
energies

Article

Novel Mode Adaptive Artificial Neural Network for
Dynamic Learning: Application in Renewable Energy
Sources Power Generation Prediction

Muhammad Ahsan Zamee and Dongjun Won *

Department of Electrical and Computer Engineering, Inha University, 100, Inha-ro, Michuhol-gu,
Incheon 22212, Korea; zamee.official@gmail.com
* Correspondence: djwon@inha.ac.kr

Received: 3 September 2020; Accepted: 1 December 2020; Published: 3 December 2020
����������
�������

Abstract: A reasonable dataset, which is an essential factor of renewable energy forecasting model
development, sometimes is not directly available. Waiting for a substantial amount of training data
creates a delay for a model to participate in the electricity market. Also, inappropriate selection of
dataset size may lead to inaccurate modeling. Besides, in a multivariate environment, the impact of
different variables on the output is often neglected or not adequately addressed. Therefore, in this
work, a novel Mode Adaptive Artificial Neural Network (MAANN) algorithm has been proposed
using Spearman’s rank-order correlation, Artificial Neural Network (ANN), and population-based
algorithms for the dynamic learning of renewable energy sources power generation forecasting model.
The proposed algorithm has been trained and compared with three population-based algorithms:
Advanced Particle Swarm Optimization (APSO), Jaya Algorithm, and Fine-Tuning Metaheuristic
Algorithm (FTMA). Also, the gradient descent algorithm is considered as a base case for comparing
with the population-based algorithms. The proposed algorithm has been applied in predicting the
power output of a Solar Photovoltaic (PV) and Wind Turbine Energy System (WTES). Using the
proposed methodology with FTMA, the error was reduced by 71.261% and 80.514% compared to
the conventional fixed-sized dataset gradient descent-based training approach for Solar PV and
WTES, respectively.

Keywords: dynamic learning; advanced particle swarm optimization; jaya algorithm; fine-tuning
metaheuristic algorithm; renewable energy power forecasting; spearman’s rank-order correlation;
artificial neural network

1. Introduction

The application of Machine Learning (ML) has broken the barrier of correctly predicting different
physical systems. The application of ML can be found in all sorts of industries. In today’s world,
renewable energy-based sources are an integrated part of almost any power system. The successful
prediction of renewable energy sources is highly essential for successful electricity market participation.
These sources are highly weather-dependent; therefore, predicting the plant output is a challenging
task. The research and application of ML for renewable energy sources plant output prediction has
been increased in recent years. The increase in the number of publications indirectly indicates the
necessity of such research, development in the ML field, and improved computational capacities.
In Sections 1.1 and 1.2, a brief discussion on the reviewed literature is conducted, where the necessity
and scope for more research on this field can be found. The actual and abbreviated forms of the
technical terms found in the reviewed literature and used in this paper are listed in Table 1.

Energies 2020, 13, 6405; doi:10.3390/en13236405 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13236405
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/23/6405?type=check_update&version=2

Energies 2020, 13, 6405 2 of 29

Table 1. List of abbreviations/acronyms found in reviewed literature and used in this work.

Full-Form Abbreviation Full-Form Abbreviation

Mode Adaptive Artificial Neural Network MAANN Stationary Wavelet Transform SWT
Artificial Neural Network ANN Random Forest RF

Advanced Particle Swarm Optimization APSO Machine Learning and Statistical Hybrid Model MLSHM
Fine-Tuning Metaheuristic Algorithm FTMA Auto-Gate Recurrent Unit Auto-GRU

Photovoltaic PV Deep Learning DL
Wind Turbine Energy System WTES Genetic Algorithm-based ANN GA-ANN

Machine Learning ML Radiation Classification Coordinate RCC
Feedforward Backpropagation FFBP Recurrent Neural Network RNN
Feedforward Neural Network FFNN Conjugated Gradient Neural Network CGNN

Multilayer Feed-Forward with Backpropagation Neural Networks MFFNNBP Neuro-Fuzzy System with Grid Partition NF-GP
Nonlinear Autoregressive Network with Exogenous Inputs-based

Neural Network NARXNN Enhanced PSO EPSO

Bayesian Regularization BR Deep Neural Network-based Meta-Regression and Transfer learning DNN-MRT
Levenberg-Marquardt LM Principal Component Analysis PCA
Deep Belief Network DBN Gradient Boosting Tree GBT

Long Short-Term Memory LSTM Least Absolute Shrinkage Selector Operator LASSO
Adaptive Neuro-Fuzzy Inference System ANFIS k Nearest Neighbor kNN

Adaptive Backpropagation ABP Extreme Gradient Boost xGBoost
General Regression Neural Network GRNN Artificial Intelligence and Numerical Weather Prediction AI-NWP

Backpropagation Neural Network BPNN Multiple Linear Regression MLR
Elman Neural Network ENN Neuro-Fuzzy system with Subtractive Clustering NF-SC
Multi-Layer Perceptron MLP Least-Square Support Vector Regression LSSVR

Particle Swarm Optimization PSO M5 Regression Tree M5RT
Particle Swarm Optimization-based Artificial Neural Network PSO-ANN Support Vector Machine SVM

Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton BFGSQN Correlation Coefficient CC
Resilient Backpropagation RB Autoregressive Integrated Moving Average with Explanatory Variable ARIMAX

Linear Regression LR Mean Squared Error MSE
Support Vector Regression SVR Bayesian Information Criterion BIC

Random Tree RT Mean Absolute Error MAE
M5P Decision Tree M5PDT Standard Deviation of the Errors SDE

Gaussian Process Regression GPR Sum of Squared Errors SSE
Physical Photovoltaic Forecasting Model P-PVFM Gradient Descent GD
Distributed Extreme Learning Machine DELM Decision Tree DT

Energies 2020, 13, 6405 3 of 29

1.1. Literature Review for Output Power Prediction of Solar Photovoltaic (PV) System

Reviewed literature for solar PV systems can be broadly categorized according to the
application of the variants of the neural network and hybrid methods. Under the category of
variants of the neural network, different models such as Feedforward Backpropagation (FFBP),
Feedforward Neural Network (FFNN), Multilayer Feed-Forward with Backpropagation Neural
Networks (MFFNNBP), etc., with different learning algorithms, namely, Bayesian Regularization (BR)
and Levenberg-Marquardt (LM), can be found in References [1–9]. In this category, the application
of advanced neural network models, that is, Deep Belief Network (DBN), Autoencoder [10],
Long Short-Term Memory (LSTM) [10–12], and Adaptive Neuro-Fuzzy Inference System (ANFIS) [13],
was also found. In Reference [14], Adaptive Backpropagation (ABP) is used for dynamic training
of the network. In the mentioned works, the proposed methods were compared with many
neural network-based models. For example, General Regression Neural Network (GRNN) [1],
Backpropagation Neural Network (BPNN), Elman Neural Network (ENN) [8], Multi-Layer Perceptron
(MLP) [10,12], etc., with different training algorithms, for instance, PSO-ANN [13], LM [4,6],
BR, Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGSQN), Resilient Backpropagation (RB),
etc. [6]. Also, many non-neural network-based methods have been applied for comparisons.
Linear Regression (LR) [2,7], persistent [2], Support Vector Regression (SVR), Random Tree (RT) [5],
M5P Decision Tree (M5PDT), Gaussian Process Regression (GPR) [7], and Physical Photovoltaic
Forecasting Model (P-PVFM) [10] are some examples of such methods.

Under the category of hybrid methods, Distributed Extreme Learning Machine (DELM), and
an information fusion rule-based hybrid model, have been found in Reference [15]. Similarly, other
hybrid methods such as ANN-PSO with K-mean clustering [16], Stationary Wavelet Transform (SWT)
with Random Forest (RF) [17], ML, image processing, and acoustic classification-based technique [18]
are also found. Machine Learning and Statistical Hybrid Model (MLSHM) and Auto-GRU are found
in Reference [19]. Authors have proposed a generalized ensemble model integrating Deep Learning
(DL) techniques for solar power forecasting in Reference [20]. Additionally, a separate ensemble
algorithm was assigned for clustering the dataset. The GA-ANN method for solar power forecasting
was proposed in Reference [21]. Finally, in Reference [22], a simple Radiation Classification Coordinate
(RCC)-LSTM-based algorithm for very short-term solar power forecasting was proposed, where the
proposed model has achieved better accuracy over other compared models.

1.2. Literature Review for Output Power Prediction of Wind Turbine Energy System (WTES)

In the case of WTES, the reviewed literature can be broadly classified into three categories.
Category one is the variants of neural networks, where the application of probabilistic neural
network with Recurrent Neural Network (RNN) [23], DBN [24], Conjugated Gradient Neural
Network (CGNN) [25], RNN [26], and Neuro-Fuzzy System with Grid Partition (NF-GP) [27] can be
found. Hybrid models of neural network class such as SVR with Enhanced PSO (EPSO)-ANN [28],
Deep Neural Network-based Meta-Regression and Transfer learning (DNN-MRT) [29], hybrid model
using Principal Component Analysis (PCA) and DL [30], hybrid LSTM [31], and LSTM-RNN [32]
are also found. Non-neural network-based ML algorithms, namely, CART-Bagging [33], Gradient
Boosting Tree (GBT) [34], Least Absolute Shrinkage Selector Operator (LASSO), k Nearest Neighbor
(kNN), Extreme Gradient Boost (xGBoost), RF and SVR [35], Artificial Intelligence and Numerical
Weather Prediction (AI-NWP) [36], Decision Tree (DT), and RF [37] are found, too. The mentioned
methodologies are mostly compared with Multiple Linear Regression (MLR) [28], persistence
approach [34], Neuro-Fuzzy system with Subtractive Clustering (NF-SC), Least-Square Support Vector
Regression (LSSVR), M5 Regression Tree (M5RT) [27], and Support Vector Machine (SVM) [37], etc.

Energies 2020, 13, 6405 4 of 29

1.3. Research Gaps and Motivation for the Proposed Methodology

The reviewed works have demonstrated the supremacy of ML/DL, and almost all the papers
have given importance to the size of the dataset, forecasting duration, forecasting methodology,
model performance, etc. But two important factors, which are dynamic learning (except References [14,17]
for solar PV and Reference [34] for WTES), and determination of output impacting dominant input
variables, also known as correlation analysis (except References [2,6,16,20,22] for solar PV and
Reference [32] for WTES) were not covered. Also, none of them were applied together. The necessity of
dynamic learning and correlation analysis is discussed in Sections 1.3.1 and 1.3.2. The discussed works
are summarized in Table 2, featuring different categories, proposed, and compared methodologies,
correlation analysis, and dynamic learning.

1.3.1. Necessity of Dynamic/Online Learning

Dynamic learning, which is commonly known as online learning, overcomes the problem of
model training with a big fixed-sized dataset. The use of gradient descent backpropagation for neural
network-based model training requires data division into multiple batches, as single batch training
using all the samples in the training set may not guarantee an optimal model. On the other hand,
dynamic learning trains the system with each entry of the data from the environment. An optimized
model from the previous data entry can be a near-optimal solution point for the current data entry,
making learning/training faster. The necessity of dynamic learning for renewable energy sources can
be understood from Figure 1 and the related explanation.

Energies 2020, 13, x FOR PEER REVIEW 5 of 30

model from the previous data entry can be a near-optimal solution point for the current data entry,

making learning/training faster. The necessity of dynamic learning for renewable energy sources can

be understood from Figure 1 and the related explanation.

Figure 1. Impact of dataset size on model error performance.

If the model is trained using a “small” sized dataset, although the error of the model can be well

below the acceptable error limit (black straight line), as the new data enters the system, due to lack of

training on similar data, the error of the model may surpass the acceptable limit. Thus, in the future,

a loss in profit may incur due to suboptimal performance. On the other hand, if a “big” sized dataset

is chosen, the participant will lose its profit during the (Big-Critical) sized dataset duration by not

participating in the market, as the model already reached its optimal state after the critical point (in

terms of error performance). A dynamic learning approach can be adopted to participate in the

market if the model error goes below the acceptable error limit. The model can stop participating,

then retrain, and re-participate if the error gets larger. The conceptual diagram of the dynamic

learning procedure can be understood from Figure 2.

Figure 2. Dynamic learning approach conceptual diagram.

As per the conceptual diagram, the forecasting model goes under the training/optimization cycle

to reduce the error between the actual output from the physical system and predicted output from

the forecasting model. The condition for training, training algorithms, etc., can be included inside the

'Forecasting model optimization' block. This block considers all the previous data entries for

optimization, as consideration of the current state will produce an optimal model for current input

data only, which will fail to perform efficiently in the presence of different data, or data similar to

previous/historical entries.

1.3.2. Necessity of Correlation Coefficient (CC) Analysis among the Input and Output Variables

Figure 1. Impact of dataset size on model error performance.

