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Abstract: Determination of local heat transfer coefficient at the interface of channel wall and
fluid was the main goal of this experimental study in microchannel flow boiling domain.
Flow boiling heat transfer to DI-water in a single microchannel with a rectangular cross section
was experimentally investigated. The rectangular cross section dimensions of the experimented
microchannel were 1050 um x 500 pm and 1500 pm x 500 um. Experiments under conditions of
boiling were performed in a test setup, which allows the optical and local impedance measurements
of the fluids by mass fluxes of 22.1kg-m~2-s7! to 118.8 kg - m 2 - s~ ! and heat fluxes in the range
of 14.7 kW -m~2 to 116.54 kW - m—2. The effect of the mass flux, heat flux, and flow pattern on
flow boiling local heat transfer coefficient and pressure drop were investigated. Experimental data
compared to existing correlations indicated no single correlation of good predictive value. This was
concluded to be the case due to the instability of flow conditions on one hand and the variation of
the flow regimes over the experimental conditions on the other hand. The results from the local
impedance measurements in correlation to the optical measurements shows the flow regime variation
at the experimental conditions. From these measurements, useful parameters for use in models
on boiling like the 3-zone model were shown. It was shown that the sensing method can shed a
precise light on unknown features locally in slug flow such as residence time of each phases, bubble
frequency, and duty cycle.

Keywords: boiling flow; microchannel; heat transfer analysis; local sensing elements; impedance
measurement; local sensing; bubble frequency; flow regime

1. Introduction

Flow boiling in microchannels is considered as an effective method for heat removal and energy
transport in chemical microreactors and heat exchangers [1]. Thus, understanding flow boiling heat
transfer in microchannels is an important concern for a wide variety of applications such as electronics
cooling [2]. Many experimental and theoretical studies in the literature aimed at understanding the
physics and underlying heat transfer mechanisms behind the boiling flow in a microchannel with two
general attitudes [2—-4]. First, some researchers tried to come up with new correlations and prediction
methods for both boiling heat transfer coefficient and two phase pressure drop [5,6]. Second, there
have been efforts in order to analyze the physics behind the microchannel boiling by resolving high
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resolution temperature information in controlled situations and proposing a physical model that
describes the heat transfer during boiling [4,7,8]. Despite the wide variety of published research works,
due to the complex nature of the topic there is still space for improvement and issues to study on heat
transfer mechanisms, pressure drop characteristics, and two-phase flow instabilities regarding boiling
in microchannels [2,6,9]. In addition, recently different methods have been proposed by researchers to
enhance the stability of flow boiling performance such as surface modification, thermal equilibrium
improvement, disturbance intensification, and nucleation enhancement [10-12].

The vast majority of researchers focused on the influence of operating parameters on the heat
transfer of microchannel flow boiling such as working fluids, aspect ratio, and cross-sectional shapes of
microchannel as well as surface roughness [13-15]. Consequently, many different empirical correlations
were developed in order to predict the heat transfer coefficient concerning boiling liquids in a mini-
or microchannel. However, there is no universal agreement between these models due to the fact
that experimentations have been performed over a wide range of different operation parameters and
experimental conditions. Therefore, the extrapolation of available correlations to other experimental
conditions may show discrepancies [16,17]. In addition, most of the existing correlations do not have
satisfactory accuracy to predict critical heat flux, heat transfer coefficient, and flow pattern transition
boundaries [2]. The researchers found that developing flow boiling heat transfer prediction models
based on mechanistic distinction criteria is more practical and effective [16,18,19]. Therefore, detailed
knowledge of the system is still necessary to understand the specific flow boiling mechanism in order
to develop a predictive model [16].

It has been illustrated that there are essential links between flow boiling mechanisms and flow
regimes. According to the observed flow patterns in literature, four different criteria were reported for
heat transfer mechanism in microchannel boiling flow. In the first criterion, the nucleate boiling heat
transfer is dominant. In this case, bubbly flow regime appears with low vapor quality where the heat
transfer coefficient is strongly influenced by heat flux. The effect of mass flux and vapor quality on
heat transfer coefficient is very low [20]. The second criterion is based on mixture of nucleate boiling
and convective boiling heat transfer. In this case both mechanisms take place simultaneously in bubbly
and slug flow regimes respectively which alternate in time and space. Here the local heat transfer
is strongly affected by heat flux and vapor quality but weakly affected by mass flux [21,22]. Thirdly,
the convective boiling heat transfer is dominant. Forced convection boiling occurs in saturated region
of the microchannel with high vapor quality. Heat transfer is increased by convective mechanism and
nucleation process is almost restrained. The heat transfer coefficient was found to be independent of
the heat flux while it increased with an increase in the mass flux and decreased with an increase in
the vapor quality. The convective evaporation was reported as the dominant mechanism for annular
and semi annular pattern [23,24]. The fourth mechanism is dominant thin film evaporation heat
transfer. It was clarified by researchers that the major heat transfer mechanism for elongated bubble
and annular flow pattern is due to thin film layer evaporation between the vapor core and the heated
wall surface [25-27]. Thome and Consolini [28] report that the heat transfer coefficient is not only
influenced by heat flux through dominant nucleate boiling mechanism but also is dependent on thin
film evaporation and bubble frequency. They experimentally determined a trend in the local heat
transfer coefficient versus local vapor quality and the measured trend during liquid film evaporation
does not show the expected increase with quality. In general, local heat transfer measurement in
combination with flow visualization can be beneficial to recognize the dominant flow boiling heat
transfer mechanism in microchannels [2].

Several boiling heat transfer prediction models were developed to relate the heat transfer
fundamental mechanisms with flow regimes and vapor bubble dynamics practically [18,29,30].
The main methods in experimental boiling flow analysis in microchannels are proposed to estimate or
measure local wall temperature, channel pressure drop and visual detect flow patterns. A model for
the estimation of the heat transfer coefficient is consequently established. In this regard, Jagirdar and
Lee [31] investigated the transient local heat transfer coefficient at different locations in a single mini
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rectangular channel during subcooled flow boiling. They observed variation of the heat transfer
coefficient over a given location due to passing of different flow patterns. An increase of the local
heat transfer coefficient was observed due to the passing of bubbles with evaporating thin films.
Bigham and Moghaddam [7] also reported similar observations for flow boiling experiments in single
microchannel featuring nanostructured elements. Since the local fluid temperature, wall temperature,
or heat flux measurement is challenging for the calculation of a local heat transfer coefficient, it is
typical to use data reduction methods to calculate local surface temperature [32,33].

As outlined above, there are multiple existing experimental studies on the water boiling in metal
or silicon microchannels over a limited range of operating conditions. Large uncertainties have been
found in most of the reported experimental data [2,6]. The developed heat transfer correlations based
on these experimental studies are not universally applicable. Therefore, it is necessary to refine the
experimental procedures, measuring instrumentation, and measuring techniques to obtain more
reliable data. It is necessary to reach an appropriate data reduction method for each specific test setup.
From the viewpoint of application, heat sinks comprising rectangular microchannels, machined in
metal plates, such as stainless steel, copper, or Aluminum are highly applicable due to the high heat
dissipation capability and the ease of manufacturing. However, a good prediction of the heat transfer
properties has to be done. Using low-pressure water in microchannel boiling process has been reported
as an attractive coolant for chipping cooling applications due to its high latent heat [34].

