,
HT and FT was 91.7%; 91.4%; 90.7%. Then, the standard error of estimation Se was determined,
which for IDT, HT, and FT were, respectively, 48.62, 37.15, and 34.02 ◦C.

Figure 12. Experimental results of AFT against the temperature predicted by the model.

The AFT model is characterized by a more accurate adjustment to empirical data (high coefficient of
determination) and small standard estimation error compared to literature models [37–41]. The negative
features of the model include a small number of observations (N = 92) on which the model was created
with a large number of independent variables 40–42. This is mainly due to difficulties in finding
complete databases for biomass.

For the biomass studied in this paper, the results of the temperatures of ash phase transitions as well
as their predicted values using the AFT model were presented in Table 11. In some cases—e.g., DS0 and
SPK0 with IDT prediction—quite significant absolute errors of 88.5 ◦C and 77.4 ◦C were obtained.
They are higher than the average difference between the measured temperature and the designated
model (Se(IDT) = 70.05 ◦C). For the predicted HT temperature, SPK0 also exceeds the standard error of
51.98 ◦C. For the last projected HT temperature, values greater than the average difference between Se

values were determined for DS0, SPK0, and BZ2.
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Table 11. Measured and predicted AFT temperatures for biomass without and with the addition of halloysite.

IDT HT FT

Sample Observed
Value (◦C)

Predicted
Value (◦C) ∆x (◦C) δ (%) Observed

Value (◦C)
Predicted
Value (◦C) ∆x δ (%) Observed

Value (◦C)
Predicted
Value (◦C) ∆x (◦C) δ (%)

BZ0 1110 1051.40 58.6 5.28 1130 1083.80 46.2 4.09 1140 1144.03 4.0 0.35
BZ2 1230 1204.67 25.3 2.06 1250 1209.26 40.7 3.26 1260 1140.75 70.7 6.61
DM0 940 958.11 18.1 1.93 1170 1151.83 18.2 1.55 1260 1258.68 1.3 0.10
DM4 1210 1214.55 4.6 0.38 1260 1252.65 7.4 0.58 1270 1259.96 10.0 0.79
DS0 1080 991.54 88.5 8.19 1150 1128.97 21.0 1.83 1290 1226.38 63.6 4.93
DS4 1160 1156.90 3.1 0.27 1210 1202.70 7.3 0.60 1260 1277.12 17.1 1.36

SPK0 960 882.58 77.4 8.06 1070 1158.44 88.4 8.27 1170 1249.88 79.9 6.83
SPK4 1200 1249.10 49.1 4.09 1260 1290.66 30.7 2.43 1280 1294.52 14.5 1.13
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4. Summary

This article describes morphological analyses of the structure of ash samples and the statistical
model of AFT prediction for characteristic ash melting temperatures from biomass using multiple
regression. The possibility of predicting the phase transformation of ash based on its chemical
composition as well as the content of sulfur and chlorine in the fuel was shown. The model can also be
used for biomass with modified composition using additives.

Based on the obtained results, particular conclusions can be made:

• According to SEM-EDS results, halloysite samples are characterized by the Al/Si ratio in the
range of 0.79–0.84 (Table 7). The tested samples also showed the content of Fe in the range of
9.83 wt.%–11.68 wt.%, and Ti 1.41 wt.%–1.87 wt.% for the surface tests;

• The increase in the Al/Si ratio in biomass samples is due to the presence of halloysite. This growth
trend is maintained for all other DS4, BZ2 and DM4 samples compared to the samples without
halloysite (DS0, BZ0, DM0);

• To fully identify the individual compounds present in the ash, it would be necessary to additionally
perform X-Ray Diffraction analysis;

• Despite the existence of a large number of indicators that are used to predict the slagging and
fouling tendencies of fuels, only a few have a significant statistical impact as independent variables
used in the regression equations to determine IDT, HT, FT temperatures (42 independent variables
for IDT and HT, and 40 for FT) (Table 6);

• The presented AFT model has some limitations (see Section 2.4);
• It is possible to predict the phase transitions of ash from biomass based on its chemical composition,

but only with a certain approximation;
• R2 adjustments for empirical data for ID, HT, and FT models were obtained, respectively, at the

level of 90.7%; 90.6%; 89.7%;
• The use of the AFT model allows for the prediction of the temperature with an average error of

<±70.05 ◦C for IDT; <±51.98 ◦C for HT; <±47.52 ◦C for FT;
• Removal of predicted values outside the experimental range AFT 700 ◦C ≤ x ≤ 1500 ◦C allows

for achieving the determination coefficient R2 for IDT, HT and FT at the levels of 91.7%; 91.4%;
90.7% (Se below 50 ◦C)—IDT: Se < 48.62 ◦C; HT: Se < 37.15 ◦C; FT: Se < 34.02 ◦C;

• For some of the additionally tested biomass, a higher than the average difference between the
measured temperature and the designated model was observed (IDT: BZ0—58.6 ◦C, DS0—88.5 ◦C,
SPK0—77.4 ◦C, SPK4—49.1 ◦C; HT: BZ0—46.2 ◦C, BZ2—40.7 ◦C, SPK0—88.4 ◦C; FT: BZ2—70.7 ◦C,
DS0—63.6 ◦C, SPK0—79.9 ◦C);

• Absolute error ∆x for all additionally tested biomass was lower than 90.0 ◦C;
• The AFT model discussed in this article is suitable for predicting ash fusion temperatures for

biomass (raw and modified using fuel additive);
• The AFT model can be used as an effective tool in some computational works or for predictive

simulations in diverse energetic applications of biomass required by the modern Industry
4.0 strategy. Additionally, it can be used as a laboratory test substitute to predict characteristic ash
melting temperatures, which can save money and time for heat and power engineers;

• To make the AFT model generally applicable, additional tests and validations for different biomass
fuels and ash fractions are recommended as the chemistry involved in the ash melting process may
vary from case to case and, therefore, a careful and comprehensive stepwise validation is needed.
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