If the model is trained using a “small” sized dataset, although the error of the model can be well
below the acceptable error limit (black straight line), as the new data enters the system, due to lack
of training on similar data, the error of the model may surpass the acceptable limit. Thus, in the
future, a loss in profit may incur due to suboptimal performance. On the other hand, if a “big” sized
dataset is chosen, the participant will lose its profit during the (Big-Critical) sized dataset duration by
not participating in the market, as the model already reached its optimal state after the critical point
(in terms of error performance). A dynamic learning approach can be adopted to participate in the
market if the model error goes below the acceptable error limit. The model can stop participating,
then retrain, and re-participate if the error gets larger. The conceptual diagram of the dynamic learning
procedure can be understood from Figure 2.

Energies 2020, 13, 6405 5 of 29

Table 2. Summary of the reviewed literature.

Solar PV

Category Proposed Methodology Compared Methodologies Correlation Analysis Dynamic Learning

Variants of neural network
ANN (FFBP/FFNN/MFFNNBP/NARXNN)
[1–9] DBN [10], Autoencoder [11], LSTM

[10–12], ANFIS [13], ABP [14]

GRNN [1], LR [2,7], persistent [2], LM [4,6],
SVR, RT [5], BR, BFGSQN, RB etc. [6],

M5PDT, GPR [7], BPNN, BPNN-GA, ENN,
etc. [8], MLP [8,10], P-PVFM [10], SVM

[12], PSO-ANN [13]

Yes [2,6] Yes [14]

Hybrid Models

ANN-PSO with K-mean clustering [16],
DELM and information fusion rule combined
[15], SWT and RF combined [17], ML, Image
Processing, and acoustic classification-based
technique [18], MLSHM and Auto-GRU [19],
General ensemble model with DL technique

[20], GA-ANN [21], RCC-LSTM [22]

SVR [16], LSTM [22] Yes [16,20,22] Yes [17]

Wind Turbine Energy Systems

Category Proposed Methodology Compared Methodologies Correlation Analysis Dynamic Learning

Variants of neural network Probabilistic neural network with RNN [23],
DBN [24], CGNN [25], RNN [26], NF-GP [27] NF-SC, LSSVR, M5RT [27] Not found Not found

Hybrid Models
SVR and Hybrid SVR with EPSO-ANN [28],
DNN-MRT [29], PCA and DL [30], Hybrid

LSTM [31], LSTM-RNN [32]
MLR [28], Four multivariate model [31] Yes [32] Not found

Non-neural network ML CART-Bagging [33], GBT [34], ML [35],
AI-NWP [36], DT, and RF [37]

Persistence approach [34], LASSO, kNN,
xGBoost, RF and SVR [35], SVM [37] Not found Yes [34]

Energies 2020, 13, 6405 6 of 29

Energies 2020, 13, x FOR PEER REVIEW 5 of 30

model from the previous data entry can be a near-optimal solution point for the current data entry,

making learning/training faster. The necessity of dynamic learning for renewable energy sources can

be understood from Figure 1 and the related explanation.

Figure 1. Impact of dataset size on model error performance.

If the model is trained using a “small” sized dataset, although the error of the model can be well

below the acceptable error limit (black straight line), as the new data enters the system, due to lack of

training on similar data, the error of the model may surpass the acceptable limit. Thus, in the future,

a loss in profit may incur due to suboptimal performance. On the other hand, if a “big” sized dataset

is chosen, the participant will lose its profit during the (Big-Critical) sized dataset duration by not

participating in the market, as the model already reached its optimal state after the critical point (in

terms of error performance). A dynamic learning approach can be adopted to participate in the

market if the model error goes below the acceptable error limit. The model can stop participating,

then retrain, and re-participate if the error gets larger. The conceptual diagram of the dynamic

learning procedure can be understood from Figure 2.

Figure 2. Dynamic learning approach conceptual diagram.

As per the conceptual diagram, the forecasting model goes under the training/optimization cycle

to reduce the error between the actual output from the physical system and predicted output from

the forecasting model. The condition for training, training algorithms, etc., can be included inside the

'Forecasting model optimization' block. This block considers all the previous data entries for

optimization, as consideration of the current state will produce an optimal model for current input

data only, which will fail to perform efficiently in the presence of different data, or data similar to

previous/historical entries.

1.3.2. Necessity of Correlation Coefficient (CC) Analysis among the Input and Output Variables

Figure 2. Dynamic learning approach conceptual diagram.

As per the conceptual diagram, the forecasting model goes under the training/optimization cycle
to reduce the error between the actual output from the physical system and predicted output from
the forecasting model. The condition for training, training algorithms, etc., can be included inside
the ’Forecasting model optimization’ block. This block considers all the previous data entries for
optimization, as consideration of the current state will produce an optimal model for current input
data only, which will fail to perform efficiently in the presence of different data, or data similar to
previous/historical entries.

1.3.2. Necessity of Correlation Coefficient (CC) Analysis among the Input and Output Variables

Considering too many variables to develop a forecasting model increases the complexity. Also,
all the variables may not have a dominant impact on the output. CC calculation can be a useful
tool for determining dominant input variables. Application of Pearson correlation coefficient [38]
analysis or sensitivity analysis on a fixed dataset was found in the literature as a CC analysis tool.
Pearson correlation coefficient analysis works fine when a linear relationship between the considered
variables (input and output) exists. Also, due to dependency on the data sample size, the use of
CC analysis on a fixed-sized dataset may not represent the actual or stable relationship between the
variables (input and output). To overcome the problem of dynamical selection of dominant variables,
applications of tensor-based [39], autoregressive [40], and embedding-based methods [41] are found
in a few recent studies. The applications are useful for multi-plant forecasting and change detection
from multivariate time-series data from the smart grid considering the online/dynamic learning with
smaller feature space. However, the use of Autoencoder [41] with a neural network-based forecasting
model increases the complexity, as two different models (Autoencoder for feature extraction and
neural network for forecasting) need to train on such a case. Also, Autoencoder does not guarantee
the extracted features’ orthogonality; therefore, collinearity issues may exist in the reduced feature
space [41]. The use of tucker decomposition in the tensor-based method has limitations with rank
estimation, and the stability of the proposed method needs to confirm with different rank values [39].
Although these methods are beneficial, there always remains some scope to work with different
algorithms that are yet to be implemented and can be used effectively.

1.4. Contribution of This Research

Therefore, considering the discussed problems, in this work, a dynamic learning algorithm has
been proposed to train a variable structured ANN, which changes according to the selected dominant
input variables. Each combination of the input variables is defined as “Mode.” Thus, the proposed
algorithm has been named as “Mode Adaptive Artificial Neural Network (MAANN).” This adaptation
of the Modes is made through dynamic CC analysis using Spearman’s rank-order correlation [42]
algorithm. Spearman’s rank-order correlation algorithm performs robustly for both linear and nonlinear

Energies 2020, 13, 6405 7 of 29

variables. Dynamic use of this algorithm helps the operator to choose dominant input variables and
reveals the stability of the relationship between the variables. A stable relationship can be used to find
the optimal size of the dataset or training termination criteria.

Also, in contrast to the conventional gradient descent and Autoregressive Integrated Moving
Average with Explanatory Variable (ARIMAX) training technique, in this work, dynamic learning
methodology has been proposed using some recent metaheuristic algorithms. Metaheuristic algorithms
overcome the premature convergence and local minimum trapping problem of the gradient descent
algorithm. Also, metaheuristic algorithms iteratively improve the result using the population set.
Additionally, in this work, to avoid premature convergence, modification in the population-based
algorithms has also been introduced, which is described in Section 2.

Therefore, the contributions of the work can be summarized as follows:

i. Determination of dominant input variables and data stability analysis using the dynamic
application of Spearman’s rank-order correlation.

ii. Application of recent population-based algorithms for better accuracy of the forecasting models
compared to the conventional approach (fixed-sized dataset training with gradient descent and
ARIMAX algorithm).

iii. Algorithm validation by application on two different types of renewable sources of different
locations, with different numbers of input variables and dataset size.

The paper has been organized as follows: in Section 2, related theories for the proposed algorithm
are discussed. The selection of the dominant input variables and dataset stability determination using
the Spearman rank-order correlation is also discussed in Section 2. In Section 3, the flow chart of the
proposed algorithm is presented in detail. Section 4 consists of a description of the sites and the dataset,
experimental results discussion, and analysis. Finally, in Section 5, the conclusion and scopes for the
future works are presented. Before explaining the major sections, the list of the symbols frequently
used in this article has been listed and shown in Table 3.

Table 3. List of symbols used in this work.

Symbol Description Symbol Description

n Number of input variables pb
g Best remembered swarm positions

N Number of hidden layer nodes Wmax and Wmin Maximum and Minimum value of inertia

f Output function of the single-layer feedforward
neural network Max gen Maximum number of generations

OW Output layer weight
vector ∈ R1xN pop Size of the population for the metaheuristic

optimizations

ξ(.) Hidden layer activation
function p and r Random variables associated with the FTMA

exploitation and randomization stage

IW Input layer weight
matrix ∈ RNxn ρ Spearman’s rank-order correlation

y Arbitrary input variable d Rank wise distance between two
variables

OB Bias of the output layer th Correlation coefficient Threshold
value

j Input variable sample number z Predefined number of sample entry when ANN
training can be stopped

l Number of observations/lengths of the input
variables eph Error threshold limit for training

Ŷ and Y predicted and actual output of the ANN Z′ Min–Max feature scaling variable
x solution particle Xmax, Xmin Minimum and Maximum value of the input variable

i Location/position of any arbitrary solution from the
set of the solution vector Ymax, Ymin Minimum and Maximum value of the output variable

k any parameter (weights/biases) within the neural
network which needs to be optimized m Arbitrary occurrence number of a specific Mode

g Generation number M Mode number
rand Random number (ranges within 0–1) k′ Number of parameters to be estimated

v Velocity of the solution particle L̂
Maximized value of the likelihood function of

the Model

w Inertia (ranges within 0–1) P Number of parameters (weights and biases) in ANN in
case of BIC

c1 and
c2

Cognitive and social parameters(range between 0
and 2) σ Standard deviation

pi
g Best remembered individual position µ Mean of the population

Energies 2020, 13, 6405 8 of 29

It should be mentioned that the solution particle x changes with the change in the optimization
iteration cycle. Therefore, the changed values of solution positions are mentioned using the super and
subscripts, which can be found in the descriptions of the optimization algorithms of Section 2.2.

2. Related Theories for the Proposed Methodology

ANN, metaheuristic algorithms, and Spearman’s rank-order correlation are the heart of the
proposed dynamic learning algorithm. Therefore, in this section, an introduction to the concepts
are given.

2.1. Artificial Neural Network (ANN)

Among the different ANN structures found in many studies in the literature, feedforward neural
network [1,3,14] has been used in this work. The internal weights and biases will be varied according to
the choice of input variables by correlation analysis. Figure 3 shows the ANN model in a vector-matrix
notational-based structure.

Energies 2020, 13, x FOR PEER REVIEW 8 of 30

It should be mentioned that the solution particle 𝑥 changes with the change in the optimization

iteration cycle. Therefore, the changed values of solution positions are mentioned using the super

and subscripts, which can be found in the descriptions of the optimization algorithms of Section 2.2.

2. Related Theories for the Proposed Methodology

ANN, metaheuristic algorithms, and Spearman’s rank-order correlation are the heart of the

proposed dynamic learning algorithm. Therefore, in this section, an introduction to the concepts are

given.

2.1. Artificial Neural Network (ANN)

Among the different ANN structures found in many studies in the literature, feedforward neural

network [1,3,14] has been used in this work. The internal weights and biases will be varied according

to the choice of input variables by correlation analysis. Figure 3 shows the ANN model in a vector-

matrix notational-based structure.

Figure 3. Vector-matrix notation based structural representation of ANN.

The following equation can describe the output of a single layer feed forward neural network:

f(𝑦𝑗) = 𝑂𝑊. 𝜉(𝐼𝑊. 𝑦𝑗 + 𝐼𝐵) + 𝑂𝐵, 𝑗 = 1,……… , 𝑙 (1)

where 𝑦𝑗 is the 𝑗𝑡ℎ sample input of the input variable 𝑦. The hyperbolic tangent function has been

used as the hidden layer activation function in this work [43]. In the output layer, a linear activation

function is used. Once the neural network's predicted output is calculated using Equation (1), next,

the error between the actual and predicted output should be calculated. In this work, to calculate the

error during the learning process, Mean Squared Error (MSE) is considered:

MSE = 𝑎𝑟𝑔𝑚𝑖𝑛
(𝐼𝑊,𝐼𝐵,𝑂𝑊,𝑂𝐵)

1

𝑙
∑(𝑌(𝐼𝑊, 𝐼𝐵, 𝑂𝑊,𝑂𝐵)̂

𝑗 − 𝑌𝑗)
2

𝑙

𝑗=1

 (2)

where, 𝑌̂𝑗 and 𝑌𝑗 are the predicted and actual output of the 𝑗𝑡ℎ sample respectively, and 𝑙 is the

number of training samples. The objective is to find the optimal values of weights {𝐼𝑊,𝑂𝑊}, and

biases {𝐼𝐵, 𝑂𝐵}, such that the error is reduced.