In the current work, we report the analysis of experimental data on the local heat transfer of
water evaporation in a single stainless steel rectangular microchannel. In our previously published
work, the proof of principle for determining the local flow regime by using impedance sensing has
been shown [35] besides the application of analyzing slug flow [36]. As discussed above, the flow
regime is vitally important for the heat transfer mechanism and thus for the estimation of the heat
transfer coefficient. The objective of the present investigation is to further study the characteristics of
microchannel flow boiling by correlating the differences in the measured local heat transfer coefficients.
The effect of mass flux and heat flux on the local evaporation heat transfer are investigated and
presented. We aim to develop a new technology based on capacitive sensing that is able to contribute
to cooling system developments. In the last part, the possibilities of using local electrical sensing as
feed-in for refining heat transfer models is presented.

2. Experimental Setup

Figure 1 presents the schematic diagram of the experimental apparatus used in this study and
previously described in [35]. The experimental setup consists of a Pyrex reservoir to store deionized
water. DI-water was pumped at a constant flow rate and degassed through the flow loop using
a HNP mzr-7205 micro gear pump with constant flow rate. The flow rate was measured using a
Sensirion SLQ-QT500 flow meter. Swagelok Stainless Steel fittings and Festo push in connectors
were used to construct the flow loop. Figure 2 represents the exploded structure of the test device
which was used [35,36]. As it is shown in the exploded view of the test section in Figure 2, the test
section consists of a housing(1), a glass cover lid(5), a heater block(2) equipped with 6 DC electrical
heater cartridges(8), and a stainless steel microchannel plate(4). The housing body, lid, and heater
block were made from Aluminum. The Aluminum lid(6) presses the cover glass to the O-rings on
the microchannel for sealing purposes. In order to facilitate flow visualization, perform impedance
measurements, and seal the microchannel, a Pyrex lid(5) with 2 mm thickness and patterned sensing
elements is fabricated in a cleanroom. The glass lid has patterned indium tin oxide elements which are
visually transparent and conductive. Therefore, simultaneous electrical sensing and visual inspection
were possible in each sensor location. The details of the glass lid fabrication method were previously
explained in [37]. The contacting of the probes was done using spring probes(11). The housing part
has the inlet and outlet with assembled pressure and temperature sensing probe locations. The PEEK
parts (9 & 10) under the bottom part of housing were considering as electrical and heating insulators
to reduce the heat loss to the ambient and as holders to keep whole the test section in a stable position.
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The microchannels were fabricated using CNC machining on the surface of a stainless steel plate with
plate thickness of 5 mm. Two o-ring grooves are machined on the surface of microchannel plate to
provide sealing around the channel and make an appropriate area for the glass to sit on. Six small holes
were drilled in side wall of channel plate to with the 0.5 mm distance underneath of microchannel wall
for inserting thermocouples to measure the temperature along of the channel. The highspeed videos
that are recording in this work were acquired by highspeed camera Phantom VEO 410L manufactured
by Vision research. The measurement device that was used for impedance measurements was MFIA
impedance analyzer by Zurich Instruments. At the beginning of each measurement, the camera
receives a trigger signal from the measurement device for a precise time synchronization.

: highspeed ) ]
@ camera :_ trigger signal
: \_‘ :

Water reservoir |

Glass lid with ITO electrodes |
NSy ES—y E—

pump

Degasser @@@ @
Microchannel plate
TN ) , @) L impedance
Heater block with heater cartridges analyzer

Figure 1. Schematic of experimental set-up.

Regarding temperature monitoring, in the whole test apparatus 16 T-type (Copper/Constantan)
thermocouples are located. The exact location of the implemented thermocouples are shown in Figure
3. Temperature measurement on the flow was established before entry to the test section (Tj;), after the
exiting test section (Tyyu¢), at the inlet (Tiyet channer) and outlet (Tyysiet channer) Of the channel, at six
positions underneath the channel wall in the plate (T¢ya1e11 0 Tenanner 6), and at six locations in the
heater block (Tyjock,1 t0 Thiock ). The experimental data was recorded in time transient conditions and
further averaged to obtain stable values. The data was used to analyze the thermal balance of the test
setup in the data reduction step (see below). The thermocouples data was read out in approximately
1 Hz sampling rate by two data logger devices from Pico Technology TC-08 with built-in ambient
temperature readout. The ambient temperature read out was used to calculate heat loss more precisely
for the tests that were performed on different days. The DI-water was degassed before flowing into
the test device. The heat flux was applied by DC electrical heaters(8) to heating blocks. The heat flux
was increased gradually to obtain a recognized stable operating condition during either a single-phase
or a boiling flow through the experiments. Single-phase flow experiments were conducted to estimate
the heat loss. During the single-phase flow test, the fluid temperature was allowed to increase without
reaching the onset of boiling.

The uncertainties of the measured values were directly supplied from the manufacturers
specification sheets. Table 1 presents the ranges of the experimental variables. The pressure sensor
was a KELLER AG PRD-33X model. Pressure sensing in the experiments was performed by a sensor
that measures differential pressure and inlet pressure at the same time. The measurement accuracy
for the differential pressure sensor is 35 Pa and that of the inlet pressure sensor is 40 mBar (0.1% full
scale). Temperature measurements were performed by temperature data logger with the uncertainties
of £+ 0.5°C for the T-type thermocouples. The uncertainty associated with the voltage and current
applied to the heater cartridges was smaller than 0.01% + 3 mV and 0.01% + 3 mA respectively [38].
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ITEM
NO. DESCRIPTION
1 Housing
2 Heater block
3 Heater block isolation part -
PEEK
4 Channel plate (channel
size: 1.5 mm x 0.5 mm)
5 Glass lid with ITO
electrodes
6 Top lid
7 Thermocouples T-type
8 Heater cartridges
9 Spring probe holder - top
part - Peek
10 Spring probe holder bottom
plate - PEEK
11 Coax spring probe

Figure 2. Exploded view of test device assembly.
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Figure 3. Thermal path with implemented sensors of the boiling liquid in the housing. Light blue is
the liquid path inside the housing and red is liquid path inside the channel plate. (a). Cropped zoom of
the cross section with temperature sensors in the channel plate, heater block, and housing. (b). Top
view of the housing assembly with heater block, channel plate, and glass lid. (c). A-A cross section of

the housing assembly.
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5 Glass lid with ITO
electrodes
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Table 1. Experimental parameters and uncertainties [35,38,39].

