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Abstract: Gas hydrate saturation is an important index for evaluating gas hydrate reservoirs, and well
logs are an effective method for estimating gas hydrate saturation. To use well logs better to estimate
gas hydrate saturation, and to establish the deep internal connections and laws of the data, we
propose a method of using deep learning technology to estimate gas hydrate saturation from well
logs. Considering that well logs have sequential characteristics, we used the long short-term memory
(LSTM) recurrent neural network to predict the gas hydrate saturation from the well logs of two
sites in the Shenhu area, South China Sea. By constructing an LSTM recurrent layer and two fully
connected layers at one site, we used resistivity and acoustic velocity logs that were sensitive to gas
hydrate as input. We used the gas hydrate saturation calculated by the chloride concentration of the
pore water as output to train the LSTM network. We achieved a good training result. Applying the
trained LSTM recurrent neural network to another site in the same area achieved good prediction of
gas hydrate saturation, showing the unique advantages of deep learning technology in gas hydrate
saturation estimation.
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1. Introduction

Gas hydrate is an ice-like crystalline solid, formed by water molecules and methane molecules
under low temperature and high pressure. It is mainly distributed in seabed sediments on continental
margins and permafrost regions. Gas hydrate can cause seabed geo-hazards and atmospheric
environmental problems [1], but is also a clean energy with huge reserves [2]. Gas hydrate saturation
is an important index for evaluating gas hydrate reservoirs. Well logs are widely used to estimate
gas hydrate saturation due to their fast speed and low cost. The common methods for estimating
the saturation of gas hydrate by using well logs mainly include resistivity methods and velocity
methods [3]. Resistivity-based methods use resistivity logs to estimate gas hydrate saturation according
to Archie’s law [4,5], while velocity-based methods use the theoretical or empirical relationship
between gas hydrate saturation and velocity to estimate gas hydrate saturation by using velocity logs.
The frequently used relationships between gas hydrate saturation and velocity include time-average
equations [6], the effective medium theory [7,8], and three-phase Biot-type equations [9,10].

The close relationship between gas hydrate saturation and well log machine learning technology
provides a new idea for using well logs to estimate gas hydrate saturation. Singh et al. [11,12] used
different combinations of well logs to predict gas hydrate saturation through unsupervised and
supervised machine learning algorithms. They obtained a higher accuracy of gas hydrate saturation
than in classic resistivity and velocity methods, showing the advantages of machine learning technology
in gas hydrate saturation predictions. As the most vigorous branch of machine learning, deep learning
technology can achieve more accurate prediction and classification than traditional technology. This is
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because it builds a deep neural network model with multiple hidden layers and uses a lot of data to
train the model to learn complex and effective information. Therefore, to use well logs better to estimate
gas hydrate saturation and to establish the deep internal connections and laws of the data, we propose
a method of estimating gas hydrate saturation from well logs by using deep learning technology.

The concept of deep learning first proposed by Hilton et al. [13] has been successfully applied in
image, audio, and natural language processing, and its unique advantages have attracted increasing
attention from geoscientists. Deep learning technology is being gradually applied to well log
interpretation and reservoir prediction, such as in rock facies classification [14-19] and the prediction
of shale content [20] and porosity [21]. Well logs are sequence samples, so to estimate the gas hydrate
saturation, we adopted the long short-term memory (LSTM) recurrent neural network, which is suitable
for processing sequential data to apply to the well logs that are sensitive to gas hydrate. This method
brought good application results in the Shenhu area, South China Sea. It demonstrated the unique
advantages of deep learning technology in gas hydrate saturation estimates, and laid the foundation
for its further application in gas hydrate research.