2.2. Optimization Algorithms

As discussed earlier, in this work, metaheuristic algorithms are used for the optimization

(commonly known as training of ANN) of MAANN. Metaheuristic algorithms are population-based

algorithms, and many of them are characterized by exploration and exploitation features. The

exploration and exploitation feature improves optimization performance. The definition of

Figure 3. Vector-matrix notation based structural representation of ANN.

The following equation can describe the output of a single layer feed forward neural network:

f
(
y j

)
= OW.ξ

(
IW.y j + IB

)
+ OB, j = 1, , l (1)

where y j is the jth sample input of the input variable y. The hyperbolic tangent function has been
used as the hidden layer activation function in this work [43]. In the output layer, a linear activation
function is used. Once the neural network’s predicted output is calculated using Equation (1), next,
the error between the actual and predicted output should be calculated. In this work, to calculate the
error during the learning process, Mean Squared Error (MSE) is considered:

MSE = argmin
(IW,IB,OW,OB)

1
l

l∑
j=1

(
ˆY(IW, IB, OW, OB) j −Y j

)2
(2)

where, Ŷ j and Y j are the predicted and actual output of the jth sample respectively, and l is the number
of training samples. The objective is to find the optimal values of weights {IW, OW}, and biases
{IB, OB}, such that the error is reduced.

2.2. Optimization Algorithms

As discussed earlier, in this work, metaheuristic algorithms are used for the optimization
(commonly known as training of ANN) of MAANN. Metaheuristic algorithms are population-based

Energies 2020, 13, 6405 9 of 29

algorithms, and many of them are characterized by exploration and exploitation features.
The exploration and exploitation feature improves optimization performance. The definition of
exploration and exploitation properties can be found in Reference [44]. A general-purpose universal
optimization strategy is impossible according to the No Free Lunch theory [45]; hence, there is always
some scope to improve the result using new optimization techniques. Thus, three recent algorithms
with fewer hyperparameters were chosen in this work. The chosen algorithms are: Jaya Algorithm
(2016, hyperparameter: 0), Advanced Particle Swarm Optimization (APSO) (2018, hyperparameter: 3),
and Fine-Tuning Metaheuristic Algorithm (FTMA) (2019, hyperparameter: 2).

2.2.1. Description of Jaya Algorithm

Jaya algorithm was proposed by Rao in 2015 [46]. It is a gradient-free algorithm and does not
contain any hyperparameter. The essence of the Jaya algorithm is the Equation (3):

xk,i,g+1 = xk,i,g + rand
(
xk,best,g −

∣∣∣xk,i,g

∣∣∣)− rand
(
xk,worst,g −

∣∣∣xk,i,g

∣∣∣) (3)

where xk,i,g is the ith candidate’s value of the kth variable at the gth iteration, xk,best,g and xk,worst,g are the
best and worst values of the kth variable at the gth iteration, and xk,i,g+1 is the updated position/value
of the candidate solution.

2.2.2. Description of APSO

PSO [47] is a population-based stochastic optimization technique developed by Eberhart and
Kennedy in 1995, whereas APSO was proposed in 2018 by Khan et al. [48]. The velocity and position
updating equations of APSO are shown in Equations (4) and (5), respectively. Inertia, w, in Equation (4)
can be controlled according to Equation (6):

vi
g+1 = wvi

g + c1rand
(
pi

g − xi
g

)
+ c2rand

(
pb

g − xi
g

)
+ w

(c1

c2

)(
pi

g − pb
g

)
(4)

xi
g+1 = xi

g + vi
g+1 (5)

wg = Wmax −
(Wmax −Wmin)(g− 1)

Max gen
(6)

The original velocity equation of PSO is modified by adding a third term on the right-hand side of
Equation (4). The additional term is used to minimize the particles’ positions iteratively by increasing
the velocity to reach the optimal solution faster [48]. In Equations (4) and (5), xi

g, vi
g, and xi

g+1, vi
g+1 are

the ith particle positions and velocities in the gth and g+ 1th generations. A description of the remaining
variables can be found in Table 3.

2.2.3. Description of FTMA

FTMA was proposed by Allawi et al. in 2019 [49] to solve global optimization problems.
The fundamental equations describing the algorithm that is exploration, exploitation, and randomization
are shown in Equations (7)–(9):

xexploration(k) = xg
i (k) + rand

(
xg

j (k) − xg
i (k)

)
, i = 1, 2, , pop and i , j (7)

xexploitation(k) = xg
i (k) + rand

(
xg

best(k) − xg
i (k)

)
(8)

xrandomization(k) = xg
i (k) + rand

(
xlower(k) + rand(xupper(k) − xlower(k)) − xg

i (k)
)

(9)

where xexploration, xexploitation, and xrandomization are the solutions obtained from the exploration, exploitation,
and randomization stage, respectively. xg

i , xg
j , and xg

best are the ith, jth, and best particle’s solution from

Energies 2020, 13, 6405 10 of 29

the gth generation. xupper and xlower are the upper and lower bound of the search space. Based on the
performance achieved by the solution obtained from the exploration stage, along with conditional
random variables p and r [49], the exploitation and randomization stage will be performed. FTMA is
faster than other algorithms because, if the solution is improved in one step, other steps can be
avoided. Also, convergence towards the optimal solution is faster due to the application of 3 different
position updating equations in each iteration. The flowcharts/pseudocodes of the population-based
algorithms can be found in the corresponding literature [46–49]. As the population-based algorithms try
to converge towards a smaller boundary or global solution with more and more training, early solution
convergence may occur. This phenomenon of early convergence and a solution to this problem is
discussed below.

2.2.4. Problem of Early Convergence and Solution

If a model train/retrains for each entry or new arrival of data, the optimal solution vectors of
a model may trap into one another after a certain cycle. The trapping reduces the effective solution
population size, which can be understood from Figure 4. Figure 4a shows the initial condition or any
random state of the solutions within the preferred solution boundary (green line). The orange circle
can be considered as the global solution boundary as more solutions tend to reach that ball. Once all
the solutions have reached the ball after a certain iteration, to minimize the distance between the best
solution, there will be a possibility that one or more solutions trap into another solution, and that will
effectively reduce the number of solutions (Figure 4b).

Energies 2020, 13, x FOR PEER REVIEW 10 of 30

along with conditional random variables 𝑝 and r [49], the exploitation and randomization stage will

be performed. FTMA is faster than other algorithms because, if the solution is improved in one step,

other steps can be avoided. Also, convergence towards the optimal solution is faster due to the

application of 3 different position updating equations in each iteration. The flowcharts/pseudocodes

of the population-based algorithms can be found in the corresponding literature [46–49]. As the

population-based algorithms try to converge towards a smaller boundary or global solution with

more and more training, early solution convergence may occur. This phenomenon of early

convergence and a solution to this problem is discussed below.

2.2.4. Problem of Early Convergence and Solution

If a model train/retrains for each entry or new arrival of data, the optimal solution vectors of a

model may trap into one another after a certain cycle. The trapping reduces the effective solution

population size, which can be understood from Figure 4. Figure 4a shows the initial condition or any

random state of the solutions within the preferred solution boundary (green line). The orange circle

can be considered as the global solution boundary as more solutions tend to reach that ball. Once all

the solutions have reached the ball after a certain iteration, to minimize the distance between the best

solution, there will be a possibility that one or more solutions trap into another solution, and that will

effectively reduce the number of solutions (Figure 4b).

(a) (b)

Figure 4. (a) Initial positions of the population of the solution vector, and (b) trapping of the

population due to continuous optimization.

For example, if a system has a solution with a population size of 10, trapping into one of the

solutions will reduce the effective population size to 9. Initially, trapping may suggest that the

population vector has reached the global solution, but this may not always be true because

metaheuristic algorithm performance is affected by the choice of hyperparameters. The selection of

hyperparameters controls the speed of the population to move from one position to another. It may

be possible that for the considered choice of hyperparameters, the solution vector may have missed

any optimal location within the search space. Therefore, a modification in the application of

metaheuristic has been proposed in this work; that is, whenever local trapping of one or more

solutions occurs, a random solution against those solutions will be created within the search space,

which in turn also create more opportunity to explore the search space. The modified portion of the

algorithm is given in the Algorithm 1.

Algorithm 1 Duplicate Solution Removal Algorithm

 1: 𝒇𝒐𝒓 𝑔 = 1: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 2: 𝒇𝒐𝒓 𝑝 = 1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 3: 𝒊𝒇 𝐽(𝑝, 𝑔) == 𝐽(𝑞, 𝑔),𝑊ℎ𝑒𝑟𝑒 𝑝 ≠ 𝑞

 4: 𝐽(𝑝, 𝑔) = 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

 5: 𝒆𝒏𝒅 𝒊𝒇

 6: 𝒆𝒏𝒅 𝒇𝒐𝒓

Figure 4. (a) Initial positions of the population of the solution vector, and (b) trapping of the population
due to continuous optimization.

For example, if a system has a solution with a population size of 10, trapping into one of
the solutions will reduce the effective population size to 9. Initially, trapping may suggest that the
population vector has reached the global solution, but this may not always be true because metaheuristic
algorithm performance is affected by the choice of hyperparameters. The selection of hyperparameters
controls the speed of the population to move from one position to another. It may be possible that
for the considered choice of hyperparameters, the solution vector may have missed any optimal
location within the search space. Therefore, a modification in the application of metaheuristic has been
proposed in this work; that is, whenever local trapping of one or more solutions occurs, a random
solution against those solutions will be created within the search space, which in turn also create
more opportunity to explore the search space. The modified portion of the algorithm is given in the
Algorithm 1.

Energies 2020, 13, 6405 11 of 29

Algorithm 1 Duplicate Solution Removal Algorithm.

1: for g = 1 : generation
2: for p = 1 : population
3: if J(p, g) == J(q, g), Where p , q
4: J(p, g) = xmin + rand(xmax− xmin)
5: end if
6: end for
7: end for

2.3. Spearman’s Rank-Order Correlation Analysis

Spearman’s rank-order correlation analysis between variables a and b can be mathematically
expressed as:

ρ(a, b) = 1−
6
∑

d2

l(l2 − 1)
(10)

The variables a and b can be placed in two different columns of a table according to their sequence.
The element of each variable a and b in the corresponding columns can be again ranked in ascending
order, meaning that the highest and lowest value of a variable or column will be of the lowest and
highest rank, respectively. The distance (d) of the variables a and b for any data j can be simply
calculated by d j = rank(a j) − rank(b j). The numerical calculation procedure can also be obtained from
Reference [50]. Spearman’s correlation coefficient value varies between –1 (perfect negative correlation)
to +1 (perfect positive correlation). The operator can set a threshold of CC value to choose a dominant
variable. If the absolute CC value exceeds the threshold, then the corresponding variable can be chosen,
or else, it can be discarded from the optimization process. Mathematically,

input variable =
{
a
∣∣∣∣∣∣ρ(a, b)

∣∣∣〉th,ρ(a, b)εR
}

(11)

In this work, upon the arrival of each new data, the CC value will be updated. The procedure
of dynamic analysis of the CC to determine the dominant input variables can be understood from
Figure 5.

Energies 2020, 13, x FOR PEER REVIEW 11 of 30

7: 𝒆𝒏𝒅 𝒇𝒐𝒓

2.3. Spearman’s Rank-Order Correlation Analysis

Spearman’s rank-order correlation analysis between variables a and b can be mathematically

expressed as:

𝜌(𝑎, 𝑏) = 1 −
6∑𝑑2

𝑙(𝑙2 − 1)
 (10)

The variables a and b can be placed in two different columns of a table according to their

sequence. The element of each variable a and b in the corresponding columns can be again ranked in

ascending order, meaning that the highest and lowest value of a variable or column will be of the

lowest and highest rank, respectively. The distance (𝑑) of the variables a and b for any data 𝑗 can be

simply calculated by 𝑑𝑗 = rank(𝑎𝑗) − rank(𝑏𝑗). The numerical calculation procedure can also be

obtained from Reference [50]. Spearman's correlation coefficient value varies between –1 (perfect

negative correlation) to +1 (perfect positive correlation). The operator can set a threshold of CC value

to choose a dominant variable. If the absolute CC value exceeds the threshold, then the corresponding

variable can be chosen, or else, it can be discarded from the optimization process. Mathematically,

input variable = {𝑎||𝜌(𝑎, 𝑏)| > 𝑡ℎ, 𝜌(𝑎, 𝑏)𝜖𝑅} (11)

In this work, upon the arrival of each new data, the CC value will be updated. The procedure of

dynamic analysis of the CC to determine the dominant input variables can be understood from Figure

5.