Property Unit Value or Range Uncertainty
Channel hydraulic diameter pm 750 & 1050
.min~!
Flow rate mL - min 0.5to 4
Temperature °C 60 to 140 +0.5
Total heaters applied power Watt 7 to 30
measurement excitation freq. kHz 50 less than 0.01% =5 Hz
measurement sampling freq. kHz 13.7
Reynolds number @ 90 °C - 25 to 206
differential pressure sensing mbar 0 to 350 0.35
absolute inlet pressure sensing mbar 0 to 40,000 40
input power Watt 7 to 33

6 of 30

For each experimental run, input power and flow rate were set as input conditions. An example of
the acquired raw temperature and pressure data from the test setup for each experimental condition is
shown in Figure 4. In each experiment, the waiting time was set to long enough (minimum 25 min) until
the signal of the thermocouples reach constant and stable values so that we can consider the situation
steady state in respect to data reduction and use the averaged values for each sensor. As Figure 4a
demonstrates, temperature measurements along the heater block can be considered uniform and
Figure 4b shows channel temperature sensors information vs. time. The observation was qualitatively
consistent for all experiments. The averaged block and channel plate temperature along the channel
plate referenced to the inlet point location are shown in Figure 4c. Figure 4d,e show pressure drop
measurements in time and frequency domain respectively for a two phase experiment. Figure 4e
displays that pressure flow oscillations have a peak around 4 Hz. This is a good example of unstable
conditions in pressure drop in flow boiling.

a. temperature in heater block

1359

27.5W - 44.35 kg.m?2.s”

b. temperature in channel plate
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Figure 4.

pressure drop.
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Example of raw data using a heating power of 25 W and a flow of 1 mL/min
(22.17 kg - m~2 - s~ 1) water acquired by test setup. (a). Time domain recorded temperatures of
thermocouples located in heater block. (b). Time domain recorded temperatures of thermocouples
located in channel block. (c). Mean value of the recorded temperature in each sensor. (d). Time domain
recorded pressure drop in the channel. (e). Power spectrum of the Fast Fourier Transformation of

c. mean value temperature along the channel
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3. Data Reduction

In order to obtain a meaningful analysis of the phenomena from the acquired experimental data,
it is necessary to relate the measured data to the actual effects. For pressure drop that means to
subtract the pressure drops which are not part of the flow in the channel, in order to deduct corner
pressure drops caused by the 90 degrees bends, as well as expansion and contraction pressure drops
(Equations (1a) and (1b)). The flow goes via four bends, the pressure drop for those was given by
equation Equation (2a). Additionally, there was a certain pressure drop through the expansion of the
fluid, which was given by Equation (2b).

APch = Apmeasured - APlosses (13)
APch = Apmeasured —4 X APyy — APse,sc (1b)

In Equation (1b), APy is the pressure drop at each of the corners that were in the path between
two sensor locations (see Figure 3). The corner pressure drop was calculated using Equation (2a) with
Kgg = 1.2[6,40]. The expansion and contraction pressure drops are calculated by Equation (2b) with
K. =11and K, = 0.3 [14,40,41].

Gf

APy = 2TOIK% (2a)
Gf

APse,sc - TPI (Kc + Ke) (Zb)

The fanning friction factor of the channel for single phase experiments is calculated using
Equation (3) based on measured channel pressure drop.

AP, Dyp;
exp = T A3 3)
Fspexy 2L, G?

In order to calculate effective heat that enters the channel footprint, a heat loss correlation
was developed for the test setup based on single phase experiments tailored to each flow rate.
The experimental data for these correlations were acquired by applying lower power than necessary
for evaporation and same flow rate for each channel. Heat loss calculation has been done using
Equation (4a). AT was calculated using Equation (4b), thereby the influence of ambient temperature
variations in the lab is considered and compensated. For each flow, acquired a and b factors from
single phase experiments were used to calculate two phase heat loss. a and b are model parameters
in a linear description of heat flow from the heaters to the ambient based on temperature difference.
The average temperature value of block 3 and block 4 temperature sensors were picked since these
sensors were located in the middle of the channel.

Qloss (flow rate) = a- AT +b .
Tbl k, 3 + Tbl k, 4
AT = ( oc. i oc ) — Tyient ab)

By applying the energy balance equation on our control volume, the energy entered to the channel
is derived by Equation (5a). After the deduction of heat loss from total applied heat by power supply
(Equation (5b)), the heat entering to the channel was calculated using the heat balance (Equation (5a)).
Figure 5 illustrates the schematic of microchannel, the used coordinates in the equations (z is along
the flow), and heat transfer surfaces between the channel plate and flowing liquid. Q; denotes the
energy absorbed by the liquid in the path between entering the housing and entering to channel and is
described by Equation (5c). On the other hand, the liquid exits the channel at saturation temperature
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and the temperature drops until it reaches the sensing point. In Equation (5d), if the temperature
measured by sensor is higher than the saturation temperature, it is assumed that 60% of vapor exiting
the channel condenses until it reaches the end of the control volume. This energy is denoted by Qs
which is based on latent heat at saturation temperature.

Tm
Footprint(ftp)

Trep A fip
—* Base

fizttttttttt [ ] e

Qbase

Figure 5. Schematic of the single microchannel evaporator. (a) isometric view of channel plate. (b) cross
section of the channel plate.

Qchannel = Qtotal — Q1 — Qloss — Q3 (5a)
Qtotat =V x (5b)
Q1 =1itg1 - ¢p - (Tin control votume — Tin channel) (5¢)

Q3 =1itf1 - ¢p - (Tend channel — Tend control volume) =+ 151 - Xout - hrg (5d)

The global heat flux at the channel is calculated by dividing energy that enters into the channel
to effective hot surfaces (Equation (6)). All heat to the liquid was supplied via the footprint surface
that was metallic and encompassed three sides of the channel. The glass lid on top did not heat the
liquid. In Equation (7), L is channel length,  was channel height that is 0.5 mm in both experimented
channels and w is channel width.

q”avemge = Qchunnel/Asurface (6)

Asurfuce = Lenanner ¥ (2 “hep + wch) @)

In order to estimate the local heat flux along the channel, the temperature gradient between
heater block’s temperatures and channel plate’s temperatures was used. A third degree interpolation
between the 6 point temperature measurements in the heater block and another interpolation for 6
point temperature measurements at the channel plate were performed. Therefore, the normalized
gradient of the temperature at each z was multiplied to 4" sperage (Equation (8)).

Tblack(z) — Tehannel plate (Z)

®)

q (Z) = q average X ATavemge

Consequently, the footprint temperature is derived from Equation (9) and fluid temperature
along the channel was determined by Equation (10). b is the metal thickness between channel plate
temperature sensor locations and channel wall which is 0.5 mm. In Equation (10), Tf; cannot rise above
saturation temperature; it is equal to saturation temperature since the absorbed heat is consumed for
phase transfer.

7 Z . b
Trrp (2) = Tehannel plate (z) - % )
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zq” ftp (z)
Th(z) = Triter + | ———dz 10
71(2) = Trtintet 0 TG (10)
The local heat transfer coefficient at footprint is expressed by Equation (11). In Equation (11), Ty,
is set to saturation temperature for two phase flow region.

q”ftp (z)
Tftp (Z) - Tfl (Z)

With the knowledge of the heat flux towards the footprint, the boiling front and consequently the
local vapor quality and void fraction were determined using Equations (12) and (13).

hep(z) = (11)

Rinter + fz T (2) dz — hsat(Tsut(z))

0 =
[T &

The heat transfer coefficient in the boiling region of the channel is calculated using
Equation (14) [6]. In this equation, ATy Tp is logarithmic mean temperature difference between
minimum and maximum temperature of channel plate and liquid inlet and saturation temperature
respectively.

