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Abstract: The smart grid is an unprecedented opportunity to shift the current energy industry into a
new era of a modernized network where the power generation, transmission, and distribution are
intelligently, responsively, and cooperatively managed through a bi-directional automation system.
Although the domains of smart grid applications and technologies vary in functions and forms,
they generally share common potentials such as intelligent energy curtailment, efficient integration of
Demand Response, Distributed Renewable Generation, and Energy Storage. This paper presents a
comprehensive review categorically on the recent advances and previous research developments
of the smart grid paradigm over the last two decades. The main intent of the study is to provide
an application-focused survey where every category and sub-category herein are thoroughly and
independently investigated. The preamble of the paper highlights the concept and the structure of the
smart grids. The work presented intensively and extensively reviews the recent advances on the energy
data management in smart grids, pricing modalities in a modernized power grid, and the predominant
components of the smart grid. The paper thoroughly enumerates the recent advances in the area
of network reliability. On the other hand, the reliance on smart cities on advanced communication
infrastructure promotes more concerns regarding data integrity. Therefore, the paper dedicates
a sub-section to highlight the challenges and the state-of-the-art of cybersecurity. Furthermore,
highlighting the emerging developments in the pricing mechanisms concludes the review.

Keywords: demand response in microgrids; energy data management and cybersecurity; energy
pricing and bidding framework; intelligent multi-agent system; optimal management of energy mix;
optimization techniques for smart grids; price forecasting; reliability assessment; topological indices
of smart grids

1. Introduction

The stipulation on sustainable modernization of the energy sector primarily brought about the
need to establish deregulation in the power industry. Among several novel propositions, the concept
of microgrids proves to be the most promising solution [1]. Microgrids (MG) are small-scale electrical
distribution networks consisting of distributed generators (renewable and/or non-renewable generators),
heterogenous loads, and energy storage devices that operate in grid-connected or islanded modes with
suitable interfacial power electronic devices [2]. Descriptively, MGs in the form of autonomic grids are
existent in remote communities wherein interconnection to utility networks is techno-economically
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inconceivable. The power delivered by renewable energy sources in the early stages of integration was
infinitesimal in comparison to existing conventional generators and, hence, their impact on the power
network was inherently unnoticeable.

However, with recent developments and commitments toward renewable and sustainable
power generation, renewable energy sources (RES) such as solar photovoltaics, wind, hydropower,
and hydrogen technologies are among the most popular and prioritized integrations to the electrical
power network. Therefore, microgrid facilitates flexibility to consolidate appropriate control scheme
and power management algorithm to maintain the quality of power supplied by transient RES through
power electronic interventions [3]. Power electronic devices primarily provide the flexibility to integrate
numerous distinctive forms of RES, energy storage devices, and heterogeneous loads. Furthermore,
numerous conceptualized topologies of power electronic converters/inverters are proposed [4–6]
to establish a point of common coupling (PCC) that plays a key role in the formation of DC, AC,
and hybrid AC-DC microgrids for various domains of voltage and frequency levels. In this respect,
several power electronic interfacing configurations and topologies have been proposed to not only
achieve a diversified power generation framework but also enable MGs to effectively manage the
power and energy flow [7,8].

Accordingly, with large-scale integration of RES technologies and subsequent deregulation,
the overall operation needs to be carefully monitored accompanied by power management frameworks
to support and facilitate controllable power sharing and load sharing [9]. Consequently, the paradigm
adaptation of microgrids for large-scale integration of distributed renewable energy sources will allow
a structuralized and intensive solution for numerous challenges associated with deregulated power
networks that will extensively reduce the need for complex centralized coordination and facilitate the
formation and realization of the smart grids.

Smart Grid (SG) does not have a unique definition to precisely describe the phenomena [10].
However, the smart grid can be simply defined as an intelligent network that is automated and able
to store, communicate, and make decisions. A similar definition of smart grids is dictated by the US
Energy Independence and Security Act 2007 [11]. It defines the smart grid as a modernization to the
electrical network such that it monitors, increases grid resiliency to disruptions, and automatically
optimizes grid operation of interconnected system components starting from central generating units
and distributed generation through transmission networks up to load centers. In addition, the US
National Institute of Standards and Technologies (NIST) [12] describes the smart grid as “a modern
grid that adapts bi-directional flows of energy” and utilizes two-way communication and control
capabilities that lead to a wide range of new functionalities and applications. It adds, unlike today’s
grid in which the energy is delivered from generation centers to demand centers, Smart grids allow
a two-way flow of energy and data. The definition of the smart grid has been stated by numerous
entities and researchers, as given in References [13–21]. They, however, are conceptually united on the
general framework of the term.