Figure 5. Conceptual diagram of change in CC between two variables. (a) Scatter plot representation

with the change in data size, and (b) dynamic change as the data size grows with time.

Figure 5 shows the change in CC between two variables with the change in data size. Analyzing

the four quadrants of Figure 5a, it can be understood that, with the increase in data size (top left to

bottom right), the CC also changes (from 0.82 to 0.27). The change in CC values as per the change in

data size or increase in number of days can be graphically plotted as shown in Figure 5b, where a

threshold parameter has been shown using a red straight line. With respect to the threshold

parameter, with time, as the dataset’s size grows, a variable may fluctuate around the state of

dominance and non-dominance. By considering the state of dominance and non-dominance, the

structure of the ANN can be adapted.

3. Proposed Algorithm for Dynamic Learning

In this section, the proposed algorithm is discussed, which is developed using the theories

discussed in the previous section. The proposed algorithm is shown using the flowchart in Figure 6.

Figure 5. Conceptual diagram of change in CC between two variables. (a) Scatter plot representation
with the change in data size, and (b) dynamic change as the data size grows with time.

Figure 5 shows the change in CC between two variables with the change in data size. Analyzing the
four quadrants of Figure 5a, it can be understood that, with the increase in data size (top left to bottom
right), the CC also changes (from 0.82 to 0.27). The change in CC values as per the change in data size
or increase in number of days can be graphically plotted as shown in Figure 5b, where a threshold

Energies 2020, 13, 6405 12 of 29

parameter has been shown using a red straight line. With respect to the threshold parameter, with time,
as the dataset’s size grows, a variable may fluctuate around the state of dominance and non-dominance.
By considering the state of dominance and non-dominance, the structure of the ANN can be adapted.

3. Proposed Algorithm for Dynamic Learning

In this section, the proposed algorithm is discussed, which is developed using the theories
discussed in the previous section. The proposed algorithm is shown using the flowchart in Figure 6.
The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed briefly.Energies 2020, 13, x FOR PEER REVIEW 13 of 30

Figure 6. Flow chart for the dynamic learning algorithm for renewable energy sources power

generation prediction.

3.2. Blocks 2–6 (Data Collection and Sequential Entry, Feature Scaling and Correlation Analysis, Mode

Consecutiveness Check)

In block 2, data from the electric grid (numerical weather data and synchronized plant power

generation data) are taken and sequentially entered for dynamic learning purposes. Block 3 performs

feature scaling to normalize the variables that are measured on different scales. Among many

normalization methods, such as standard score, standardized moment, Min–Max feature scaling, etc.

[51], Min–Max feature scaling has been selected. Mathematically, it can be expressed as:

𝑍′ = 𝑌𝑚𝑖𝑛 +
(y − 𝑋𝑚𝑖𝑛)(𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 (13)

The maximum–minimum value of input (𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛) and output (𝑌𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛) parameters needs

to be updated at each sample entry as system knowledge is not a priori. In block 4, to choose a Mode

from all possible Modes, CC analysis among the variables must be conducted. The consecutiveness

of a Mode is checked in block 5. By consecutiveness analysis, if a Mode remains stable/unchanged for

a predefined number of sample entries (z), the relation between an input and output variable can be

considered to reach the steady-state condition. At this condition, the operator can stop the learning

procedure (block 6) and conduct a comparative analysis of the model’s performance. In the flow

chart, blocks 5, 6, 13, and 14 are represented with the dotted box. This means these blocks are optional,

as one can continue to train the model for an infinitely long sequence of data entry.

Figure 6. Flow chart for the dynamic learning algorithm for renewable energy sources power
generation prediction.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output
variables, the ANN network configuration (number of hidden layers, number of neurons in each
layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and total
number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

Total number o f Modes =
n∑

y=1

nCy = nC1 + nC2 ++ nCn (12)

Energies 2020, 13, 6405 13 of 29

where n is the number of input variables—the number of input variables in any ‘Mode’ may vary from
one to n. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 Variable N

1 4 × × × ×

2 × 4 × × ×

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

Energies 2020, 13, x FOR PEER REVIEW 12 of 30

The flowchart consists of 14 blocks, and in this section, the functions of each block are discussed

briefly.

3.1. Block 1 (System Initialization)

In this block, the designer must decide the maximum possible number of input and output

variables, the ANN network configuration (number of hidden layers, number of neurons in each

layer, weights, biases, activation function, etc.), metaheuristic optimization hyperparameters, and

total number of input combinations.

The total number of input combinations (Mode) can be mathematically expressed as:

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑠 = ∑𝑛𝐶𝑦

𝑛

y=1

= 𝑛𝐶1
+ 𝑛𝐶2

+ ⋯……+ 𝑛𝐶𝑛
 (12)

where 𝑛 is the number of input variables—the number of input variables in any ‘Mode’ may vary

from one to 𝑛. A tabular description of the Mode is presented in Table 4.

Table 4. Input combinations under different Modes for an arbitrary system.

Mode No
Inputs

Variable 1 Variable 2 Variable 3 ….. Variable N

1 ✔ ✖ ✖ ✖ ✖

2 ✖ ✔ ✖ ✖ ✖

n ✔ ✔ ✔ ✔ ✔

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the

system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in

the system output variable.

M 4 4 4 4 4

Table 4 can be interpreted as such that if Mode 1 is chosen, input 1 is solely responsible for the
system’s output change. Similarly, if Mode M is chosen, all the inputs are responsible for changes in
the system output variable.

3.2. Blocks 2–6 (Data Collection and Sequential Entry, Feature Scaling and Correlation Analysis,
Mode Consecutiveness Check)

In block 2, data from the electric grid (numerical weather data and synchronized plant power
generation data) are taken and sequentially entered for dynamic learning purposes. Block 3 performs
feature scaling to normalize the variables that are measured on different scales. Among many
normalization methods, such as standard score, standardized moment, Min–Max feature scaling,
etc. [51], Min–Max feature scaling has been selected. Mathematically, it can be expressed as:

Z′ = Ymin +
(y−Xmin)(Ymax −Ymin)

(Xmax −Xmin)
(13)

The maximum–minimum value of input (Xmax, Xmin) and output (Ymax, Ymin) parameters needs
to be updated at each sample entry as system knowledge is not a priori. In block 4, to choose a Mode
from all possible Modes, CC analysis among the variables must be conducted. The consecutiveness of
a Mode is checked in block 5. By consecutiveness analysis, if a Mode remains stable/unchanged for a
predefined number of sample entries (z), the relation between an input and output variable can be
considered to reach the steady-state condition. At this condition, the operator can stop the learning
procedure (block 6) and conduct a comparative analysis of the model’s performance. In the flow chart,
blocks 5, 6, 13, and 14 are represented with the dotted box. This means these blocks are optional, as one
can continue to train the model for an infinitely long sequence of data entry.

3.3. Blocks 7–9 (Mode Occurrence Check, Solution Search Space Generation, and Evaluation of
Model Performance)

If a Mode occurs for the first time, the algorithm will move to block 8 and generate a random
solution according to the random distribution equation [52]. To generate a randomly distributed
population programmatically, the following equation can be used:

→
x = xmin + randno. o f solutionsX1(xmax − xmin) (14)

where,
→
x the initial uniform randomly generated solution vector, randno. o f solutionsX1 is a uniform

distribution column vector, and xmax and xmin are boundary values of the initial search space.
If the Mode occurred for mth times (m|1 < m < z), the algorithm will move to block 9. Then,

the model performance under the current data entry will be evaluated using the optimal solution from
the Mode’s previous occurrence, which increases the probability of faster convergence. Mathematically,

Energies 2020, 13, 6405 14 of 29

⇀
X0

M

m =
⇀

X0pt
M

m−1 (15)

⇀
X0

M

j and
⇀

X0pt
M

j−1 are the initial solution and optimized solution vector of Mode M, respectively.

3.4. Blocks 10–14 (Error Analysis, MAANN Optimization, Storing the Best Solution, Statistical Analysis,
and Choosing the Best Algorithm)

Block 10 evaluates the error using MSE, and if MSE is found to be more than a predefined value
(eph), the model will go into the optimization process in block 11 (tuning of MAANN weights and
biases). If the error is less than the eph, the optimization will be skipped to avoid model overfitting
and maintain the model generalization. Mode-specific optimal solution prevents the system from
generating random solutions periodically; therefore, learning will be faster. The Mode-specific optimal
results will be stored in Mode-specific ANN weights and bias matrix and vectors in block 12, which will
be ready for reuse when new data arrives.

After stopping the learning procedure, the performance of different models (optimization methods)
is evaluated in block 13, and the best model will be selected (block 14). For the model performance
evaluation, along with the MSE, the following indexes are used:

Bayesian In f ormation Criterion, BIC = ln(l)k′ − 2 ln
(
L̂
)
= l log

(SSE
l

)
+ Plog l (16)

Standard Deviation, σ =

√∑(
x j − µ

)2

l
(17)

R− value, R2 = 1−

∑l
j=1

(
Ŷ j −Y j

)2

∑l
j=1

(
Ŷ j −

1
l
∑l

j=1 Y
)2 (18)

Mean Absolute Error, MAE =
1
l

∑l

j=1

∣∣∣Ŷ j −Y j
∣∣∣ (19)

The standard deviation of the error, SDE =

√
1
l

∑l

j=1

(
Error j −Mean Error

)2
(20)

BIC [53] measures the distance between the actual data and the model. The lesser the distance,
the better the model is. The second equation in (16) is the equivalent of the original equation for
neural network-based application. For the population-based algorithms, complete or near convergence
to a solution of all the particles can be defined as the optimal solution. At the optimal condition,
the solution boundary will be significantly small, which also provides a smaller standard deviation.
Hence, standard deviation is measured as an index to optimal solution convergence. R-value is used to
demonstrate the fitting of the model. Finally, the MAE and SDE are used to measure the error of the
model. The smaller the MAE and SDE, the better the model is.

4. Experimental Validations

In this work, the proposed algorithm’s effectiveness has been demonstrated by applying two
different renewable energy sources of two different places. The wind dataset has been collected from
the NREL website [54] for 2012, near New Kirk. The original dataset consists of power, wind direction,
wind speed, air temperature, surface air pressure, and air density. The later five (wind direction,
wind speed, air temperature, surface air pressure, and air density) were considered as the input
variables, and power was considered as the variable to be forecasted.

Similarly, the dataset was collected from the Republic of Korea’s public data website [55] for the
Yeongam F1 Stadium for the Solar PV system. The data is obtained for three years and ten months from
January 2015 to October 2018. Inclined irradiance, surface temperature, and surrounding temperature

Energies 2020, 13, 6405 15 of 29

from the dataset were considered as the input variables, while plant output power was considered as
the predicting variable. The details of the dataset are given in Table 5.

Table 5. Dataset specifications.

WTES (New Kirk-Site ID: 19287) PV (Yeongam F1 Stadium 1 Electrical Room)

Parameters Numerical values Parameters Numerical Values

Plant Maximum Output 16 MW Plant Maximum Output 2610 kW

Maximum Wind Speed 23.0352 Plant Capacity 3026 kW

Maximum Wind
Direction 359.3794 degrees Maximum Inclined

Irradiance
999.96

Maximum Temperature 35.9660 degrees Celsius

Maximum air Pressure 8.5927 × 104 Pa Maximum Surface
Temperature 49.78

Maximum air density 1.0980 Kg/m3

Longitude −104.258 Maximum Surrounding
Temperature 125.60

Latitude 35.00168

Duration (1 Year) 2012 Duration 3 years, 10 months (2015 to 2018)

Time Interval 5 min Time interval 1 h

No of datapoints 105,116 Data points 17,252

4.1. Initialization of Experimental Setup

To initiate the experiments, the chosen ANN structure and metaheuristic algorithm hyperparameter
settings are provided in Tables 6 and 7. These experiments have been conducted in a PC with Intel®

Core (TM) i7-6700 CPU @3.40 GHz processor in MATLAB 2018a.
The structure (number of weights, biases, hidden layers) choice of the activation function

(hyperbolic tangent) has been taken the same as the gradient descent-based algorithm, which was
developed and applied through the MATLAB built-in toolbox. Keeping the same structure makes the
systems comparable on the same ground.

Table 6. ANN parameters’ default values of the experiment.

Parameters
Initial

Solution
Search Space

Number of Input
Layer Weights

(n, Number of Inputs)

Number of
Input Layer

Biases

Number of
Output Layer

Weights

Number of
Output

Layer Biases

Number
of Hidden

Layers

Values (−5, 5) n × 10 10 10 1 1

Table 7. Parameter settings of different metaheuristic algorithms.