Qtot - Qloss

h=
Asurfuce -ATLmTD

(14)

4. Results and Discussions

Experimental results presented in this section were performed at about atmospheric system
pressure both for single phase and two phase experiments. Two different plates with channels
measuring D;, = 750 pm (1.5 mm x 0.5 mm) and Dy, = 677 pm (1.050 mm x 0.5 mm) were used for
these experiments. The absolute mean error value for experimental results compared with available
correlations is calculated based on Equation (15).

prediction value — experimental value
experimental value

1 N
AE = — 1 1
M 1%; x 100 (15)

4.1. Single Phase Pressure Drop Validation

Prior to two phase experiments, single phase experiments in a room temperature condition
were conducted to ensure that the test rig performed properly and measurement devices such as
pressure sensors performed with reasonable accuracy. Mass fluxes used for these experiments were the
same as for the two phase experiments. Experimental pressure drop and the Fanning frictional
factor (Equation (3)) were compared to available models in the literature for single phase flow
in microchannels (Figure 6). Governing equations for used models are detailed in Appendix A.
Good agreement between prediction correlations and experimental results are observed. Pressure
drop predictions for Shah and London model [42] and Muzychka and Yovanovich [43] correlation.
The mean absolute error in pressure drop for both models is shown in Table 2. The loss corrections for
the channel pressure drop regarding Equations (2a) and (2b) lie between 0.46% and 11.8% in relation
to the total experimental results. f = % is Fanning factor for the laminar flow which is compared with
experimental results.
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a.D = 677 um b.D = 677 pm
1.5 T T 600 T . T T :
— B -Experimental ®  Experimental
®- Shah and London @ Shah and London
Muzychka and Yovanovich Muzychka and Yovanovich
@~ f=16/Re @ f=16/Re
1t ~400F
©
= e
- 5
0.5 200}
0 : : : 0 : : : . : .
0 20 40 60 80 0.5 1 15 2 2.5 3 3.5 4
Re (-) Flow rate (ml/min)
c. Dh =750 um d. Dh =750 pm
1.5 T T 500 T T T T
— B Experimental ®  Experimental
®- Shah and London @ Shah and London ! ]
Muzychka and Yovanovich 400 H Muzychka and Yovanovich - . 4
e @ f=16/Re @ =16/Re e
1 - r
—~ & 300¢ = i
(. % 200k = =8
0.5¢ . > Cid
S | T
i S e 100 e
0 : . . o— : : : :
0 50 100 150 200 1 2 3 4 5
Re (-) Flow rate (ml/min)

Figure 6. Single phase pressure drop. Shah and London model from [42] and Muzychka and
Yovanovich model from [43]. (a) Fanning friction of channel with 1.050 mm x 0.5 mm cross section. (b)
pressure drop of channel with 1.050 mm x 0.5 mm cross section compared with predictive models. (c)
Fanning friction of channel with 1.500 mm x 0.5 mm cross section. (d) pressure drop of channel with
1.500 mm x 0.5 mm cross section compared with predictive models.

Table 2. Single phase pressure drop mean absolute error with prediction models.

Model MAE Channel 1 (D, =750 pm) MAE Channel 2 (D), = 677 pm)
Shah and London [42] 16.46% 17.62%
Muzychka and Yovanovich [43] 4.41% 3.35%

4.2. Two Phase Experimental Results

Global pressure drop has been used to determine the boiling flow regime or the boiling quality
in several contributions [2,5,29]. The advantage of this parameter is that it can be measured
relatively easily with the necessary precision as compared to temperature measurement. However,
pressure drop over the whole channel does not provide the local information. When two phase
experiments were performed, high oscillation in the channel pressure was expected due to the volume
expansion. Pressure drop oscillation during boiling is shown in Figure 7. The mass flux was fixed to
22.17 kg - s~ ! - m~2 for all four subplots and heat flux was increased from left to right, (a) g7 = 14.7
kW -m~2, (b) q” =383kW-m~2,(c)q” =592kW-m~2, and (d) g” = 93.9 kW - m~2. The black line
in each subplot denotes the pressure drop of the same mass flux at room temperature. Pressure drop is
a determining factor for the pump selection in the system design. Figure 7a illustrates the increase of
the pressure drop by almost an order of the magnitude at the same liquid mass flux when boiling is
happening in the microchannel, while drastic oscillations take place. This clearly highlights the need
for prediction tools and methods for estimating pressure drop in order to bring two phase boiling into
real world applications, especially in the design phase of new cooling devices. We observe that the
oscillation period and amplitude is bigger at lower heat flow g7 = 14.7 kW - m~2 and is becoming
more steady at higher heat flow like 47 = 93.9 kW - m 2. We observed in the high speed frames that in
q” = 14.7 kW - m~2, nucleation of single bubbles and enlargement (sometimes in reverse direction)
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happen more often. On the other hand, in relatively high heat fluxes, annular flow which was more
stable occurred all along the channel and therefore the oscillation amplitude was relatively low.

G =22.17 kg.s".m?

1500 a 1500 b- 1500 < 1500 d.
*14.7 KW.m™ *38.3 kW.m? 59.2 kW.m™ *93.9 kW.m™
0 kW.m™ 0 kW.m™ -0 kW.m™ o kwm?
. 1 . N PR IT
1000 . .1 1000} + 1000 1000 e 5%, 04
— s 3 H e 2 b 3% b
& e et ? ! k‘,,‘-’%:‘. Y g
~ [ o ditil
o * ) é i
CER SRCLEROE I L ,
500 AT L~ T S o 500 500
Je i:_ i &:-s ol
* . 3§ oo, .’ s
:;o:.. i c‘h :‘
:l '!.".!' %‘ $
0 - 0 0 0
0 5 10 0 5 10 0 5 10 0 5 10

t(s)

Figure 7. Example of differential pressure drop in different wall heat flux with a constant mass flux of
G=2217kg-s~ ! -m~2 in channel with D}, = 750 um. the black line indicates pressure drop in single
phase in room temperature with the same mass flux. (a). g7 = 14.7 kWm™2. (b). " = 383 kWm~2.
(). q” =592kWm2. (d). ¢ = 93.9 kWm 2.

Heat transfer coefficients were calculated as outlined above (Section 3) locally as well as averaged
over channel length. Calculated values for /i from experiments using mass flows between 22 and
95 kg -m~2-s~! and heat flux between 14.7 and 83.4 kW - m~2 in the two micro channel sizes of
hydraulic diameters of 677 pm and 750 um respectively are shown in Figure 8. The heat transfer
coefficients for the full channel length are shown in Figure 8a. In Figure 8b, only the channel length
after reaching saturation temperature (in which phase change transfer occurred) are plotted. The linear
regression mean heat transfer coefficient and heat flux is plotted in Figure 8 for (a) both single and two
phase region and (b) just two phase region. The presented data in this figure cover the entire range of
tested operating conditions. The slope of the linear regression corresponds to the mean surface and
saturation temperature difference AT;,. The result shows that the mean surface and fluid temperature
along the length of channel by considering both single and two phase regions can predict the heat
transfer coefficient reasonably. This is due to the fact that most of experiments were conducted under
subcooled boiling conditions. The heat flux is the superposition of both the liquid phase heat flux and
the evaporation heat flux.

Figures 9 and 10 illustrate the heat transfer coefficient versus vapor quality for the flow boiling
experiments in a microchannel with hydraulic diameters 750 um and 677 pm, respectively. They are
displayed in four subfigures, each of which refers to a specific mass flow rate. They show mostly similar
trend for different operating conditions. From the data in the figures, it is obvious that the higher
vapor quality range was achieved at lower mass flow rate (refer to the difference in the x-axis-scaling).
As the mass flux increases, the location where boiling starts moves further downstream, resulting in
decreased the vapor quality range (or evaporation efficiency). These decrements correspond to the
reduction in bubble frequency nucleation with increasing vapor quality and mostly bubbles tend to
coalesce to form bigger bubbles. The heat transfer performances improve with the heat flux due to
increasing the contribution of the nucleate boiling, as reported in many microchannel flow boiling
literature [1,16,28].
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Figure 8. Heat transfer coefficient versus heat flux. (a). Mean heat transfer coefficient for both single
and two phase regions versus mean heat flux. (b). Mean heat transfer coefficient of two phase regions
versus mean heat flux.