Furthermore, the US-based Electric Power Research Institute (EPRI) [16] defines the smart grid as
“the transition from the current grid where the flow of power is permitted from the central generation
to load locations into a grid where there is a peer to peer consumer interactions, distributed generation,
and control centers”. In the UK, the Department of Energy and Climatic Change emphasizes that
with a smarter grid, operators are more aware of supply–demand balance information, which in turn
helps to intelligently manage the system and shift the demand from peaking instants to off-peak
periods [17]. An initiative is launched in Australia called “SmartGrid SmartCity” between Energy
Australia and Ausgrid, and the Australian government echoes EPRI’s definitions, defines the smart grid
as a novel and a highly intelligent way of supplying electricity. It incorporates advanced communication
infrastructure, innovative sensing, and metering technologies with the electrical network to create
a two-way, interactive grid. Smart sensing technologies help to achieve fewer grid disruptions and
outages. Moreover, smart metering may help consumers to manage their energy consumption to
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reduce billing costs effectively. The development and the emerging trends in smart grids have been
highlighted in References [22–34].

The smart grid shifts the current conventional grid into a more modernized grid that can function
cooperatively and responsively. Users, generators, and consumers may intelligently be integrated
into the grid to provide efficient, secure, and economically feasible supplies [18]. The SG incorporates
distributed intelligence, bi-directional-based infrastructure for communications, and power flow to
improve system efficiency, reliability, and sustainability. Furthermore, the smart grid is a network that
integrates digital computing capabilities and highly automated services into the already existing power
system infrastructure. Empowering the transition toward the smart grid enhances the robustness
and self-healing capabilities of the system, according to Reference [20]. Table 1 briefly illustrates the
major differences between the conventional power grid and the smart grid. SGs require an effective
deployment to the information and communication technology to have a successful implementation
of this concept. Upgrading the conventional power grid toward an active network of a two-way
communication capability is one of the main barriers in smart grids (SGs). In accordance with the
diversification of the power network, a smooth transition to incorporate SG technologies has been
done with appropriate categorical standardization [35–44].

Table 1. Conventional grid versus smart grid [15].

Conventional Grid Smart Grid

Mechanically operated Digitized
Unilateral Bi-directional

Centralized Power generation Distributed Generation
Radially connected Dispersed

Small number of sensors Many
Less monitoring capabilities Highly monitored

Manual control Automated control
Less security issues Vulnerable to security issues

Slow responsive actions Fast response

The remaining of the paper is structured as follows: Section 2 reviews the structure and the
main characteristics of SGs. Furthermore, the essential technologies that may facilitate the transition
toward a highly functioned infrastructure are highlighted. From a power system perspective, the main
components in smart grids are thoroughly, independently studied in Section 3. Moreover, the recent
advances in reliability and resiliency indices in smart grids are presented throughout Section 3.
The energy data management and cybersecurity in smart grids are reviewed in Section 4. In Section 5,
we thoroughly investigate the pricing mechanisms in smart grids. Figure 1 briefly emphasizes the
organization of the paper.

Figure 1. The organization of the paper at a glance.
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2. Structure of Smart Grids

2.1. Definitions

The National Institute of Standards and Technology (NIST) [12] has classified smart grids into
seven categories and (sub-categories) that comprise actors and applications. Actors may include devices
(e.g., renewable energy generation, and smart meters), control systems, programs, decision-makers
(stakeholders), and telecom stations (data-exchange). The applications are known as the tasks that can
be performed by actors within the category (e.g., energy management, site automation, and energy
storage) or between different categories. Actors in the same category may interact with actors in other
categories, and a specific category may contain components from other categories (i.e., distribution
utility may contain actors from operation category such as Distribution Management System and in
the customer category such as electric meters. A detailed classification is presented in Table 2.

Table 2. Classification and elements of smart grids [12,15].