Algorithm Parameter Values Population Size Max Generation

APSO C1, C2, w 1.5, 1.5, 0.9
20 10Jaya Not Required -

FTMA p, r 0.7, 0.7

According to Figure 6, the initial model’s error should be more than a tolerance value (eph) to
start the optimization. Error tolerance is a designer parameter, meaning that the designer can choose a
relatively small value, below which the optimization cycle will not be initiated.

To choose the error limit/tolerance (eph), the minimum error achieved by applying a gradient
descent technique on the ANN for the given dataset has been chosen. To do that, ANN has been
trained exactly 100 times for each dataset, and the minimum error from that simulation is set as an
error threshold for the metaheuristic optimization-based method. In Figure 7, the histogram of the
error from the gradient descent-based training of the dataset is shown. From the figure, the minimum

Energies 2020, 13, 6405 16 of 29

of the error for solar PV and WTES was found as 0.0682 and 6.2096 respectively, which are used as the
error limit/tolerance (eph) for the metaheuristic-based model training.

Energies 2020, 13, x FOR PEER REVIEW 16 of 30

Table 7. Parameter settings of different metaheuristic algorithms.

Algorithm Parameter Values Population Size Max Generation

APSO 𝐶1, 𝐶2, 𝑤 1.5, 1.5, 0.9

20 10 Jaya 𝑁𝑜𝑡 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 -

FTMA 𝑝, 𝑟 0.7, 0.7

According to Figure 6, the initial model’s error should be more than a tolerance value (𝑒𝑝ℎ) to

start the optimization. Error tolerance is a designer parameter, meaning that the designer can choose

a relatively small value, below which the optimization cycle will not be initiated.

To choose the error limit/tolerance (𝑒𝑝ℎ), the minimum error achieved by applying a gradient

descent technique on the ANN for the given dataset has been chosen. To do that, ANN has been

trained exactly 100 times for each dataset, and the minimum error from that simulation is set as an

error threshold for the metaheuristic optimization-based method. In Figure 7, the histogram of the

error from the gradient descent-based training of the dataset is shown. From the figure, the minimum

of the error for solar PV and WTES was found as 0.0682 and 6.2096 respectively, which are used as

the error limit/tolerance (𝑒𝑝ℎ) for the metaheuristic-based model training.

(a) (b)

Figure 7. Histogram of error reduction performance of gradient descent algorithm on the used dataset

after 100 different training cycles. (a) Solar PV and (b) WTES.

4.2. Dynamic Change in CC and Mode Analysis

The dynamic plotting of the actual and absolute value of the CC of power output to each input

variable is presented in Figures 8 and 9. The CC threshold is also presented with the figures to

indicate the change in dynamics of CC over time. For solar PV system, actual and absolute CC are

both positive; however, for WTES, some quantities are found in the negative and positive range also.

Therefore, to maintain uniformity across the models, absolute value has been considered.

Generally, CC between ±0.75 to ±1 is considered as very strong, ±0.50 to ±0.75 as moderate,

±0.25 to ±0.50 as weak, and below that has no association [56]. Therefore, in this work, the absolute

threshold for CC analysis has been set as 0.25. Hence, any variable with the CC below 0.25 is

discarded as a dominant input variable. Figure 8 shows that the absolute CC of inclined irradiance

and surface temperature always remains above the threshold line. In contrast, the absolute CC for

the surrounding temperature varies around the threshold line and becomes a non-dominant variable

at the end.

Figure 7. Histogram of error reduction performance of gradient descent algorithm on the used dataset
after 100 different training cycles. (a) Solar PV and (b) WTES.

4.2. Dynamic Change in CC and Mode Analysis

The dynamic plotting of the actual and absolute value of the CC of power output to each input
variable is presented in Figures 8 and 9. The CC threshold is also presented with the figures to indicate
the change in dynamics of CC over time. For solar PV system, actual and absolute CC are both positive;
however, for WTES, some quantities are found in the negative and positive range also. Therefore,
to maintain uniformity across the models, absolute value has been considered.Energies 2020, 13, x FOR PEER REVIEW 17 of 30

Figure 8. Dynamic changes of absolute CC between input variables and output power for the Solar

PV system.

For WTES, wind speed and air pressure were mostly above the threshold value, and that makes

them dominant variables at the end of model training, whereas the other variables oscillate around

the threshold, making them temporarily choice variables, but their dominance vanishes as the data

size grows. According to actual CC analysis, pressure has a negative CC value, which means that

power generation decreases with the increase in pressure.

The data source countries’ (South Korea/USA) weather can be classified according to 4 seasons

(three months/season). Thus, the consecutiveness of a Mode for three months is considered as the

stable dataset size and training stopping criteria. The training started from January's data, which is

the second/third month of winter in the considered countries; thus, considering three months for

stopping criteria overlaps two different seasons. The stopping criteria validate the stability of the

dataset according to the use of CC. Analyzing the dynamic CC along with the threshold line, dynamic

changes in the Modes can be obtained from Figure 10.

Figure 8. Dynamic changes of absolute CC between input variables and output power for the Solar
PV system.

Energies 2020, 13, 6405 17 of 29

Generally, CC between ±0.75 to ±1 is considered as very strong, ±0.50 to ±0.75 as moderate,
±0.25 to ±0.50 as weak, and below that has no association [56]. Therefore, in this work, the absolute
threshold for CC analysis has been set as 0.25. Hence, any variable with the CC below 0.25 is discarded
as a dominant input variable. Figure 8 shows that the absolute CC of inclined irradiance and surface
temperature always remains above the threshold line. In contrast, the absolute CC for the surrounding
temperature varies around the threshold line and becomes a non-dominant variable at the end.

For WTES, wind speed and air pressure were mostly above the threshold value, and that makes
them dominant variables at the end of model training, whereas the other variables oscillate around the
threshold, making them temporarily choice variables, but their dominance vanishes as the data size
grows. According to actual CC analysis, pressure has a negative CC value, which means that power
generation decreases with the increase in pressure.

Energies 2020, 13, x FOR PEER REVIEW 18 of 30

Figure 9. Dynamic changes of actual and absolute CC between different input variables and output

power for the WTES.

(a) (b)

Figure 10. Dynamic changes in Modes as Per CC Analysis: (a) Solar PV and (b) WTES.

For the solar PV system, occurred Modes are 5 (inclined irradiance, surrounding temperature),

7 (inclined irradiance, surface temperature, surrounding temperature), and 4 (inclined irradiance,

Figure 9. Dynamic changes of actual and absolute CC between different input variables and output
power for the WTES.

The data source countries’ (South Korea/USA) weather can be classified according to 4 seasons
(three months/season). Thus, the consecutiveness of a Mode for three months is considered as the
stable dataset size and training stopping criteria. The training started from January’s data, which is

Energies 2020, 13, 6405 18 of 29

the second/third month of winter in the considered countries; thus, considering three months for
stopping criteria overlaps two different seasons. The stopping criteria validate the stability of the dataset
according to the use of CC. Analyzing the dynamic CC along with the threshold line, dynamic changes
in the Modes can be obtained from Figure 10.

Energies 2020, 13, x FOR PEER REVIEW 18 of 30

Figure 9. Dynamic changes of actual and absolute CC between different input variables and output

power for the WTES.

(a) (b)

Figure 10. Dynamic changes in Modes as Per CC Analysis: (a) Solar PV and (b) WTES.

For the solar PV system, occurred Modes are 5 (inclined irradiance, surrounding temperature),

7 (inclined irradiance, surface temperature, surrounding temperature), and 4 (inclined irradiance,

Figure 10. Dynamic changes in Modes as Per CC Analysis: (a) Solar PV and (b) WTES.

For the solar PV system, occurred Modes are 5 (inclined irradiance, surrounding temperature),
7 (inclined irradiance, surface temperature, surrounding temperature), and 4 (inclined irradiance,
surface temperature). Among them, the stable Mode was 4. For WTES, occurred modes are 31 (direction,
speed, temperature, pressure, density), 24 (speed, pressure, density), and 11 (speed, pressure), 30 (speed,
temperature, pressure, density). Among them, 11 is the stable one. The complete Mode table is given
in the Appendix A, where Table A1 is for Solar PV, and Table A2 is for WTES. Greyed boxes represent
the Modes that appeared during the training process.

4.3. Data Entry (Episode)-Wise Optimization Algorithms Performance Comparison

Each entry or arrival of new data and the corresponding cycle of model optimization has been
defined as an episode. In Figure 11, episode-wise error reduction performance of the three algorithms
has been shown simultaneously.

Energies 2020, 13, x FOR PEER REVIEW 19 of 30

surface temperature). Among them, the stable Mode was 4. For WTES, occurred modes are 31

(direction, speed, temperature, pressure, density), 24 (speed, pressure, density), and 11 (speed,

pressure), 30 (speed, temperature, pressure, density). Among them, 11 is the stable one. The complete

Mode table is given in the Appendix, where Table A1 is for Solar PV, and Table A2 is for WTES.

Greyed boxes represent the Modes that appeared during the training process.

4.3. Data Entry (Episode)-Wise Optimization Algorithms Performance Comparison

Each entry or arrival of new data and the corresponding cycle of model optimization has been

defined as an episode. In Figure 11, episode-wise error reduction performance of the three algorithms

has been shown simultaneously.

(a) (b)

Figure 11. Episode-wise error reduction performance of different optimization algorithms: (a) Solar

PV and (b) WTES.

Figure 11 shows that the models optimized with different algorithms are reaching the acceptable

error performance towards the end of the training period. Due to the three levels of optimization

process (randomization, exploration, exploitation), FTMA performs considerably better than the

other two metaheuristic algorithms for both cases. Whereas, the Jaya algorithm with no

hyperparameter being relatively simple could not reach better solutions than the other two

algorithms. It can be mentioned that, at times, due to the appearance/reappearance of a new/previous

mode, the error was increasing too. Because, at the first appearance of a new Mode, optimization

starts with a random solution vector, which may not be optimal. Also, the reappearance of a Mode

after a long time (meaning that not trained with the recent data entries) may produce a larger error.

However, as the training dataset size increases, with multiple training loops, the error reduces

gradually.

The error reduction performance of each optimization algorithm can be more clearly understood

from the episode-wise winner analysis graph of Figure 12. Upon the arrival of each/set of new data,

the optimization method with the best error reduction performance can be selected as the episode

winner after performing the training. For episode-wise winner analysis, each algorithm was assigned

with a weighted value. APSO, Jaya, and FTMA were assigned with 1, 2, and 3, respectively. For both

cases (Solar PV and WTES), FTMA has won the maximum number of episodes. The numbers are

shown in Tables 8 and 9.

Figure 11. Episode-wise error reduction performance of different optimization algorithms: (a) Solar PV
and (b) WTES.

Figure 11 shows that the models optimized with different algorithms are reaching the acceptable
error performance towards the end of the training period. Due to the three levels of optimization process

Energies 2020, 13, 6405 19 of 29

(randomization, exploration, exploitation), FTMA performs considerably better than the other two
metaheuristic algorithms for both cases. Whereas, the Jaya algorithm with no hyperparameter being
relatively simple could not reach better solutions than the other two algorithms. It can be mentioned
that, at times, due to the appearance/reappearance of a new/previous mode, the error was increasing
too. Because, at the first appearance of a new Mode, optimization starts with a random solution vector,
which may not be optimal. Also, the reappearance of a Mode after a long time (meaning that not
trained with the recent data entries) may produce a larger error. However, as the training dataset size
increases, with multiple training loops, the error reduces gradually.

The error reduction performance of each optimization algorithm can be more clearly understood
from the episode-wise winner analysis graph of Figure 12. Upon the arrival of each/set of new data,
the optimization method with the best error reduction performance can be selected as the episode
winner after performing the training. For episode-wise winner analysis, each algorithm was assigned
with a weighted value. APSO, Jaya, and FTMA were assigned with 1, 2, and 3, respectively. For both
cases (Solar PV and WTES), FTMA has won the maximum number of episodes. The numbers are
shown in Tables 8 and 9.Energies 2020, 13, x FOR PEER REVIEW 20 of 30

(a) (b)

Figure 12. Episode-wise performance of the different optimization algorithm for (a) Solar PV and (b)

WTES.

4.4. Train/Test Status of the Algorithm

The train/test status indication figure proves the effectiveness of the proposed algorithm and

FTMA. As the best error performance of the gradient descent algorithm has been taken as the error

limit, therefore, if the error reduction by metaheuristic algorithms is found better, the MAANN will

avoid optimization. This indicates that the trained models are showing better performance than the

conventional approach (gradient descent). Figures 11 and 12 show that the FTMA outperforms the

other two algorithms. Hence, the train/test status of the FTMA algorithm is only shown in Figure 13.

Train/test status analysis is essential for understanding how the model can participate in the

electricity market and earn more profits. The data specification table shows that the Solar PV data is

collected for 3 years and 10 months, and WTES data were collected for one year. However, using the

data stability condition, Solar PV and WTES training were stopped around the 290th and 177th days

respectively, which is far less than the actual dataset size.