At relatively low mass flow rates and accordingly high heat flux rates (Figures 9a,b and 10a—c),
the highest heat transfer coefficient is observed at the start point of boiling for high heat flux rate due to
the relatively high heat transfer performance. Thereafter h decreases at very low value of vapor quality.
In relatively higher vapor quality range, the heat transfer coefficient rapidly increases with the vapor
quality. The higher the value of the heat flux, the larger the heat transfer coefficient that is obtained.
As reported in the literature, the minimum heat transfer coefficient happened at intermittent-annular
flow pattern transition with a lot of suspended bubbles [44]. The corresponding vapor quality to the
minimum heat transfer coefficient is called x,,;,,. For vapor quality higher than x,,;,,, a plateau trend
exhibit for the heat transfer coefficient, while the nucleate boiling decrease and the convective boiling
is dominant in this region. At relatively higher vapor quality region, when the flow regime is annular,
the heat transfer coefficient increases again with vapor quality and convective boiling becomes the
dominant heat transfer mechanism in this region. The ascending trend of h with x is seen at relatively
low mass and heat fluxes (Figure 9a,b). In the remaining cases, at the beginning, h increases weakly
with the vapor quality, which stays very low. This increase becomes steep at higher vapor quality
values in the transition to annular flow. The increasing trend of & with increasing x in the slug flow,
elongated bubble flow, and annular flow is due to the thin liquid film evaporation. Since the liquid
film dry-out did not occur in the experiments, the descending trend of h at higher vapor quality region
is not observed in Figures 9 and 10.

The pressure drop of flow boiling in microchannels, hydraulic diameter (a) 750 um and (b) 677
um, versus the outlet vapor quality for different mass flow rate is shown in Figure 11. As expected,
the pressure drop grows with increased mass flow rate in most of the cases, because increasing mass
flux results in increased frictional pressure drop. There is an exception for mass flux 66.53 kg - m~2 - s !
and 88.68 kg - m~2 - s~ 1. This abnormality can be considered as an experimental outlier. The pressure
drop also increases with outlet vapor quality. The outlet vapor quality arises due to higher heat flux
which induces higher acceleration pressure and also increases the frictional pressure drop.
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Figure 9. Local boiling heat transfer coefficient vs. vapor quality for channel 1 with fixed mass flux
in each subplot for channel 1.5 mm x 0.5 mm (D;, = 750 um). (a) G = 22.17 kg - m2.571(b)G=
4435kg-m2-571(c)G=66.53kg-m 2 s (d). G=88.68kg-m2-s L.
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Figure 10. Local boiling heat transfer coefficient vs. vapor quality for channel 2 with fixed mass flux
in each subplot for channel 1.05 mm x 0.5 mm (Dj, = 677 um). (a) G = 23.76 kg - m2.5s71(b)G=
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Figure 11. pressure drop vs. vapor. (a) channel cross Section 1.50 mm x 0.5 mm. (b) channel cross
Section 1.050 mm x 0.5 mm.

Figure 12a-d show the data points predicted by four selected heat transfer correlations within
+30% error bands. All the selected correlations are able to predict the heat transfer coefficient of
horizontal mini/microchannel flow boiling. The proposed correlations by Shah in 1977 [45], in 2017 [46],
and Lee and Mudawar [47] were developed with a focus on subcooled boiling. Lee and Mudawar [47]
conducted flow boiling experiments in horizontal, copper rectangular multimicrochannels with
hydraulic diameter range 0.176-0.466 mm. The experiments were conducted at high mass flux
670,6730 kg/m? - s and very low inlet temperature 0-30 °C. The correlation predicts 29.6% data
in +£30% error bands with a mean average error of 69.3% (Figure 12b). The proposed correlations by
Shah in 1977 [45] and 2017 [46] were developed based on a comprehensive database for different fluid
such as water, refrigerants and chemicals through pipes, annuli, and channels. These correlations are
presented in Figure 12a,c. Shah’s Correlation in 2017 [46] predicted 33.3% of the experimental data
with a mean average error of 59.2%. The correlation of Shah 1977 [45] predicted only 22.2% of data with
MAE of 46.9%. Mahmoud and Karayiannis [48] developed an empirical correlation based on 5152 data
points in a heat flux range of 1.7-158 kW /m? and mass flux range of 100~700 kg/m? - s. They proposed
this correlation for R134 flow boiling in vertical channels, but Sempertegui-Tapia and Ribatski [49]
showed that it was also in good agreement with rectangular horizontal microchannels. As seen in
Figure 12d, this correlation was able to predict 37% of the experiment data with a MAE of 39.7% and
shows the closest prediction compared to others, as it is obvious the performance of the correlation is
changed by decreasing the hydraulic diameter of the channel. As the hydraulic diameter decreases,
the correlation predicted the data more accurately. The overall prediction possibility of acquired results
versus available models is relatively poor. It is due to the fact that boiling mechanisms are heavily
dependent on experimental conditions which need prediction methods, which are extremely well
tailored to the experimental setup. On the other hand, a larger database should be generated to cover
several fluids and different operating conditions for assessing the available correlations.
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Figure 12. Comparison of experimental results with existing heat transfer correlations. Red squares
are acquired results from channel 1.5 mm x 0.5 mm and blue circles are acquired results from channel
1.05 mm x 0.5 mm. Dashed lines are depicting +30% error band. (a) [46] (b) [47] (c) [45] (d) [48].

4.3. Local Electrical Sensing

To complement the pressure and temperature measurements, another technology, namely electric
impedance measurements were introduced to characterize the flow regime, which has been identified
as a very important characteristic for modeling evaporation. In these experiments, the impedance
analyzer had an excitation AC frequency of 50 kHz with 1 V peak to peak voltage. The AC excitation
frequency of the measurements was fixed to 50 kHz and data acquisition was performed in 13.7 kHz
sampling rate. The sensors S1, S2, S3, and 54 were located along the channel as shown in Figure 13.
A Matrix of impedance measurements with the application of 30 Watt total power using flow rates
between 1 to 4 mL/min (22.17 to 88.68 kg - m~2 - s~ 1) four impedance sensor locations are shown
in Figure 14. The probability density of each corresponding impedance measurement is depicted in
Figure 15. The sensors are 1.7 mm wide and 2 mm long located on the 1.5 mm wide and 0.5 mm deep
channel. In previous publications, the sensor fabrication, channel details method, and data acquisition
with LCR-meter Hioki-IM3536 were reported [35,50,51]. In this work the test loop concept is similar
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but the LCR-meter is replaced with an impedance analyzer produced by Zurich Instruments (MFIA).
The advantage of this newly developed system compared to our previous publication [35] is the time
synchronization between the highspeed videos and impedance signals. The stainless steel channel is
the counter electrode to the ITO electrode on the glass lid. The videos are used as the ground truth and
the reference for signal analysis.

il

microchannel
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the channel.
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Figure 13. Location of the sensors center with respect to the channel inlet center located along
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Figure 14. Impedance measurements for 30 W experiments on channel 1.
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Figure 15. Probability Density of impedance measurements for 30 W experiments on channel 1.

