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Abstract: This study investigates the impact of an acetone-butanol-ethanol (ABE) mixture on spray
parameters, engine performance and emission levels of neat cottonseed biodiesel and neat diesel
blends. The spray test was carried out using a high-speed camera, and the engine test was conducted
on a variable compression diesel engine. Adding an ABE blend can increase the spray penetration of
both neat biodiesel and diesel due to the low viscosity and surface tension, thereby enhancing the
vaporization rate and combustion efficiency. A maximum in-cylinder pressure value was recorded
for the ABE-diesel blend. The brake power (BP) of all ABE blends was slightly reduced due to the low
heating values of ABE blends. Exhaust gas temperature (EGT), nitrogen oxides (NOx) and carbon
monoxide (CO) emissions were also reduced with the addition of the ABE blend to neat diesel and
biodiesel by 14–17%, 11–13% and 25–54%, respectively, compared to neat diesel. Unburnt hydrocarbon
(UHC) emissions were reduced with the addition of ABE to diesel by 13%, while UHC emissions
were increased with the addition of ABE to biodiesel blend by 25–34% compared to neat diesel. It can
be concluded that the ABE mixture is a good additive blend to neat diesel rather than neat biodiesel
for improving diesel properties by using green energy for compression ignition (CI) engines with no
or minor modifications.
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1. Introduction

The rapid depletion of fossil fuel reserves, population growth and the increase in air pollution
from internal combustion engines using fossil fuels have motivated the search for an alternative biofuel
such as biodiesel and alcohol [1,2]. Acetone-butanol-ethanol (ABE), a butanol intermediate product
fermentation, has shown potential as an additive fuel blend for conventional diesel due to a reduction
in the recovery cost requirements of butanol separation [3–5]. Another benefit of using ABE is that it is
produced from renewable sources such as agricultural waste [6–8]. Furthermore, a variety of biomass
types can be used as a source of ABE fermentation [3].

The ABE blend has attracted researchers’ attention because it is a renewable fuel that reduces
dependence on fossil fuels and decreases diesel engine emissions [9,10]. Researchers have experimentally
tested ABE mixtures with several investigations [11,12] assessing ABE blend performance under
different operating conditions. Luo et al. [13] investigated the sooting tendency of ABE fuels blended
with diesel. They found that ABE-diesel has a lower sooting tendency than the butanol-diesel blend
because it possesses higher oxygen content and lower carbon content for the same blend ratio.

Energies 2020, 13, 6521; doi:10.3390/en13246521 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8590-1550
https://orcid.org/0000-0002-7677-7129
http://www.mdpi.com/1996-1073/13/24/6521?type=check_update&version=1
http://dx.doi.org/10.3390/en13246521
http://www.mdpi.com/journal/energies


Energies 2020, 13, 6521 2 of 12

Ma et al. [14] tested droplet evaporation of an ABE blend. The ABE mixture addition enhanced the
droplet evaporation speed, and thus reduced the droplet lifetime. Therefore, droplet clouds have a
significant impact on the propagation of turbulent flame. The pre-evaporation rate and droplet size
are important parameters in controlling burning velocity. Droplet size and the overall number of
droplets also have a substantial impact on ignition success, so the high evaporation rate resulting
from the additions of an ABE mixture could improve combustion rates [15]. Recently, a study [16]
investigated the impact of a butanol-acetone (BA) mixture as an additive for biodiesel fuel on spray
and combustion characteristics. The experimental results revealed that all BA mixtures enhanced spray
penetration, offered some improvement in brake power and reduced emission levels (UHC, CO and
NOx). The abovementioned studies support the advantages of using ABE in compression ignition
(CI) engines [3,17,18]. Recent research by the authors [5] has also investigated ABE-diesel blends and
found that the studied ABE blend reduced exhaust emissions.