Also, from Figure 13, it can be found that, due to efficient training using the FTMA algorithm,

the training cycle can be avoided in many instances (showing as 0 state in the figure). This means as

the error is reduced, the model can successfully participate in the electricity market and earn profits.

However, the participation should be stopped once the model performance exceeds the error

threshold and reoptimizes it. Following that, if the next entries' error goes below the threshold

quantity, the model will again participate in the market. This phenomenon can be explained by Figure

13b. For example, the model error of the WTES system around the 96–146th day is less than the

threshold quantity; therefore, the model can participate in the market and earn a profit, but after the

146th day, the error again exceeds the threshold. Hence, the model should reoptimize again and stop

participating in the electricity market. Again, around the 157th day, the error has been reduced to an

acceptable limit. Consequently, the energy producer can participate in the market again.

Figure 12. Episode-wise performance of the different optimization algorithm for (a) Solar PV and
(b) WTES.

4.4. Train/Test Status of the Algorithm

The train/test status indication figure proves the effectiveness of the proposed algorithm and
FTMA. As the best error performance of the gradient descent algorithm has been taken as the error
limit, therefore, if the error reduction by metaheuristic algorithms is found better, the MAANN will
avoid optimization. This indicates that the trained models are showing better performance than the
conventional approach (gradient descent). Figures 11 and 12 show that the FTMA outperforms the
other two algorithms. Hence, the train/test status of the FTMA algorithm is only shown in Figure 13.
Train/test status analysis is essential for understanding how the model can participate in the electricity
market and earn more profits. The data specification table shows that the Solar PV data is collected for
3 years and 10 months, and WTES data were collected for one year. However, using the data stability
condition, Solar PV and WTES training were stopped around the 290th and 177th days respectively,
which is far less than the actual dataset size.

Also, from Figure 13, it can be found that, due to efficient training using the FTMA algorithm,
the training cycle can be avoided in many instances (showing as 0 state in the figure). This means
as the error is reduced, the model can successfully participate in the electricity market and earn
profits. However, the participation should be stopped once the model performance exceeds the error
threshold and reoptimizes it. Following that, if the next entries’ error goes below the threshold quantity,
the model will again participate in the market. This phenomenon can be explained by Figure 13b.
For example, the model error of the WTES system around the 96–146th day is less than the threshold

Energies 2020, 13, 6405 20 of 29

quantity; therefore, the model can participate in the market and earn a profit, but after the 146th day,
the error again exceeds the threshold. Hence, the model should reoptimize again and stop participating
in the electricity market. Again, around the 157th day, the error has been reduced to an acceptable
limit. Consequently, the energy producer can participate in the market again.Energies 2020, 13, x FOR PEER REVIEW 21 of 30

(a) (b)

Figure 13. Train/test status of the proposed MAANN using FTMA for (a) Solar PV and (b) WTES.

4.5. Time Analysis of the FTMA

As metaheuristic algorithms are population-based methods, it may take a long time to reach an

acceptable solution. Thus, the training time using the metaheuristic algorithms is always a concern

for the designers. FTMA has better error reduction performance, and it is the winner of the maximum

number of episodes; therefore, the time required for the algorithm with FTMA optimization is shown

in Figure 14. It is understandable that, with the increase in data size, the training time will be

increased. Thus, the help of the MATLAB parallel computation toolbox has been taken to reduce the

optimization time. The use of the MATLAB parallel computing toolbox keeps the training time

maximum of 91 seconds for the Solar PV and 168.3123 seconds for the WTES, whereas the mean

training time was 26.13 and 48.84 seconds, respectively. The training time peaks occur due to the

presence and removal of duplicate solutions to maintain the effective number of solutions uniform.

It is found that the model average training time is much smaller than the data sample interval (1 hour

for Solar PV and 5 minutes for WTES). Hence, the algorithm can be easily applied to the system.

(a) (b)

Figure 14. Data entry-wise and average training time using FTMA for (a) Solar PV and (b) WTES.

4.6. Solution Convergence Analysis of Different Optimization Algorithms

The convergence of the solution vectors’ population can be seen from the box-plot analysis of

Figure 15. Compared to the APSO and Jaya algorithms, the population from the solution vector of

FTMA has reached the optimal state for the Solar PV system. As the population of FTMA is located

very near to each other, therefore, standard deviation for FTMA (0.0075) is much smaller than the

APSO (13.0717) and Jaya algorithms (3.3917). For WTES, Jaya and FTMA are found to have a better

convergence state compared to APSO. Although FTMA has achieved the minimum error, to avoid

Figure 13. Train/test status of the proposed MAANN using FTMA for (a) Solar PV and (b) WTES.

4.5. Time Analysis of the FTMA

As metaheuristic algorithms are population-based methods, it may take a long time to reach an
acceptable solution. Thus, the training time using the metaheuristic algorithms is always a concern for
the designers. FTMA has better error reduction performance, and it is the winner of the maximum
number of episodes; therefore, the time required for the algorithm with FTMA optimization is shown
in Figure 14. It is understandable that, with the increase in data size, the training time will be increased.
Thus, the help of the MATLAB parallel computation toolbox has been taken to reduce the optimization
time. The use of the MATLAB parallel computing toolbox keeps the training time maximum of 91 s
for the Solar PV and 168.3123 s for the WTES, whereas the mean training time was 26.13 and 48.84 s,
respectively. The training time peaks occur due to the presence and removal of duplicate solutions
to maintain the effective number of solutions uniform. It is found that the model average training
time is much smaller than the data sample interval (1 h for Solar PV and 5 min for WTES). Hence,
the algorithm can be easily applied to the system.

Energies 2020, 13, x FOR PEER REVIEW 21 of 30

(a) (b)

Figure 13. Train/test status of the proposed MAANN using FTMA for (a) Solar PV and (b) WTES.

4.5. Time Analysis of the FTMA

As metaheuristic algorithms are population-based methods, it may take a long time to reach an

acceptable solution. Thus, the training time using the metaheuristic algorithms is always a concern

for the designers. FTMA has better error reduction performance, and it is the winner of the maximum

number of episodes; therefore, the time required for the algorithm with FTMA optimization is shown

in Figure 14. It is understandable that, with the increase in data size, the training time will be

increased. Thus, the help of the MATLAB parallel computation toolbox has been taken to reduce the

optimization time. The use of the MATLAB parallel computing toolbox keeps the training time

maximum of 91 seconds for the Solar PV and 168.3123 seconds for the WTES, whereas the mean

training time was 26.13 and 48.84 seconds, respectively. The training time peaks occur due to the

presence and removal of duplicate solutions to maintain the effective number of solutions uniform.

It is found that the model average training time is much smaller than the data sample interval (1 hour

for Solar PV and 5 minutes for WTES). Hence, the algorithm can be easily applied to the system.

(a) (b)

Figure 14. Data entry-wise and average training time using FTMA for (a) Solar PV and (b) WTES.

4.6. Solution Convergence Analysis of Different Optimization Algorithms

The convergence of the solution vectors’ population can be seen from the box-plot analysis of

Figure 15. Compared to the APSO and Jaya algorithms, the population from the solution vector of

FTMA has reached the optimal state for the Solar PV system. As the population of FTMA is located

very near to each other, therefore, standard deviation for FTMA (0.0075) is much smaller than the

APSO (13.0717) and Jaya algorithms (3.3917). For WTES, Jaya and FTMA are found to have a better

convergence state compared to APSO. Although FTMA has achieved the minimum error, to avoid

Figure 14. Data entry-wise and average training time using FTMA for (a) Solar PV and (b) WTES.

Energies 2020, 13, 6405 21 of 29

4.6. Solution Convergence Analysis of Different Optimization Algorithms

The convergence of the solution vectors’ population can be seen from the box-plot analysis of
Figure 15. Compared to the APSO and Jaya algorithms, the population from the solution vector of
FTMA has reached the optimal state for the Solar PV system. As the population of FTMA is located
very near to each other, therefore, standard deviation for FTMA (0.0075) is much smaller than the
APSO (13.0717) and Jaya algorithms (3.3917). For WTES, Jaya and FTMA are found to have a better
convergence state compared to APSO. Although FTMA has achieved the minimum error, to avoid
duplicate solution, one of the solutions (red cross) appeared a little away from the solution cluster.
Thus, the standard deviation of FTMA (65.0949) is more than the Jaya algorithm (12.9087).

Energies 2020, 13, x FOR PEER REVIEW 22 of 30

duplicate solution, one of the solutions (red cross) appeared a little away from the solution cluster.

Thus, the standard deviation of FTMA (65.0949) is more than the Jaya algorithm (12.9087).

(a)

(b)

Figure 15. Performance of the trained model on the training dataset for (a) Solar PV and (b) WTES.

4.7. Comparison of Training and Test Dataset

In this subsection, the training and testing set results have been shown in Figures 16 and 17,

respectively. Blue lines are used as the original data, and the brown lines are used as the output of

different trained models. The errors between the actual outputs and the trained model outputs are

calculated using MSE, RMSE, and MAE. Corresponding values for training and testing datasets are

shown in Tables 8 and 9. Also, using the original and trained model data, R-value is calculated using

Equation (18) and presented in Tables 8 and 9. For both cases, FTMA and APSO perform relatively

better than Jaya and gradient descent-based algorithms. In addition to the gradient descent-based

method, the algorithms were compared with ARIMAX, a non-neural network-based algorithm.

ARIMAX was implemented with the econometric toolbox in MATLAB.

As in this work, a MATLAB-based toolbox is used for base case (gradient descent) training, and

by default, the toolbox partitions 15% of the data as a testing dataset. Therefore, whenever the

algorithm termination criteria are satisfied based on the data stability, the algorithms' performances

are validated by applying to the testing dataset, which is nothing but 15% of additional data points

of the ending point of the training data. For example, Solar PV system training stopped at the 290th

day; hence, the testing horizon is considered as 290 + 290 × 0.15 ≈ 334 days, and for WTES, 177 + 177

× 0.15 ≈ 204 days. Therefore, in Figure 16, the performance of the trained model on the training

dataset (0–290th day for Solar PV and 0–177th day for WTES), and in Figure 17, the performance of

the same model on the testing dataset (290–334th day for Solar PV and 177–204th day for WTES) has

been shown. It should be mentioned that the testing data horizon is a designer parameter that can be

varied, and the performance of the algorithm can be analyzed too. In practice, the training and testing

cycle should occur according to the methodology discussed in Section 4.4.

Figure 15. Performance of the trained model on the training dataset for (a) Solar PV and (b) WTES.

4.7. Comparison of Training and Test Dataset

In this subsection, the training and testing set results have been shown in Figures 16 and 17,
respectively. Blue lines are used as the original data, and the brown lines are used as the output of
different trained models. The errors between the actual outputs and the trained model outputs are
calculated using MSE, RMSE, and MAE. Corresponding values for training and testing datasets are
shown in Tables 8 and 9. Also, using the original and trained model data, R-value is calculated using
Equation (18) and presented in Tables 8 and 9. For both cases, FTMA and APSO perform relatively better
than Jaya and gradient descent-based algorithms. In addition to the gradient descent-based method,
the algorithms were compared with ARIMAX, a non-neural network-based algorithm. ARIMAX was
implemented with the econometric toolbox in MATLAB.

As in this work, a MATLAB-based toolbox is used for base case (gradient descent) training, and by
default, the toolbox partitions 15% of the data as a testing dataset. Therefore, whenever the algorithm
termination criteria are satisfied based on the data stability, the algorithms’ performances are validated
by applying to the testing dataset, which is nothing but 15% of additional data points of the ending
point of the training data. For example, Solar PV system training stopped at the 290th day; hence,
the testing horizon is considered as 290 + 290 × 0.15 ≈ 334 days, and for WTES, 177 + 177 × 0.15 ≈ 204
days. Therefore, in Figure 16, the performance of the trained model on the training dataset (0–290th
day for Solar PV and 0–177th day for WTES), and in Figure 17, the performance of the same model
on the testing dataset (290–334th day for Solar PV and 177–204th day for WTES) has been shown.
It should be mentioned that the testing data horizon is a designer parameter that can be varied, and the

Energies 2020, 13, 6405 22 of 29

performance of the algorithm can be analyzed too. In practice, the training and testing cycle should
occur according to the methodology discussed in Section 4.4.Energies 2020, 13, x FOR PEER REVIEW 23 of 30

(a)

(b)

Figure 16. Performance of the trained MAANN on the training dataset for (a) Solar PV and (b) WTES. Figure 16. Performance of the trained MAANN on the training dataset for (a) Solar PV and (b) WTES.