To discuss the application of impedance measurements in correlation with high speed videos,
two measurements selected from Figure 14 and corresponding video are shown in Figure 16 for
1 mL/min (22.17 kg-m~2-s7!) and 2 mL/min (44.35 kg-m~2-s7!). In this figure, impedance
amplitude measurements for 1.6 s long synced with highspeed photos recorded in 10 kfps are shown
which are corresponding to S1 location that its center is located 16.75 mm after the channel inlet center
(see Figure 13 for sensor locations). In Figure 16a photos, we can see an example of annular flow in the
channel with some anomalies in the thin layer around the vapor cylinder in the middle of the channel.
The impedance level stays around ~170 kQ, but oscillations are observed due to instabilities in the flow.
In annular flow, meanwhile, the flow maintains the thin layer around the vapor core in the channel;
the changes in impedance level are attributed to thin layer size change. Moreover, temperature changes
at the liquid in the change temperature can be another cause for such oscillations. However, in the
probability density of the 30 Watt power and 1 mL/min (22.17 kg - m~2 - s~!) flow in S1 location as
shown in Figure 15, a big peak is located at 170.62 k() and the smaller peak is located at 127.34 kQ.
The smaller peak in impedance is attributed to the thickenings in the liquid thin layer around the
vapor cylinder (shown in Figure 16a at 26.1 ms and 27.4 ms). The higher peak is attributed to annular
flow with thin layer (such as Figure 16a pictures in 978 ms and 994 ms). In Figure 16b, an example of
typically occurring slug flow in the channel is illustrated. The video shows slugs nucleating around
the sensor location and filling the channel very quickly. This slugs generate similar vapor cylinders to
the annular flow; therefore, the impedance level when a slug is passing is similar to annular flow for
the same sensor. The PDF curve for this impedance measurement has two peaks which are located
in 73.9521 kQ and 173.04 kQ). These peaks are attributed to slug impedance and liquid impedance
that are periodically passing under the electrode area. In the videos, it was observed that some slugs
might have small interruptions. For example, the slug small discontinuity with liquid and followed by
another slug is showed in 416.6 ms in Figure 16b. The corresponding drop in impedance amplitude
to the same figure can be seen in the impedance signal as well. Another important observation is
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if slugs nucleate at some point after the senor/recording area, but the elongation is in reverse flow
direction and therefore the sensor detects a slug. For example, in Figure 16b, at the photo with 275 ms
timestamp the bubble nucleation point was not caught on the video since it was downstream of the
sensor(and recording area) towards outlet. However, the slug elongated against the flow direction
until it completely covered the sensor area. This highlights a limit of the impedance sensing method,
which is the inability to detect the direction of vapor flow. The same kind of output for the slugs that
were created before, in the sensor location, or after the sensor location was observed.

a. 30 Watt— 1 ml/min (22.17 kg.m %.s 1) -s1
—~200 T T T T T T
[
=< 150
N 100
ol 200 400 600 800 - I 1000 \\ 1200 1400 1600
! ~%(ms) ! .

Flow direction ‘

b. 30 Watt — 2 ml/min (44.35 kg.m %.s"1)-S1
',:,‘QOOL T T I T T I ]
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I t(ms) T =< _ DR
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Figure 16. Example of impedance measurements and high speed videos. (a). An example of annular

flow impedance measurement and high-speed pictures. (b). An example of slug flow with high
speed videos.

In Figure 17, an example of flow evolution along the channel with one power and flow rate set is
illustrated. This example shows that in first (S1) and second (S2) sensor locations, slug flow is observed.
The flow evolves to annular in S3 and S4 locations by absorbing more heat from the channel walls.
Comparison between locations S1 and S2 make clear that slugs occupy the channel for longer periods
of time at location S2 than at S1. This can be observed by probability density curves of these two
impedance signals and are validated by highspeed videos. It is more likely to have a high impedance
that lies in the range of 150 kQ to 200 kQ in S2 location as shown in Figure 17 that correlates with
vapor core with thin layer around it. The physical reason behind this behavior is the development of
bubbles and enlargement after liquid being exposed to the hot surface of the channel and absorbing
heat. In the experiments, bubbly flow was observed very rarely due to the very quick transition from
passing bubble to slugs happening when nucleation started in the channel.
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Figure 17. Change of the signal and flow regime along the channel in four sensor locations.

4.3.1. Slug Flow Analysis Using Impedance Sensors

Figure 18 shows the synchronized photos of a slug passing under the electrode area in parallel
with the impedance amplitude measurement. In this figure, it is shown that a bubble nucleates under
the sensing area and slightly moves toward the inlet. Then by absorbing more heat from the channel,
it starts expanding and turns into a long slug that covers the sensor area for almost 171 ms. The figure
highlights the match between the detected signal of the beginning (green line at 1226 ms) and the end
(red line with 1397 ms) of the slug phase. This video and impedance signal data points signal validation
assures the usage of signal processing to determine important values based on signal processing such
as slug period (7¢), liquid period(7;), and slug frequency freq = % Since the signal acquired in slug
flow looks like a bilevel signal, we can analyze the slugs beginning and end time in each sensor location.
It is important to know that each slug has a much larger size than the sensor area size and the rising
and the falling signal is very steep. Therefore, it is plausible to consider the results of the impedance
post processing as local or cross sectional information in the sensor center. The probability density
of a slug flow causes two major peaks as explained above in probability density curve; therefore,
by dividing the probability density data into two subhistograms optimized by minimum variance
in each subhistogram, the state levels can be derived. The post processing method details using
statelevels function in MATLAB for finding slug and liquid impedance levels are explained previously
in [36]. The statelevels function in our case was set with a 10 percent tolerance for detecting fall /rise
timestamps of each passing slug under the sensor. Thestatelevel is chosen high enough to include the
slugs that have thicker liquid around them and consequently, they show a lower impedance amplitude.
If the boundary levels are not wide enough (for example tolerance 1 or 2 percent), some slugs will
not be counted. A full signal for ~5 s is shown in Figure 19¢ that shows how the impedance level of
vapor might be at lower level for some slugs comparing to others. To evaluate quantitatively, an image
processing algorithm is needed that compares length of the slugs with the signals acquired. This is not
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possible at the moment due to high technical overhead and extreme flow instabilities. Increasing the
tolerance level to a higher number like 15 percent will not make a difference in the slug frequency.

In Figure 20, the impedance amplitude measurements of three different experiments are shown.
Pulse width in subfigures d to e denote 7y and pulse period is representative of ¢ + 7 for each pulse.
These values are calculated using functions in MATLAB called “pulseperiod” and “pulsewidth” with
tolerance level set to 10 percent. For the signals shown in Figure 20a—c, the mean slug frequencies are
respectively 3.85 Hz, 4.41 Hz, and 3.89 Hz and the mean duty cycles (7 /7) are 0.52, 0.63, and 0.31.
Duty cycle is a determining value in local heat transfer, since during thin film evaporation the heat
transfer can be one order of magnitude higher than in liquid single phase.
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Figure 18. Example of synchronized recorded photos and impedance amplitude measurement.
The green and red vertical lines are derived from signal post processing.