To the best of our knowledge, comparative assessment of the ABE mixture as an additive to neat
biodiesel (cottonseed) and neat diesel, and the related spray characteristics and engine performance,
have not been fully studied. The main goal of this paper is to evaluate and compare the macroscopic
spray parameters and engine performance of 10% ABE blended with neat biodiesel and diesel as fuel
in a direct injection (DI) diesel engine.

2. Materials and Methods

2.1. Fuel Preparation

Cottonseed biodiesel was prepared from cottonseed oil via transesterification. The fatty acid
compositions of the cottonseed biodiesel (chemical profiles) were determined using Flame Ionization
Detector-Equipped Gas Chromatography (FID-GC) [19]. The analytical grades of normal butanol (nB)
and acetone (A) were used with 99.8% purity, and ethanol was used with 100% purity. All alcohol
blends were obtained from Chem-Supply Australia. The ABE blend was mixed with a ratio of A:B:E
(3:6:1) by volume and used to simulate ABE fermentation [3]. ABE (10%) was blended with 90% neat
cottonseed biodiesel (Bd), which is referred to as ABE10Bd90. ABE (10%) was also blended with 90%
neat diesel (D) creating ABE10D90. Blend density was measured according to ASTM 1298 [20,21].
The blends’ dynamic viscosities were measured according to the ASTM 445-01 [22] using a Brookfield
Viscometer (DV-II+Pro Extra, AMETEK Brookfield, Middleboro, MA, USA). The kinematic viscosity
was then calculated [23]. The blends’ calorific values were measured using a digital oxygen bomb
calorimeter (XRY-1A, Shanghai Changji Geological Instrument Co., Ltd., Shanghai, China) following
ASTM D240 [24,25]. The properties of the neat fuel are listed in Table 1, and the measured blends’
properties are presented in Figure 1.

Table 1. Fuel properties [3,19,21,24].

Properties Acetone N-Butanol Ethanol Cottonseed Biodiesel (Bd) Diesel (D)

Chemical formula C3H6O C4H9OH C2H5OH - C12-C25

Composition (C, H, O) (mass%) 62,10.5, 27.5 65,13.5, 21.5 - 9.2, 17.1, 2.9 -

Oxygen content, (mass%) 27.6 21.6 34.78 ≈10 0.0

Density (kg/L) 0.971 0.810 0.795 0.864 0.82–0.86

Viscosity (mm2/s) at 40 (◦C) 0.35 2.22 1.08 3.7–4.14 1.9–4.1

Calorific values (MJ/kg) 29.6 33.1 26.8 37.5 42.8

Cetane number - 17–25 8 52 48

Flash point (◦C) 17.8 35 8 128 74

Boiling point (◦C) 56.1 118 78.5 280–410 210–235

Latent heat vaporization (kJ/kg) 501.1 582 904 230 270

Auto-ignition temperature (◦C) 560 385 434 - ≈300

Surface tension (mN/m) 22.6 24.2 22.27 32.4 23.8

Stoichiometric air–fuel ratio 9.54 11.2 9.02 12.5 15
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Figure 1. Measured fuel properties. (a) Density of test blends; (b) Viscosity of test blends; (c) Calorifc
values of test blends.

2.2. Spray Test Setup

The spray test was conducted at atmospheric condition. The setup was consistent with those
described in previous work [4,16,20]. Figure 2 shows a schematic diagram of the spray setup system.
The spray images were captured using a Photron SA3 high-speed camera. The injector driver
specifications, injection setup and camera specification are presented Table 2. Image processing
methods were the same as those employed in [4,16,20,26] using the MATLAB (2015R, The MathWorks,
Natick, MA, USA) program.
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Figure 2. Schematic of spray setup system.

Table 2. Specification of visualization system [4,20].

Injector specification

Injection type Bosch electromagnetic common rail injectors solenoid type

Number of nozzles 6 holes

Nozzle diameter (nominal/measured) 0.18 mm.