Energies 2020, 13, 6405 23 of 29Energies 2020, 13, x FOR PEER REVIEW 24 of 30

(a)

(b)

Figure 17. Performance of the trained MAANN on the testing dataset for (a) Solar PV and (b) WTES. Figure 17. Performance of the trained MAANN on the testing dataset for (a) Solar PV and (b) WTES.

Energies 2020, 13, 6405 24 of 29

4.8. Tabular Comparison

The performance and robustness of the algorithm and the optimization methods are verified using
multiple performance indexes (MSE, RMSE, SDE, MAE, BIC, Standard Deviations, R-value, and the
number of episode winners) and shown in Tables 8 and 9. The grey boxes show the best performance
achieved among the algorithms, where RMSE is nothing but the square root of MSE, because the unit
of MSE is the square unit of the output quantity (MW2), where RMSE has the same as the output (MW),
which makes it easily comprehensible. In terms of MSE, RMSE, MAE, SDE, and R-value, and the
number of episode winners, FTMA has performed better than other algorithms for both cases (Solar PV
and WTES). As mentioned in Section 3, the smaller the BIC is, the better the model is. However,
looking carefully at the Table 8 shows that the Solar PV system’s BIC order is negative (−1 × 104).
As the sign convention is negative, the bigger the positive value inside the table, the better the model
will be. Hence, FTMA was found to be better in terms of BIC for the solar PV system. However, for BIC
of the WTES system, ARIMAX has performed better than other algorithms.

Also, the standard deviation as an index for the convergence of the optimization algorithms
shows that FTMA has performed better in the case of Solar PV systems, whereas in the case of the
WTES, the Jaya algorithm performed better. As the gradient descent-based algorithm and ARIMAX
are not a population-based methodology, therefore, the standard deviation and episode-wise winner
block is kept blank. By numerical calculation, it can also be found that error using FTMA is reduced,
0.0682−0.0196

0.0682 × 100 = 71.261% 6.2096−1.21
6.2096 × 100 = 80.514% of the gradient descent algorithm in the case

of Solar PV and WTES, respectively.

Table 8. Results for Solar PV.

Algorithms
MSE (MW2) RMSE (MW) BIC (−1 × 104) MAE (MW)

Training Testing Training Testing Training Testing Training

APSO 0.0684 0.0714 0.2615 0.2672 0.8007 0.0819 0.1941

JAYA 1.1204 1.5149 1.0584 1.2308 −0.0938 −0.0635 0.8639
FTMA 0.0196 0.0207 0.14 0.1438 1.2008 0.1399 0.1034

Gradient Descent 0.0682 0.0256 0.2611 0.16 −0.1704 0.1273 0.8405

ARIMAX 0.0230 0.0660 0.1516 0.2569 0.8357 0.1347 0.9362

Standard
Deviation

R-Value Episode
Winner

SDE (MW) MAE (MW)

Training Testing Training Testing Testing

APSO 13.0717 0.9519 0.9565 45 14.7976 5.7798 0.1950

JAYA 3.3917 0.2128 0.0764 0 59.8978 26.8282 1.0277
FTMA 0.0075 0.9863 0.9874 245 7.9161 3.1352 0.1005

Gradient Descent - 0.9669 0.9871 - 59.4784 3.5814 0.1363

ARIMAX - 0.9838 0.9659 - 66.6497 27.5989 1.0272

Table 9. Results for WTES.

Algorithms
MSE (MW2) RMSE (MW) BIC (1 × 104) MAE (MW)

Training Testing Training Testing Training Testing Training

APSO 1.4439 2.3080 1.2 1.5192 1.9352 0.6071 0.9574

JAYA 22.5438 22.1656 4.7480 4.7080 1.5825 2.3591 3.9185
FTMA 1.21 0.4944 1.1 0.7031 1.056 −0.4996 0.7283

Gradient Descent 6.2096 8.1727 2.4919 2.858 22.694 1.3718 6.7104
ARIMAX 9.3338 7.7290 3.055 2.780 −31.955 −4.5964 7.4354

Energies 2020, 13, 6405 25 of 29

Table 9. Cont.

Standard
Deviation

R-Value Episode
Winner

SDE (MW) MAE (MW)

Training Testing Training Testing Testing

APSO 1.4439 × 103 0.9835 0.9616 66 271.1004 131.8828 1.2750
JAYA 12.9087 0.7424 0.6317 0 1.0712 × 103 409.1466 4.1227

FTMA 65.0949 0.9861 0.9918 109 248.5482 60.6081 0.4939
Gradient Descent - 0.9221 0.9122 - 708.6053 210.9264 1.9018

ARIMAX - 0.8934 0.9170 - 799.3252 667.8077 6.2505

Therefore, it can be said that the proposed algorithm with a suitable optimization algorithm can
perform better than the conventional gradient descent or ARIMAX algorithm, which is FTMA in this
case study. The major advantage is, as the proposed algorithm is a dynamic approach, the model can
start participating in the electricity market from the beginning depending on the error performance.
It is also found that training accuracy is increased, and learning time is decreased (train/test status) due
to dynamic learning.

5. Conclusions and Future Work

In this work, a Mode Adaptive Artificial Neural Network has been proposed for the dynamic
learning of renewable energy sources power generation prediction. The dynamic learning using
Spearman’s rank-order correlation provides a logical solution to choose the correct dominant inputs
over time, which is found as a suitable tool for data stability analysis, too. As the model dynamically
learns the system over a long period, therefore, different forecasting horizons (short, medium,
long)-based modeling strategies can be avoided. FTMA was found better among the optimization
algorithms due to its three-level algorithmic architecture, and provided better accuracy in every cycle.

The use of multiple performance indexes shows the robustness of the proposed algorithm
using FTMA over other algorithms. Also, using FTMA, error has been reduced by 71.261% and
80.514% compared to the fixed-sized data-based trained model using the gradient descent algorithm.
This also proves the benefit of dynamic/online learning over a conventional fixed-sized data-based
learning approach.

One of the major concerns of the proposed algorithm is the choice of optimization algorithm
and the respective hyperparameters. An increase in population and generation number may yield
better results but at the cost of time. In the future, unlike this work, the verification of the proposed
model should be conducted for multi-plant forecasting model development. In this work, testing was
performed for instantaneous values of the input variables, which in the future can be easily extended
for delayed input variables by performing auto- and cross-correlation.

In the future, this algorithm can be applied with the actual system installed in any geographical
location. The model will be trained and participate in the electricity market without prior knowledge
or training. In this work, the considered input variables were all continuous; in the future, systems
with discrete variables can be considered by incorporating discrete to continuous CC analysis tools.
Also, in contrast to the current approach, in the future, a unified feature reduction and forecasting
approach can be taken, which will reduce the model complexity. The proposed algorithm can also
be applied to any general case of real-time model learning, such as the share market. The algorithm
can also be applied for load and EV modeling, as they are dependent on many external factors
(variables). In brief, it can be concluded that the proposed algorithm can break the barrier of fixed-sized
data training and help the operator to gain more profits by early participation in the market. Also,
as in this problem, ANN’s simple architecture has been adopted, therefore, it can be applied in
any developing/under-developing countries where high processing computers are expensive for
DL technologies.

Energies 2020, 13, 6405 26 of 29

Author Contributions: M.A.Z. devised the idea, completed the simulations, and prepared the manuscript. D.W.
has supervised and commented on the manuscript. Both authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by Korea Electric Power Corporation (Grant number: R18XA01).
This research was supported by Energy Cloud R&D Program through the National Research Foundation
of Korea (NRF), funded by the Ministry of Science, ICT (No. 2019M3F2A1073).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Mode selection table for Solar PV system.

Mode Number
Inputs

Inclined Irradiance Surface Temperature Surrounding Temperature

1 4 × ×

2 × 4 ×

3 × × 4

4 4 4 ×

5 4 × 4

6 × 4 4

7 4 4 4

Table A2. Mode selection table for WTES.

Mode Number
Inputs

Direction Speed Temperature Pressure Density

1 4 × × × ×

2 × 4 × × ×

3 × × 4 × ×

4 × × × 4 ×

5 × × × × 4

6 4 4 × × ×

7 4 × 4 × ×

8 4 × × 4 ×

9 4 × × × 4

10 × 4 4 × ×

11 × 4 × 4 ×

12 × 4 × × 4

13 × × 4 4 ×

14 × × 4 × 4

15 × × × 4 4

16 4 4 4 × ×

17 4 4 × 4 ×

18 4 4 × × 4

19 4 × 4 4 ×

20 4 × 4 × 4

21 4 × × 4 4

22 × 4 4 4 ×

23 × 4 4 × 4

24 × 4 × 4 4

25 × × 4 4 4

26 4 4 4 4 ×

27 4 4 4 × 4

28 4 4 × 4 4

29 4 × 4 4 4

30 × 4 4 4 4

31 4 4 4 4 4

Energies 2020, 13, 6405 27 of 29

References

1. Saberian, A.; Hizam, H.; Radzi, M.A.M.; Ab Kadir, M.Z.A.; Mirzaei, M. Modelling and Prediction of
Photovoltaic Power Output Using Artificial Neural Networks. Int. J. Photoenergy 2014, 2014. [CrossRef]

2. Abuella, M.; Chowdhury, B. Solar power forecasting using artificial neural networks. In Proceedings of the
2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015. [CrossRef]

3. Qasrawi, I.; Awad, M. Prediction of the Power Output of Solar Cells Using Neural Networks: Solar Cells
Energy Sector in Palestine. Int. J. Comput. Sci. Secur. 2015, 9, 280.

4. Alomari, H.M.; Younis, O.; Hayajneh, M.A.S. A Predictive Model for Solar Photovoltaic Power using the
Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data. Int. J. Adv.
Comput. Sci. Appl. 2018, 9. [CrossRef]

5. Theocharides, S.; Makrides, G.; Georghiou, E.G.; Kyprianou, A. Machine learning algorithms for photovoltaic
system power output prediction. In Proceedings of the 2018 IEEE International Energy Conference
(ENERGYCON), Limassol, Cyprus, 3–7 June 2018. [CrossRef]

6. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Louzazni, M. Assessment of Artificial Neural Networks Learning
Algorithms and Training Datasets for Solar Photovoltaic Power Production Prediction. Front. Energy Res.
2019, 7. [CrossRef]

7. Khandakar, A.; Chowdhury, E.H.M.; Khoda Kazi, M.; Benhmed, K.; Touati, F.; Al-Hitmi, M.; Gonzales, S.P.A., Jr.
Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of
Qatar. Energies 2019, 12, 2782. [CrossRef]

8. Su, D.; Batzelis, E.; Pal, B. Machine Learning Algorithms in Forecasting of Photovoltaic Power Generation. In
Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto,
Portugal, 9–11 September 2019. [CrossRef]

9. Velasco, N.J.; Ostia, F.C. Development of a Neural Network Based PV Power Output Prediction Application
Using Reduced Features and Tansig Activation Function. In Proceedings of the 2020 6th International
Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020. [CrossRef]

10. Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for solar power forecasting—An approach using
AutoEncoder and LSTM Neural Networks. In Proceedings of the 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016. [CrossRef]

11. Poudel, P.; Jang, B. Solar Power Prediction Using Deep Learning Technique. Adv. Future Gener. Commun. Netw.
2017, 146, 148–151.

12. Hua, C.; Zhu, E.; Kuang, L.; Pi, D. Short-term power prediction of photovoltaic power station based on long
short-term memory-back-propagation. Int. J. Distrib. Sens. Netw. 2019. [CrossRef]

13. Dawan, P.; Sriprapha, K.; Kittisontirak, S.; Boonraksa, T.; Junhuathon, N.; Titiroongruang, W.; Niemcharoen, S.
Comparison of Power Output Forecasting on the Photovoltaic System Using Adaptive Neuro-Fuzzy
Inference Systems and Particle Swarm Optimization-Artificial Neural Network Model. Energies 2020, 13, 351.
[CrossRef]

14. Zhu, H.; Lian, W.; Lu, L.; Dai, S.; Hu, Y. An Improved Forecasting Method for Photovoltaic Power Based on
Adaptive BP Neural Network with a Scrolling Time Window. Energies 2017, 10, 1542. [CrossRef]

15. Le Cadre, H.; Aravena, I.; Papavasiliou, A. Solar PV Power Forecasting Using Extreme Learning Machine
and Information Fusion. In Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, Bruges, Belgium, 22–24 April 2015; Available online:
https://hal.archives-ouvertes.fr/hal-01145680 (accessed on 15 August 2020).