Bubble enlarged  Slug filling the Slug passing

A well known mechanistic model for predicting slug flow heat transfer coefficient is 3 zone
model created by Thome et al. [52] in 2004 and further developed by Magnini et al. [8] and used by
Falsetti et al. [33]. As Magnini et al. [8] reported, the model needs liquid slug length and bubble
frequency for the prediction of the heat transfer coefficient as represented in Figure 19. The updated
3-zone model predicts slug flow heat transfer based on Equation (16) in which hj;4,;4 denotes the
liquid parts passing heat transfer coefficient and h;;,,, represents heat transfer coefficient of the film.
However, in heat transfer studies such as the one reported by Magnini et al. [8] both values, for bubble
frequency and residence time, have been unknown due to the lack of a measurement method
and were estimated based on other values. It is evident considering Equation (16), that knowing
residence times of slug and liquid respectively play a pivotal role for taking advantage of Thome model.
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Figure 19. (a) Representation of slugs in updated 3-zone-model passing in microchannel boiling [8].
(b) Impedance measurements signal using implemented sensors [36]. (c) Slug flow impedance signal
for 5 s. The red arrow shows an example of a slug that has lower impedance level comparing to the

other slugs impedance amplitude.
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Figure 20. Example of electrical sensing for slug flow. The green vertical lines show the beginning

and of the slug and red vertical lines denote end of passing slug. (a) impedance amplitude with total

power 30 W and flow rate 2 mL/min (44.35 kg - m~2.s71) (in S1 location. (b) impedance amplitude
with total power 30 W and flow rate 3 mL/min (66.53 kg - m~2-s~1) in S3 location. (c) impedance
amplitude with total power 25 W and flow rate 2 mL/min (44.35 kg - m~2-s71) in S1 location. (d)
pulse width and pulse period with impedance amplitude with total power 30 W and flow rate 2

mL/min (44.35 kg-m~2-s71) in S1 location. (e) pulse width and pulse period with impedance

amplitude with total power 30 W and flow rate 3 ml/m in S3 location. (f). pulse width and pulse

period with impedance amplitude with total power 30 W and flow rate 2 mL/min (44.35 kg - m~2 - s~ 1)

in S1 location.
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1
hslug flow — T (Tliquidhliquid (Z) + Tfilmhfilm (Z)> (16)

Here, T = tfijy + tiiquia (see Figure 19). Magnini et al. [8] and Falsetti et al. [33] estimated slug
frequency by minimizing deviation between experimental and predicted heat transfer coefficient.
The t};5uiq and tf;;,, values are experimentally unknown when the prediction models were developed.
As we show with three experimental examples in Figure 20, the beginning and end of each slug can be
detected taking advantage of the acquired bilevel impedance signal. Therefore, pulse period (tf;;,)
and pulse width (Tfi;, + Tiiguiq) are derived from the impedance level detection and are shown in the
plots below the impedance measurements. Therefore, film evaporation heat transfer can be predicted
using Equation (17) [33]. &,y is liquid film thickness at the end of bubble and 4y is initial liquid film
thickness, that are calculated by corresponding equations as shown in detail in Appendix B.

= 71(1 In %
50 - 5end 5end

hfitm(z) (17)

On the other hand, the heat transfer in the liquid passing period is considered as single phase
heat transfer which can be predicted by several predictive models such as model suggested by
Shah [42] shown in Equation (18). We do keep in mind that the Reynolds number in slugs is not
necessarily reflecting the flow regime as in a developed single phase flow as was the condition when
shah formulated the equation.

hiiquia(z) = 0.023Re?'8Pr0'4Zl (18)

Using the above-mentioned correlations, and using results from the impedance measurements in

the updated 3-zone model (Figure 20a) for the experiment at 30 W and 2 mL/min (44.35 kg - m~2.s71)
in position S1, we obtain f gy, = 60.5 % and hyjguig = 2.68 Kk
average heat transfer coefficient is estimated to be 33.03 KkVH\{Z .
In this section, we have shown three main features and advantages of having integrated electrical
sensing over microchannel boiling test setups. First, we can recognize flow regime based on probability

density curve of impedance amplitude in each location [35]. Second, it is possible to see anomalies and

W, . Over a time period of 5.2 s, the local
m

disturbances in annular flow thin layer as shown in Figure 16a and slug disconnection as illustrated by
Figure 16b. These pieces of evidence were illustrated by synchronized images with the signals. Third,
we have shown that local sensing can function as input to improve the usage of heat transfer predictive
models. Impedance sensors response can be considered instant in comparison to temperature sensing
and has the advantage of scaling possibilities in comparison to visualization. In our case, we showed
how our sensors can shed a light on slug frequency and residence time and provide local information.
These values were used in a showcase as input into the 3 zone model by Thome [33,52].

5. Summary

In this work, we presented an experimental analysis of DI-water evaporation in a single
microchannel with hydraulic diameters of 750 and 677 pum, respectively. The test setup enabled
local electrical sensing and simultaneous video recording. Full thermodynamic data reduction analysis
of the results obtained in the test setup has been performed. Following points are concluded from the
results and observations. The local flow boiling heat transfer coefficient was experimentally calculated
and the influence of the experimental conditions such as the mass flow rate, heat flux and hydraulic
diameter of channel were evaluated. The heat transfer coefficient evolution with the vapor quality was
discussed for various combinations of heat flux and mass flow rate. The total pressure drop along side
the channel for single phase and boiling part was measured. The effect of the mass flow rate and heat
flux value on that was also evaluated.



Energies 2020, 13, 6473 23 of 30

1. It was found that the flow regime in the channels varied considerably between the selected
experimental conditions.

2. Two different regimes were identified for the value of the heat transfer coefficient with respect
to the vapor quality within the investigated mass and heat flux conditions: At the onset of
evaporation (0 < x < 0.05), the heat transfer coefficient increases with the vapour quality.
At intermediate vapor quality ranges (0.05 < x < 0.5), the heat transfer coefficient shows a
“U” shape profile. Since the dry-out did not occur in any of the experiments, the heat transfer
coefficient did not decrease to a value typical for gas systems.

3. For the heat transfer coefficient, a similar comparison was done using four correlations. It was
found that most correlations predicted the correct values for some points but failed in other
regimes. The correlation published by Mahmoud and Karayianis [48] showed the best predictive
performance over the whole range of experiments. There are relatively big mean absolute
error values observed between experimental results and prediction of the selected correlations.
We conclude that this is due to the relative unstable and different flow conditions.

4. It was affirmed that it is possible to find local information regarding the flow regime using
impedance sensors as we presented previously in [35]. In most conditions, slug flow and
annular flow regimes were observed in the channel. In the instances when bubbly flow was
found, it transformed into slug flow. The application of such sensing system was highlighted in
mechanistic models based on flow regime such as the model presented by Falsetti et al. [33].

5. The slug passing frequency and duty cycle are critical and usable information that was obtained
and cross checked with the synchronized videos. Thus for the case when slug flow is the
dominant regime in the channel, the information gleaned form the impedance spectroscopy,
namely residence time and bubble frequency at the sensor location is very useful.

6. Since it has been found that the flow regime is of paramount importance regarding the heat
transfer, the information gained from impedance spectroscopy is a useful tool to use the correct
correlations for a given set of experimental conditions.