Camera specification

Camera resolution @ frame rate 1024 × 1024 pixels @ 2000 fps

A Nikon AF Micro-Nikkor lens with a focal length of
60 mm and a maximum aperture of f/2.8D with filter

size 62 mm was connected to the camera
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Table 2. Cont.

Injection setup

Injection Pressure (bar) 300

After start of injection time (ASOI) (mm) 0.5–1.5

Injection enclosed angle (degree) 156

Injection quantity (mg) 12

Repeat time 3

2.3. Engine Test Setup

The engine test consisted of a single-cylinder diesel engine, and a Coda gas analyzer used to
measure emissions (Figure 3). Table 3 contains the engine specifications. The engine equipment and
the Coda gas analyzer’s accuracy ranges were used as described in previous work [16,25]. Specific fuel
consumption (SFC) for each fuel test was measured using a flow rate meter because of the differences
in density and heating values. Therefore, for each engine run, the test blend properties were included
to measure the amount of fuel injected. Brake thermal efficiency (BTE) was calculated from the
measured data.
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Table 3. Engine specifications [5,6].

Engine specifications
Number of cylinders 1

Compression ratio 5:1–19:1
Bore (mm) 90

Stroke (mm) 74
Capacity (cm3) 470
Connecting rod 128

Nozzle injection pressure (bar) 300
Nozzle diameter (mm) 0.18

Pressure sensor Kistler 6052C transducer
Temperature sensor Thermocouple transducer

Engine test condition
Engine speeds test @ full load 1400, 2000 and 2600 RPM

Compression ratio test 19:1
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3. Results and Discussion

3.1. Spray Characteristics

Spray images of the test fuels are displayed in Figure 4. These images are a sample of three images
recorded in the test. The results are presented in Figures 5 and 6. Spray tip penetration (S) and spray
cone angle (
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Spray tip penetration of test fuel blends under different injection conditions is presented in Figure 5
Spray penetration was improved for all ABE test blends because of the low surface tension and viscosity
of the ABE blends. The spray penetration of ABE-Bd and ABE-D blends increased, respectively, by 3–5%
and 4–5% compared to neat biodiesel and diesel. The low viscosity and boiling point of alcohol can
result in improved atomization and evaporation behavior of diesel and biodiesel [26,27]. Therefore,
the reaction rate increased. Compared to other test fuels, the spray penetration of biodiesel was clearly
shown to be lower due to its high viscosity [26]. Engine power reduction and fuel consumption
increments may have occurred because of lower penetration and poorer atomization.
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The spray cone angle of test blends is presented in Figure 6 under different times after start
of injection (ASOI). The increase in injection pressure leads to a slight widening of the spray cone
angle. However, the biodiesel fuel presented the maximum spray cone angle due to its high viscosity.
In general, at 300 bar injection pressure, the spray cone angle of ABE-D/Bd blends increased at ASOI
up to 0.75 ms, while the spray cone angle of neat biodiesel was higher at ASOI 0.5 ms. This result is
consistent with the findings of previous work [16,26,27].
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3.2. Engine Performance

3.2.1. Maximum in-Cylinder Pressure

Figure 7 presents the relationship between the maximum in-cylinder pressure trace of the test fuels.
The ABE10D90 blend gave a maximum peak of in-cylinder pressure at 5 bars higher than neat diesel due
to the high oxygen content and low cetane number (CN) of the ABE blend. This resulted in increased
ignition time and rapid in-cylinder pressure. However, an increase in the engine speed resulted in
reduced in-cylinder pressure by about 10 bars. In-cylinder pressure was improved with the addition of
ABE to the biodiesel blend. Spray and combustion characteristics enhanced the ABE-biodiesel blend
due to a reduction in biodiesel viscosity.
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3.2.2. BP and BTE

The engine was connected to an electrical dynamometer, which was used to measure engine brake
power output (BP) at various engine speeds. Brake thermal efficiency (BTE) is the ratio between the
brake powers of the engine and the fuel energy supplied to the engine.