Category Description and the Actors in Domain

Customer
Where the electricity is consumed, End-users. The sub-category
includes domestics and large consumers, such as commercial and
industrial loads. Actors can generate, manage, and store.

Market Where the assets are exchanged. The operator and participants are the
actors in electricity markets.

Service Provider
An organization that provides services pertaining to the establishment
and secure operation of smart grids as per the requirements of the
consumers and utilities.

Operations The proper operation of the power system is monitored—the managers
of the flow of electricity.

Bulk Generation
Where the delivery of bulky electricity to consumers starts, actors are
the generators of electricity in bulk quantities; energy can also be stored
for later distribution.

Transmission
Where the bulky power is transferred from generation centers to
distribution. Actors are the carriers of electricity and may also generate
and store electricity.

Distribution
Where Distributed Generation, Distributed Storage, transmission, and
consumers’ interconnect. Actors are the entities that distribute electricity
to and from customers.

2.2. Smart Grid Technologies

Numerous technologies can be implemented to achieve successful control and automation in smart
grids [21,45]. Such technologies are imperative to facilitate the transition toward a well-functioned
infrastructure from the perspective of grid designers and consumers. These technologies may include
Automatic Voltage Regulation (AVR), Energy Management System (EMS), Automatic Generation
Control (AGC), Advanced Metering Infrastructure (AMI), Meter Data Management (MDM),
Distribution Management System (DMS), Geographical Information System (GIS), Outage Management
System (OMS), Wide Area Management System (WAMS), and Demand Side Management (DSM).
Some of these technologies are highlighted in Table 3.

AVR helps to keep the voltage profiles within the allowable limit, whereas EMS ensures the
reliability and secures the operating points for the Supervisory Control and Data Acquisition (SCADA).
It could also be considered as a large-scale optimizer for the entire grid. AGC has a vital role in grid
stability as it performs optimal load distribution among the generating units to re-gain stability margins.
The smart meters allow two-way communication between the end-users and the service provider [15].
This enables consumers to control their energy usage and ensures more accurate billing. In addition,
smart meters can provide power outage notifications and power quality monitoring. For a demand
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to be controllable, smart meters are often used since they possess a two-way communication that
allows system operators or aggregators to effectively control the loads [46,47]. For instance, the
authors in Reference [46] investigated the ability of smart meters to control domestic demands
for frequency regulation purposes. Due to the slow response of communicating channels during
frequency surges, an alternative control scheme was proposed, while in Reference [25], a smart
meter based controlled load blocking scheme for domestic loads was proposed for primary frequency
control considering end-users’ lifestyles and safety. The advanced metering infrastructure (AMI) is a
fundamental step toward grid modernization. AMIs are not a single technology, rather an integration
of a wide range of technologies that can intelligently communicate between consumers and system
operators. The AMI provides the necessary information for consumers to make intelligent decisions
and the ability to execute those decisions that lead to substantial benefits they do not currently have.
The AMI and distribution automation facilitates a more modernized grid through transformers and
feeders monitoring, outage management, and integration of electric vehicles. MDM supports the
decision-making process and assists in managing the flow of data.

DMS performs several applications, such as efficient controlling and monitoring of the distribution
network. It acts as a decision support system that helps personnel in taking the counteractions once
an outage occurs. It may also help in maintaining the voltage and frequency within their nominal
values. DMS can also be used to provide the needed functionality for consumers to control their
appliances once required. GIS provides the necessary infrastructure that integrates the data onto
geographical maps. GIS visualization is an extremely crucial component in smart grids. OMS helps to
restore the functionality of the system post outages. WAMS assists in grid synchronization in a high
voltage network. It can be utilized to provide disturbance analysis and verification of Flexible AC
Transmission Systems (FACTS) [48]. WAMS can also be used to provide time measurements through
Phasor Measurement Units (PMUs) [49–51]. DSM offers intelligent energy curtailment and will be
thoroughly investigated in the sequel of this paper.

Table 3. Smart grids technologies and applications at a glance [21].

Technique Ref. Year Author (s) Objective

AVR

[52] 2014 Ting-Chia et al.
(a) Hybrid protocol for AVR
(b) Power control using FLC

[53] 2010 Morris et al.
(a) AVR control based on sensitivity
(b) Voltage regulation

GIS

[54] 2012 Schneider Electric

(a) Efficient smart grid strategies based on GIS
(b) Data accuracy
(c) Time reduction
(d) Efficient workflow

[55] 2009 Esri Inc
(a) Providing the necessary tools for network

modeling and component tracing.