2. Long Short-Term Memory (LSTM) Recurrent Neural Network

2.1. Recurrent Neural Network (RNN)

A recurrent neural network (RNN) is a neural network model with memory function that can
discover the interrelationships between samples. It is especially used to process data with sequential
characteristics. Unlike other network structures, an RNN introduces the idea of self-loop, which can
input the output of the previous and next samples into the model for operation (Figure 1). The feature
information processed by the model contains not only the information of the sequence data before
the current sample, but also the information of the current sample itself. However, an RNN cannot
effectively deal with long-term dependency problems (neurons that are far away in the hidden layer)
because in the process of using the stochastic gradient descent method to train the RNN, the partial
derivative of the loss function to the weight matrix will tend toward zero or infinity as the number
of input sequence samples increases. This will bring problems of gradient vanishing or gradient
exploding, limiting its wide application.
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Figure 1. Unfolded form of recurrent neural network [22].
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2.2. LSTM Recurrent Neural Network

The LSTM network is a special recurrent neural network proposed by Hochreiter and Schmidhuber
in 1997 [23]. It improves and perfects the loop body repeated in a chain in the conventional RNN.
By adding a forget gate layer, an input gate layer, and an output gate layer in the network cell,
continuous write, read, and reset operations on memory cells can be performed [24]. This enables
LSTM to have long-term learning capabilities, and effectively solves the problems of gradient vanishing
and gradient exploding, making it one of the most successful RNN networks. Figure 2 shows the basic
network structure of LSTM, while Figure 3 shows the structure of an LSTM neuron.
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Figure 2. The basic network structure of the long short-term memory (LSTM) network [22].
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Figure 3. The structure of an LSTM neuron [22]: (a) the forget gate layer, (b) the input gate layer, (c) the
cell status, and (d) the output gate layer.

The forget gate layer of the LSTM network determines which information needs to be discarded
(Figure 3). The expression is:

fo = o(Wp - Iy, x) + bp) (1)

The input gate layer determines which new information is stored in the cell state (Figure 3b).
The expression is:
it = o (Wi~ -1, xe] + by) @)

Et = tanh(Wc¢ - [hy_1, x¢] + bc) 3)
Then, the current cell status (Figure 3c) is updated to:
Ci=fi-Cra+ir- G (4)

The cell state of LSTM runs through the whole process, so that information is transmitted in
a fixed and unchanging way. The output gate layer determines the information that needs to be output
at that moment (Figure 3d). The expression is:

hy = G(Wo . [ht_l,xt} + bo) . tanh(Ct) 5)

where x; is the input vector of the LSTM neuron; f; is the activation vector of the forget gate layer;
iy is the activation vector of the input gate layer; /; is the output vector of the LSTM neuron; C; is the
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neuron cell state vector; W is weight matrix; b is the bias term; o is the sigmoid function; (tanh) is the
hyperbolic tangent function; the subscript ¢ indicates different moments.

3. Gas Hydrate Saturation Estimate

3.1. Geological Background

The Shenhu area is in the Pearl River Mouth Basin, in the middle of the northern slope of the South
China Sea (Figure 4), and it is a key area for gas hydrate exploration. The water depth is 500-1500 m,
the seabed topography is complicated, and the topographic slope varies greatly [25]. Since the late
Miocene, with its gravity flow having developed and its high deposition rate, several kilometers of
Mesozoic and Cenozoic sediments have accumulated to form enough organic matter to provide a source
for gas hydrates [26]. In previous geological surveys of the area, many geophysical and geochemical
markers indicating the existence of gas hydrates were discovered. In 2007, the Guangzhou Marine
Geological Survey conducted the first gas hydrate drilling expedition in this area, and successfully
drilled gas hydrate samples.
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Figure 4. The Pearl River Mouth Basin in the northern slope of the South China Sea; the Shenhu area is
shown by the red rectangle.

3.2. Well Logs

Eight sites were drilled in the expedition area in 2007 (Figure 4). Gas hydrates were found in the
cores of sites SH2, SH3, and SH7, but no hydrates were found at sites SH1 and SH5. The other three
sites, namely, SH4, SH6, and SH9, were drilled for logging without cores.

Figure 5 shows the well logs of site SH2. The cores at this site confirmed that the gas hydrate-bearing
sediments were in the range of 190-220 m, and the hydrate saturation could reach 47.3% [27].

In the well logs of site SH2, the resistivity and acoustic velocity in the gas hydrate-bearing
formations showed apparent high value anomalies, while the density and gamma showed no obvious
changes. The well logs of site SH7 (Figure 6) showed that the depth of the gas hydrate-bearing
formation was approximately 152-177 m, and the hydrate saturation could reach 43% [27]. The well
log characteristics of the gas hydrate-bearing formation at site SH7 were completely consistent with
those at site SH2.