At this stage, it is challenging to export meaningful feed in information from impedance
measurements for annular flow, especially regarding thin layer thickness. The major reason is having
high temperature oscillations and differences in each test, which results in change of absolute value in
impedance amplitude measurements. Moreover, we intend to use sensing elements as a direct feed-in
for active nucleation in the channel, for understanding the stabilization methods in microchannel
boiling. The connection between local void fraction and impedance sensing has been analyzed by
several researchers based on Maxwell-Garnett impedance approximations such as Rosa et al. [53].
By determining flow temperature, the mixture impedance has the potential to be further related to local
void fraction. This can be helpful to develop more accurate heat transfer models for each particular
flow pattern, especially annular flow.

Another interesting application for this sensing would be refining the heat transfer models by
such sensors. The authors have outlook of having time transient heat transfer of the test setup and
widening the application for the presented impedimetric sensing method as feed in for heat transfer
model. Further usage of different refrigerants in addition to DI-water as working fluid will make
experimental data sets bigger and consequently better comparison with predictive models will be
acquired. For example, Falsetti et al. suggests a flow pattern based mechanistic model based on
convective boiling in slug flow and annular flow [33]. In this model, two main flow regimes are
considered and the transition between slug to annular flow transition between them is solved by
using a smoothing function. Having such sensing system, it is possible to understand the flow
regime and take advantage of prediction models functioning based on flow regimes along the channel.
The possibility of using local electrical sensors as feed in for heat transfer models can extend the
possibility of studying heat transfer in microchannels, since larger piles of data can be analyzed
without personal supervision and visual inspection.
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Nomenclature
A cross-section area (mm?)
Cp heat capacity J-kg71- K1
Dy, hydraulic diameter (um)
f friction factor )
G mass flux (kg-m~2-s71)
h heat transfer coefficient (W-m~2.K™1)
hiy latent heat of vaporization (kg™
hep, channel height (um)
I electrical current (A)
k thermal conductivity (W-m~1.K1)
K pressure loss coefficient )
L channel length (mm)
q” heat flux (W-m~2)
0 power (Watt)
t time (s)
T temperature O
|4 electrical voltage V)
W channel width (nm)
x vapor quality, 7:::*:1' )
o void fraction )
B channel aspect ratio )
) liquid film thickness (nm)
U dynamic viscosity (Pa-s)
0 density (kg - m~3)
T time period (s)
(o two phase multiplier )
Dimensionless numbers
Bl Boiling number Bl = g” - hl_v1 -1t

Bond number

po Bo = (p; — pg)gDjo

C Chisholm parameter

X Martinelli parameter

r Froude number,
Fr=u-(g-L)7%°

Nu Nusselt number

Pe Peclet number, Pe = Re - Pr

Pr Prandtl number, Pr = i - ¢y k1

Re Reynolds number,

Re=G-Dj-pu~?

We Webber number, We = G(;:?)h
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Subscripts

acc acceleration
amb ambient
base base

ch channel

exp expansion
eff effective

fl fluid

ftp footprint

v vapor

in inlet

l liquid

loc local

loss heat loss

out outlet

sat saturation
sp single phase
tp two phase
w wall

sc sudden contraction
se sudden expansion
90° corner

Appendix A. Single Phase Pressure Drop

In case of having a single phase flow along the channel without any boiling and bubble formation,
the flow can be divided to developing flow and fully developed flow. L) is the length of single phase
flow and and L, denotes length of fully developed flow. In the developing region where Ls, < Ly,
both fluid acceleration and shear stress between wall and fluid contribute in pressure drop. In the fully
developed region, where Ls, > Ly, the friction factor is only resulted from shear stress between the
fluid and channel. Two correlations describe the pressure drop of the single phase flow in a rectangular
microchannel. The first model is proposed by Shah and London [42]. The length of the developing
fling flow is calculated using Equation (A1).

Lh = 0.05 x Re x Dh (Al)

In Shah and London model, the friction factor for developing flow in single phase is shown in
Equations (A2a) and (A2b).

1.089/(4L) + fs,qRes,q — 344(L) )70
J— 344(LE, )00 + S (A2a)
Resp,d ’ 1+1.31 x1074(L ;)
L
+ sp,dev

Lya= 71{35;7,11 D, (A2b)
and for fully developed flow friction factor is shown in Equation (A3) based on aspect ratio g = WEZ .

24 2 3 4 5
fopid = 7o (1 — 1.355B + 1.9478% — 1.7018° + 0.956* — 0.2548 ) (A3)

sp,d

In another correlation reported by Muzychka and Yovanovich [43,54], the characteristic length for
the developed flow is calculated by Equation (A4).

Ly = LjVARe ;3 (A4)
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where Re VA is

GVA
Re /5 = 0 (A5)

and L;f is calculated by channel aspect ratio

1928,

2
= anh ( i )} (A6)

2p

The friction factor for developing flow is shown by Equation (A7) as follows

Lj = 00822 x p(1+)*|

3.44

f=Re {<\/§>2+ <\/B(1+[%) 1 121§f5ﬁmnh(275)]>2] (A7)

and the friction factor in developed flow is calculated as following

(A8)

_ po1 12
Jona = Reﬂ[\/ﬁ(l +B)[1 — Ztann(f)] ]

Appendix B. Boiling Heat Transfer Coefficient Correlations

The equations corresponding to the heat transfer coefficient correlations used in Figure 12 are
shown as follows.
The correlation provided by Lim et al. at 2014 is shown by Equations (A9a) and (A9b) [55].

Reo-l%kl
hip = —— o (A9a)
P 300.117C%2 D,
Crr = 0.4905 + Fr(1 — x>134) (A9b)

The correlation that was provided by Shah is shown in Equation (A10a) in which the two phase
heat transfer is derived from single phase heat transfer coefficient as shown by Equation (A10b) [46].

hip = 230B0* gy ATet (A10a)

k
Crr = 0.023Re(£'8Pr0'4D—lh (A10b)

Another correlation by Shah [45] which is modified considering subcooling is shown
in Equation (Alla).

_ 05 B Ar(sks-

htp 0.54( 230Bo hsp AT ATy (Alla)
ATy =Tsar — Tf (A11b)
ATsat =Tyan — Tsat (Allc)

Lee and Mudawar [47] provide another correlation as shown in Equation (A12).

230300‘5hsp [0'828ATSM + 0'463ATs;?'04A2£71]
= AT (A12)
sa




Energies 2020, 13, 6473 27 of 30

As Falsetti et al. presented [33], for using 3-zone model, film thickness (Jy ) is considered

as the minimum of the §y s7p (film thickness for long traveling bubbles at a constant speed), dp acc
(film thickness for accelerating bubble), Jy v ;. (the thickness of the viscous boundary layer at the wall
in the liquid slug between two bubbles) [33]. The value of L;in Equation (A14c) can be different for
each single slug and in each specific point of the channel along z direction but having local impedance
measurements it can be derived by Equation (A13). L; can be calculated based on total mass flux based
on Equation (A13).

Ll = TI:); (A13)
1

d0,sTD _ 0.67Ca?/3 (Alda)
dy 1+ 3.13Ca?/3 + 0.504Ca0-672Re0589 — 0.352(CaRe)0-629

‘SO,ACC . 0.968C612/330a_0'414 (A14b)
dy 1+ 4.838Ca2/3Bo, 0414

do,vBL L\
=\ I’{e (Al4c)

Consequently, y for rectangular channel is derived from &y ;. by Equation (A15) [33].

50 _ ndhéo,circ (A15)
2(wch + hch)
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