Figure 8 shows the variation of BP with engine speed according to test fuel. Both the neat
biodiesel (Bd) and ABE-Bd blend revealed a lower value of BP due to low heating values (Table 1 and
Figure 1). ABE-D/Bd blends had a higher combustion efficiency because of their high oxygen content,
which improved the combustion rate when used as an additive blend. Algayyim et al. [6] investigated
the effect of BA-diesel blends in a diesel engine. The experimental results showed that BTE increased
because of the addition of BA to the diesel blend. These increments in BTE were achieved because of
increased oxygen content in the blend (Figure 9). Oxygen helped to improve combustion efficiency,
particularly during the diffusion combustion phase. Another factor influencing the BTE was the cetane
number. ABE-diesel/biodiesel fuel blends have a lower cetane number than diesel and biodiesel,
causing longer ignition delay, and a wider range in the fraction of fuel burned in the premixed mode,
which elevates BTE [23–25].

Energies 2020, 13, x FOR PEER REVIEW 7 of 12 

 

The engine was connected to an electrical dynamometer, which was used to measure engine 
brake power output (BP) at various engine speeds. Brake thermal efficiency (BTE) is the ratio between 
the brake powers of the engine and the fuel energy supplied to the engine. 

Figure 8 shows the variation of BP with engine speed according to test fuel. Both the neat 
biodiesel (Bd) and ABE-Bd blend revealed a lower value of BP due to low heating values (Table 1 and 
Figure 1). ABE-D/Bd blends had a higher combustion efficiency because of their high oxygen content, 
which improved the combustion rate when used as an additive blend. Algayyim et al. [6] investigated 
the effect of BA-diesel blends in a diesel engine. The experimental results showed that BTE increased 
because of the addition of BA to the diesel blend. These increments in BTE were achieved because of 
increased oxygen content in the blend (Figure 9). Oxygen helped to improve combustion efficiency, 
particularly during the diffusion combustion phase. Another factor influencing the BTE was the 
cetane number. ABE-diesel/biodiesel fuel blends have a lower cetane number than diesel and 
biodiesel, causing longer ignition delay, and a wider range in the fraction of fuel burned in the 
premixed mode, which elevates BTE [23–25]. 

 
Figure 8. Brake power (BP) of test fuels. 

 
Figure 9. Thermal efficiency of test fuels. 

3.2.3. EGT and NOx Formation 

Figures 10 and 11 show the relationship between the EGT and NOx emissions of the test fuels at 
various engine speeds. The ABE-Bd blend showed a significant reduction in EGT compared to neat 
biodiesel at all engine speeds. Neat biodiesel showed higher NOx emissions compared to 
conventional diesel (Figure 11) due to the high combustion temperature associated with biodiesel 

Figure 8. Brake power (BP) of test fuels.

Energies 2020, 13, x FOR PEER REVIEW 7 of 12 

 

The engine was connected to an electrical dynamometer, which was used to measure engine 
brake power output (BP) at various engine speeds. Brake thermal efficiency (BTE) is the ratio between 
the brake powers of the engine and the fuel energy supplied to the engine. 

Figure 8 shows the variation of BP with engine speed according to test fuel. Both the neat 
biodiesel (Bd) and ABE-Bd blend revealed a lower value of BP due to low heating values (Table 1 and 
Figure 1). ABE-D/Bd blends had a higher combustion efficiency because of their high oxygen content, 
which improved the combustion rate when used as an additive blend. Algayyim et al. [6] investigated 
the effect of BA-diesel blends in a diesel engine. The experimental results showed that BTE increased 
because of the addition of BA to the diesel blend. These increments in BTE were achieved because of 
increased oxygen content in the blend (Figure 9). Oxygen helped to improve combustion efficiency, 
particularly during the diffusion combustion phase. Another factor influencing the BTE was the 
cetane number. ABE-diesel/biodiesel fuel blends have a lower cetane number than diesel and 
biodiesel, causing longer ignition delay, and a wider range in the fraction of fuel burned in the 
premixed mode, which elevates BTE [23–25]. 