16. Varanasi, J.; Tripathi, M.M. K-means clustering based photo voltaic power forecasting using artificial neural
network, particle swarm optimization and support vector regression. J. Inf. Optim. Sci. 2019, 40, 309–328.
[CrossRef]

17. Chiang, P.; Prasad Varma Chiluvuri, S.; Dey, S.; Nguyen, Q.T. Forecasting of Solar Photovoltaic System Power
Generation Using Wavelet Decomposition and Bias-Compensated Random Forest. In Proceedings of the
2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29–31 March 2017.
[CrossRef]

18. O’Leary, D.; Kubby, J. Feature Selection and ANN Solar Power Prediction. J. Renew. Energy 2017, 2017.
[CrossRef]

http://dx.doi.org/10.1155/2014/469701
http://dx.doi.org/10.1109/NAPS.2015.7335176
http://dx.doi.org/10.14569/IJACSA.2018.090148
http://dx.doi.org/10.1109/ENERGYCON.2018.8398737
http://dx.doi.org/10.3389/fenrg.2019.00130
http://dx.doi.org/10.3390/en12142782
http://dx.doi.org/10.1109/SEST.2019.8849106
http://dx.doi.org/10.1109/ICCAR49639.2020.9108101
http://dx.doi.org/10.1109/SMC.2016.7844673
http://dx.doi.org/10.1177/1550147719883134
http://dx.doi.org/10.3390/en13020351
http://dx.doi.org/10.3390/en10101542
https://hal.archives-ouvertes.fr/hal-01145680
http://dx.doi.org/10.1080/02522667.2019.1578091
http://dx.doi.org/10.1109/GreenTech.2017.44
http://dx.doi.org/10.1155/2017/2437387

Energies 2020, 13, 6405 28 of 29

19. AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep
learning and statistical methods. Appl. Comput. Inform. 2019. [CrossRef]

20. Amarasinghe, P.A.G.M.; Abeygunawardana, N.S.; Jayasekara, T.N.; Edirisinghe, E.A.J.P.; Abeygunawardane, S.K.
Ensemble models for solar power forecasting—A weather classification approach. AIMS Energy 2020, 8, 252–271.
[CrossRef]

21. Pattanaik, D.; Mishra, S.; Prasad Khuntia, G.; Dash, R.; Chandra Swain, S. An innovative learning approach
for solar power forecasting using genetic algorithm and artificial neural network. Open Eng. 2020, 10,
630–641. [CrossRef]

22. Chen, B.; Lin, P.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Very-Short-Term Power Prediction for PV Power Plants
Using a Simple and Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets.
Electronics 2020, 9, 289. [CrossRef]

23. Liu, Z.; Gao, W.; Wan, Y.; Muljadi, E. Wind power plant prediction by using neural networks. In Proceedings
of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September
2012. [CrossRef]

24. Tao, Y.; Chen, H.; Qiu, C. Wind power prediction and pattern feature based on deep learning method.
In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC),
Hong Kong, China, 7–10 December 2014. [CrossRef]

25. Li, T.; Li, Y.; Liao, M.; Wang, W.; Zeng, C. A New Wind Power Forecasting Approach Based on Conjugated
Gradient Neural Network. Math. Probl. Eng. 2016, 2016. [CrossRef]

26. Shao, H.; Deng, X.; Jiang, Y. A novel deep learning approach for short-term wind power forecasting based on
infinite feature selection and recurrent neural network. J. Renew. Sustain. Energy 2018, 10. [CrossRef]

27. Adnan, R.M.; Liang, Z.; Yuan, X.; Kisi, O.; Akhlaq, M.; Li, B. Comparison of LSSVR, M5RT, NF-GP, and NF-SC
Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation. Energies 2019,
12, 329. [CrossRef]

28. Zameer, A.; Khan, A.; Javed, S.G. Machine Learning based short term wind power prediction using a hybrid
learning model. Comput. Electr. Eng. 2015, 45, 122–133. [CrossRef]

29. Qureshi, A.S.; Khan, A.; Zameer, A.; Usman, A. Wind power prediction using deep neural network based
meta regression and transfer learning. Appl. Soft Comput. 2017, 58, 742–755. [CrossRef]

30. Khan, M.; Liu, T.; Ullah, F. A New Hybrid Approach to Forecast Wind Power for Large Scale Wind Turbine
Data Using Deep Learning with TensorFlow Framework and Principal Component Analysis. Energies 2019,
12, 2229. [CrossRef]

31. Son, N.; Yang, S.; Na, J. Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified
Long Short-Term Memory. Energies 2019, 12, 3901. [CrossRef]

32. Cali, U.; Sharma, V. Short-term wind power forecasting using long-short term memory based recurrent
neural network model and variable selection. Int. J. Smart Grid Clean Energy 2019, 103–110. [CrossRef]

33. Fischer, A.; Montuelle, L.; Mougeot, M.; Picard, D. Statistical learning for wind power: A modeling and
stability study towards forecasting. Wind Energy 2017, 20, 2037–2047. [CrossRef]

34. Barque, M.; Martin, S.; Etienne Norbert Vianin, J.; Genoud, D.; Wannier, D. Improving wind power prediction
with retraining machine learning algorithms. In Proceedings of the 2018 International Workshop on Big Data
and Information Security (IWBIS), Jakarta, Indonesia, 12–13 May 2018. [CrossRef]

35. Demolli, H.; Sakir Dokuz, A.; Ecemis, A.; Gokcek, M. Wind power forecasting based on daily wind speed
data using machine learning algorithms. Energy Convers. Manag. 2019, 198, 111823. [CrossRef]

36. Kosovic, B.; Haupt, S.E.; Adriaansen, D.; Alessandrini, S.; Wiener, G.; Delle Monache, L.; Liu, Y.; Linden, S.;
Jensen, T.; Cheng, W.; et al. A Comprehensive Wind Power Forecasting System Integrating Artificial
Intelligence and Numerical Weather Prediction. Energies 2020, 13, 1372. [CrossRef]

37. Chaudhary, A.; Sharma, A.; Kumar, A.; Dikshit, K.; Kumar, N. Short term wind power forecasting using
machine learning techniques. J. Stat. Manag. Syst. 2020, 23, 145–156. [CrossRef]

38. Pearson Correlation Coefficient, Wikipedia. Available online: https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient (accessed on 15 March 2020).

39. Corizzo, R.; Ceci, M.; Fanaee, T.H.; Gama, J. Multi-aspect renewable energy forecasting. Inf. Sci. 2021, 546,
701–722. [CrossRef]

40. Cavalcante, L.; Bessa, R.J.; Reis, M.; Browell, J. LASSO vector autoregression structures for very short-term
wind power forecasting. Wind Energy 2017, 20. [CrossRef]

http://dx.doi.org/10.1016/j.aci.2019.11.002
http://dx.doi.org/10.3934/energy.2020.2.252
http://dx.doi.org/10.1515/eng-2020-0073
http://dx.doi.org/10.3390/electronics9020289
http://dx.doi.org/10.1109/ECCE.2012.6342351
http://dx.doi.org/10.1109/APPEEC.2014.7066166
http://dx.doi.org/10.1155/2016/8141790
http://dx.doi.org/10.1063/1.5024297
http://dx.doi.org/10.3390/en12020329
http://dx.doi.org/10.1016/j.compeleceng.2014.07.009
http://dx.doi.org/10.1016/j.asoc.2017.05.031
http://dx.doi.org/10.3390/en12122229
http://dx.doi.org/10.3390/en12203901
http://dx.doi.org/10.12720/sgce.8.2.103-110
http://dx.doi.org/10.1002/we.2139
http://dx.doi.org/10.1109/IWBIS.2018.8471713
http://dx.doi.org/10.1016/j.enconman.2019.111823
http://dx.doi.org/10.3390/en13061372
http://dx.doi.org/10.1080/09720510.2020.1721632
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://dx.doi.org/10.1016/j.ins.2020.08.003
http://dx.doi.org/10.1002/we.2029

Energies 2020, 13, 6405 29 of 29

41. Ceci, M.; Corizzo, R.; Japkowicz, N.; Mignone, P.; Pio, G. ECHAD: Embedding-Based Change Detection
From Multivariate Time Series in Smart Grids. IEEE Access 2020, 8, 156053–156066. [CrossRef]

42. Spearman’s Rank Correlation Coefficient, Wikipedia. Available online: https://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_coefficient (accessed on 3 March 2020).

43. Activation Functions in Neural Networks. Available online: https://towardsdatascience.com/activation-
functions-neural-networks-1cbd9f8d91d6 (accessed on 4 November 2020).

44. Fundamentals of Learning: The Exploration-Exploitation Trade-Off. Available online: http://tomstafford.
staff.shef.ac.uk/?p=48 (accessed on 3 September 2020).

45. Kumar Ojha, V.; Abraham, A.; Snášel, V. Metaheuristic Design of Feedforward Neural Networks: A Review
of Two Decades of Research. Eng. Appl. Artif. Intell. 2017, 60, 97–116. [CrossRef]

46. Venkata Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained
optimization problems. Int. J. Ind. Eng. Comput. 2015, 7, 19–34. [CrossRef]

47. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [CrossRef]

48. Ali Khan, T.; Ho Ling, S.; Sanagavarapu Mohan, A. Advanced Particle Swarm Optimization Algorithm with
Improved Velocity Update Strategy. In Proceedings of the 2018 IEEE International Conference on Systems,
Man and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018. [CrossRef]

49. Allawi, Z.T.; Ibraheem, I.K.; Humaidi, A.J. Fine-Tuning Meta-Heuristic Algorithm for Global Optimization.
Processes 2019, 7, 657. [CrossRef]

50. Spearman’s Rank-Order Correlation, Laerd Statistics. Available online: https://statistics.laerd.com/statistical-
guides/spearmans-rank-order-correlation-statistical-guide.php (accessed on 4 November 2020).

51. Normalization (Statistics), Wikipedia. Available online: https://en.wikipedia.org/wiki/Normalization_
(statistics) (accessed on 15 March 2020).

52. Statistics How, To. Available online: https://www.statisticshowto.datasciencecentral.com/uniform-
distribution/ (accessed on 3 September 2020).

53. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
54. NREL Wind Prospector. Available online: https://maps.nrel.gov/wind-prospector/?aL=sgVvMX%255Bv%

255D%3Dt&bL=groad&cE=0&lR=0&mC=41.983994270935625%2C-98.173828125&zL=5 (accessed on 15
March 2020).

55. DATA.GO.KR. Available online: https://www.data.go.kr/ (accessed on 2 February 2020).
56. Chegg Study. Available online: https://www.chegg.com/homework-help/definitions/pearson-correlation-

coefficient-pcc-31 (accessed on 3 September 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2020.3019095
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
http://tomstafford.staff.shef.ac.uk/?p=48
http://tomstafford.staff.shef.ac.uk/?p=48
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://dx.doi.org/10.5267/j.ijiec.2015.8.004
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/SMC.2018.00669
http://dx.doi.org/10.3390/pr7100657
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://www.statisticshowto.datasciencecentral.com/uniform-distribution/
https://www.statisticshowto.datasciencecentral.com/uniform-distribution/
http://dx.doi.org/10.1214/aos/1176344136
https://maps.nrel.gov/wind-prospector/?aL=sgVvMX%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=41.983994270935625%2C-98.173828125&zL=5
https://maps.nrel.gov/wind-prospector/?aL=sgVvMX%255Bv%255D%3Dt&bL=groad&cE=0&lR=0&mC=41.983994270935625%2C-98.173828125&zL=5
https://www.data.go.kr/
https://www.chegg.com/homework-help/definitions/pearson-correlation-coefficient-pcc-31
https://www.chegg.com/homework-help/definitions/pearson-correlation-coefficient-pcc-31
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review for Output Power Prediction of Solar Photovoltaic (PV) System
	Literature Review for Output Power Prediction of Wind Turbine Energy System (WTES)
	Research Gaps and Motivation for the Proposed Methodology
	Necessity of Dynamic/Online Learning
	Necessity of Correlation Coefficient (CC) Analysis among the Input and Output Variables

	Contribution of This Research

	Related Theories for the Proposed Methodology
	Artificial Neural Network (ANN)
	Optimization Algorithms
	Description of Jaya Algorithm
	Description of APSO
	Description of FTMA
	Problem of Early Convergence and Solution

	Spearman’s Rank-Order Correlation Analysis

	Proposed Algorithm for Dynamic Learning
	Block 1 (System Initialization)
	Blocks 2–6 (Data Collection and Sequential Entry, Feature Scaling and Correlation Analysis, Mode Consecutiveness Check)
	Blocks 7–9 (Mode Occurrence Check, Solution Search Space Generation, and Evaluation of Model Performance)
	Blocks 10–14 (Error Analysis, MAANN Optimization, Storing the Best Solution, Statistical Analysis, and Choosing the Best Algorithm)

	Experimental Validations
	Initialization of Experimental Setup
	Dynamic Change in CC and Mode Analysis
	Data Entry (Episode)-Wise Optimization Algorithms Performance Comparison
	Train/Test Status of the Algorithm
	Time Analysis of the FTMA
	Solution Convergence Analysis of Different Optimization Algorithms
	Comparison of Training and Test Dataset
	Tabular Comparison

	Conclusions and Future Work
	
	References