Gas hydrate causes the chloride concentration of the formation pore water to decrease, so the
saturation of gas hydrate can be calculated by measuring the chloride concentration of pore water

from cores [28] using:
1 Clypw
Sy =—[1- 6
" Ph ( Clsy ) ( )
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where p, = 0.924 is the value of the density of pure gas hydrate in g/cm>. Here, Cly, is the in
situ baseline pore water chloride concentration and Cly, is the measured chloride concentration in
core water after gas hydrate dissociation. The baseline chloride concentration can be determined by
smoothly fitting the chloride data above and below the gas hydrate zone [3].
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Figure 5. Well logs at site SH2.
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Figure 6. Well logs at site SHY.

Because the chloride concentration of the formation pore water was relatively less disturbed,
and the chloride concentration measured by the cores was more accurate, the gas hydrate saturation
calculated by the pore water chloride concentration had a higher accuracy [28]. Figure 7 shows the
gas hydrate saturations calculated by using the chloride concentration measured by cores in the gas
hydrate-bearing formation at sites SH2 and SH7. There were 41 gas hydrate-bearing cores at site SH2,
and 21 cores containing gas hydrate at site SH7 [3,29].
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Figure 7. Gas hydrate saturations calculated by the chloride concentration of the pore water from the
cores at sites SH2 and SH7.

3.3. Data Preparation

To use the LSTM recurrent neural network to estimate the gas hydrate saturation, site SH2 was
used as a training well to train the LSTM recurrent neural network, while site SH7 was used as
a verification well to verify the accuracy of the network model. In site SH2, the resistivity and acoustic
velocity, which are more sensitive to gas hydrate, were used as the input of the network model. The gas
hydrate saturations calculated by the chloride concentration of the pore water in the cores were used
as the output to train the LSTM recurrent neural network.

Because there were only 41 gas hydrate saturation values calculated from the chloride concentration
at site SH2, too little training data would seriously affect the training effect of the LSTM recurrent
neural network model. Therefore, the interpolation of the gas hydrate saturation was performed at the
sampling interval of the well logs to obtain 1400 sample datasets in the range of 191-219 m (Figure 8)
where the resistivity and the acoustic velocity were the input of the network model, and the interpolated
gas hydrate saturation were output. Before the dataset was input to the LSTM recurrent neural network
for training, 1000 consecutive samples were selected as the training dataset, with the remaining samples
used as the test dataset. To eliminate the dimensional influence between the parameters, and to ensure
that each parameter was within a reasonable distribution range, data standardization processing was
required. The expression is:

2 — Xi— i
O;
where z; refers to the log parameters after standardization, x; refers to the input log parameters, y; and
0; are the mean and standard deviation of the parameters, respectively.

@)

3.4. The Prediction Framework of the LSTM Recurrent Neural Network

We constructed an LSTM network prediction model that included an LSTM recurrent layer and
two dense layers (Figure 9), where X¥; is the standardized input sequence sample of the resistivity and
p-wave velocity; y; is the output saturation sample; LSTM,; is the LSTM neuron that makes up the
LSTM recurrent layer, which has the exact structure in Figure 3; o; is the output of the LSTM neuron;
C; and h; have the same meanings as in Equations (1)—(5). Because the actual data were not particularly
complicated, to improve the calculation efficiency, the number of nodes of the two fully connected
layers was set to 20 and 10, respectively. The optimization algorithm adopted the Adam algorithm,
and the dropout regularization method was used to prevent over-fitting.
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Figure 8. Training dataset of the network model.
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Figure 9. The prediction framework of LSTM recurrent neural network.