 
Figure 8. Brake power (BP) of test fuels. 

 
Figure 9. Thermal efficiency of test fuels. 

3.2.3. EGT and NOx Formation 

Figures 10 and 11 show the relationship between the EGT and NOx emissions of the test fuels at 
various engine speeds. The ABE-Bd blend showed a significant reduction in EGT compared to neat 
biodiesel at all engine speeds. Neat biodiesel showed higher NOx emissions compared to 
conventional diesel (Figure 11) due to the high combustion temperature associated with biodiesel 

Figure 9. Thermal efficiency of test fuels.



Energies 2020, 13, 6521 8 of 12

3.2.3. EGT and NOx Formation

Figures 10 and 11 show the relationship between the EGT and NOx emissions of the test fuels at
various engine speeds. The ABE-Bd blend showed a significant reduction in EGT compared to neat
biodiesel at all engine speeds. Neat biodiesel showed higher NOx emissions compared to conventional
diesel (Figure 11) due to the high combustion temperature associated with biodiesel reaction [28–30].
Adding a blend such as acetone, butanol and ethanol creates lower boiling points, which result in
an increased evaporation rate and combustion efficiency. Therefore, EGT will be reduced. EGT and
NOx emissions were reduced with the ABE blend to neat diesel and biodiesel by 14–17% and 11–13%,
respectively. This result agrees with other work [30–35].
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3.2.4. UHC, CO and CO2 Emissions

The use of the ABE-D blend decreased UHC emissions compared to neat diesel at medium and
high engine speeds (Figure 12). This reduction occurred because the boiling point of the ABE blend
was low, which improved the vaporization rate and promoted combustion performance. The difference
in droplet lifetime between ABE (3.25 s/mm2) and diesel (3.75 s/mm2) affected the reaction time of ABE
blends at 823 K, which resulted in increased mixing time and led to complete reaction resulting in
decreased UHC emissions [7]. ABE-biodiesel blends increased the UHC emissions due to the high
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oxygen atom (biodiesel and ABE), which altered the electronic structure. Almost all the C-H bonds of
the ABE-Bd blend are less active for reaction compared to hydrocarbon fuels (fossil fuels), which means
more time is required to complete the reaction and increases UHC emissions [36,37]. UHC emissions
were reduced by 13% when ABE was added to diesel. However, UHC emissions were increased
by 25–34% when ABE was added to biodiesel blends. All neat biodiesel and ABE-biodiesel/diesel
blends presented lower CO emissions at all engine speeds due to the high oxygen content (Figure 13).
This result agrees with previous work [34–37]. Moreover, the oxygen content of ABE-Bd blend was
higher than biodiesel resulting in a significant reduction in CO emissions compared to neat biodiesel
and ABE-diesel blends. CO2 emissions were slightly increased of ABE10Bd90 blends (Figure 14). It is
clear that ABE0-D and ABE-Bd blends produced less CO emissions compared to diesel due to the
lower carbon-to-hydrogen ratio [31,33,37].
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4. Conclusions

ABE mixture can increase the spray penetration of neat diesel and biodiesel resulting in improved
atomization. The ABE10D90 blend gives a maximum in-cylinder pressure value 5 bars higher than neat
diesel. The Bd and ABE-Bd blends gave a lower value of BP due to the low heating values. EGT, NOx

and CO emissions were significantly reduced with the addition of the ABE blend to both neat diesel
and biodiesel. UHC emissions were reduced when ABE was added to diesel. However, UHC emissions
were increased when ABE was added to biodiesel. Thus, it can be concluded that the ABE mixture
could be a good additive blend for neat diesel rather than neat biodiesel for improving diesel properties
by using green energy for CI engines with no or minor modifications.
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