The training process of the LSTM recurrent neural network was similar to that of a conventional
fully connected neural network, namely: (1) Use feedforward propagation to input training data into
the network, calculate the output of the LSTM unit, and then extract features through the two fully
connected layers. This trains it layer by layer to the output layer to obtain the predicted estimate of
this sample. (2) Back-calculate the error term of each neuron. The backward propagation of the error
term of the LSTM recurrent neural network includes two directions: the first is the back propagation
along time, that is, starting from the current  time, calculating the error term at each time; the second
is propagating the error term to the upper layer. (3) Use the Adam optimization algorithm based on
gradient descent to adjust the model parameters by calculating the gradient of each weight according
to the corresponding error item, so that the prediction is close to the optimization target. (4) Through
the above iterations, train until it meets the required optimization target, then the LSTM recurrent
neural network prediction model that meets the error requirements is established.
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3.5. Results

Figure 10 shows the training results of the LSTM recurrent neural network using site SH2. The red
dotted line shows the predicted saturation of the gas hydrate of the network model, and the blue
curve shows the true value input into the model. The calculation shows that the correlation coefficient
between the predicted value and the true value was 0.9605, and the root mean square error was
0.0208. The LSTM recurrent neural network achieved a good training effect, so it could be used for the
prediction of gas hydrate saturation at site SH7.
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Figure 10. Training results of the LSTM recurrent neural network at site SH2.

We selected the resistivity and acoustic velocity logs of 155-167 m at site SH7, standardized the
data, and input the data into the previously trained LSTM recurrent neural network to obtain the
prediction of the gas hydrate saturation (Figure 11). The black curve in Figure 11 shows the predicted
value, and the black asterisks show the gas hydrate saturations calculated by the chloride concentration
of the pore water at site SH7. The overall change trend of the predicted value of gas hydrate saturation
obtained by the LSTM recurrent neural network was reasonable, and the prediction was basically
consistent with the 21 measured values of site SH7. We picked out the corresponding 21 predicted
values of gas hydrate saturation, and calculated the correlation coefficient and root mean square error
between the predicted value and the true value. We obtained 0.7085 and 0.1208. We therefore achieved
a relatively accurate prediction of gas hydrate saturation using the LSTM recurrent neural network.
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Figure 11. Prediction of the gas hydrate saturation at site SH7.
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4. Discussion

The design of the network structure is key to improving the accuracy of a network model. We used
an LSTM network prediction model that included one LSTM recurrent layer and two fully connected
layers. The number of nodes in the two fully connected layers was 20 and 10, respectively. We did
this because the complexity of the actual data was relatively low and because we wanted to improve
calculation efficiency. In addition to selecting parameters based on experience, the optimal network
structure could also be selected by using the training dataset for repeated experiments. There are many
ways to use dropout regularization in LSTM network training [30], either in the loop of LSTM or in the
final fully connected layer. We chose to put dropout regularization in the fully connected layer.

The analysis of the cores in the Shenhu area showed that the gas hydrate-bearing sediments
consisted of silt (70%), sand (<10%), and clays (15%-30%) [31]. Because the well logs of gas
hydrate-bearing sediments were the comprehensive responses of lithology and gas hydrates, the log
characteristics of gas hydrate-bearing sediments, with varying lithologies, were different. Therefore,
the LSTM network trained by well logs is only suitable for gas hydrate saturation predictions of
gas hydrate-bearing sediments with small lithological differences, such as adjacent sites in the same
exploration area. For sites that are further apart, or located in other exploration areas, the predictions
may have large errors.

5. Conclusions

Based on the successful application of machine learning technology in gas hydrate saturation
using well logs, we proposed a method for estimating gas hydrate saturation from well logs using deep
learning technology to establish the deep internal connections and laws of the data. Considering that
well logs are sequence samples, this method designed the LSTM recurrent neural network to be suitable
for processing sequential data, took the resistivity and acoustic velocity logs that are more sensitive
to gas hydrates as input, took the gas hydrate saturation calculated by the chloride concentration as
the output, and trained the LSTM recurrent neural network to accurately predict the saturation of
gas hydrate. This method had higher accuracy prediction of gas hydrate saturation than traditional
machine learning methods and achieved good application results in the two studied sites in the Shenhu
area, South China Sea. It demonstrated the unique advantages of deep learning technology in gas
hydrate saturation estimates, and laid the foundation for its further application in gas hydrate research.
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