OMS

[56] 2013 John Dirkman

(a) OMS for normal operations and emergencies
(b) OMS assists in advanced analysis and control

of the smart grid.
(c) Prediction roadmap

[45] 2011 Eduardo et al.
(a) Power restoration
(b) Automated solutions for reporting problems.

AGC

[53] 2014 Siddaharth et al.
(a) Investigate the impact of data
(b) Attack detection

[57] 2012 Ali et al.
(a) Smart grid intermittency mitigation
(b) High-frequency fluctuations control
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Table 3. Cont.

Technique Ref. Year Author (s) Objective

AMI [45] 2011 Eduardo et al.
(a) Data Gathering cost reduction
(b) Connection and disconnection of end-users

EMS [58] 2012 Rahman et al.
(a) Backup batteries
(b) Efficient operation of EMS

2.3. Characteristics of Smart Grids

The following bullet points briefly summarize the main characteristics of smart grids that have
been reported in the literature [59–61]:

1. Integrable Distributed Resources (DER) that include sustainable energy sources.
2. Should perform dynamic optimization of grid operation continuously.
3. Should have digitized information and control technologies to enhance the reliability and efficiency

of the electric network.
4. Should have Demand Side Response (DSR) programs and demand-side resources.
5. Integrable smart appliances.
6. Are fortified against cyber threats.
7. Should have advanced storage devices and peak-shaving technologies, including hybrid and

plug-in electric vehicles.

2.4. Benefits of Smart Grid Transformation

Utilities are encouraged to efficiently generate and distribute their electricity with a minimal
negative impact on the environment. This practice is not only a matter of good corporate citizenship,
but some countries also impose a wide range of regulations to limit carbon emissions, and they
offer incentives for those transforming their infrastructures to a modernized network. For instance,
in Europe, the well-known principle “Cap and Trade” limits the total amount of greenhouse gas
productions from power plants and factories. A utility is free to operate as long as its carbon emission
allowance is below the cap level. Moreover, a company may trade its spare allowance to a company
that violates its assigned cap level. The principle is applied in European states in addition to Iceland,
Norway, and Liechtenstein [62]. On the other hand, In the United States, 40% of greenhouse gas
emissions are produced from electricity consumption. By 2030, it is estimated that smart grid-based
applications that range from shallower domains like voltage control to broader domains like the
integration of renewable energy resources would reduce the nation’s carbon dioxide emissions from
211 to 60 million metric tons annually [11,16]. Although the transformation toward smart grids may
unfold over a long period, the incremental progress in that area yields the major pros listed below,
which are highlighted in References [63–69]. The application of a modernized network would:

• Improve the reliability and quality of the power grid.
• Optimize the operation of existed assets to avert the future expansion of backup plants.
• Enhance the overall system efficiency.
• Improve system resiliency.
• Facilitate the incorporation of Distributed Resources.
• Enable predictive maintenance and self-healing capacities.
• Lower greenhouse gaseous emissions.
• Increase consumers’ assortments.
• Increase the opportunities to enhance system security.
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3. Smart Grid Predominant Components

3.1. Distributed Generation

The conventional paradigm of the well-known centralized power grid is being reshaped due
to the high penetration of Distributed Generation (DG). The advent of distributed generation has
disrupted the way power is generated and supplied to the electrical grid. The lack of fossil fuels,
increased greenhouse emissions, and the automation that has been evolving in informatics and
technologies have contributed to the revival of the DG. Researchers believe that DG has a vital
role in forming the future of the electrical grid in addition to the storage technologies and demand
response [70–73]. However, the degree of change in the future power grid is somewhat ambiguous
since it mainly relies on the extent of DGs deployment that may reach. Furthermore, the precise role
of DGs is still debatable and needs to be thoroughly addressed in order to have a comprehensive
visualization of how things might evolve in the future. For instance, the authors of Reference [70] have
devoted their article to investigate the role of DGs in shaping the future power grid.

The definition of DGs in the literature is somewhat opaque [70] as there is no exact definition to
describe the term adequately. The resources [74,75] define the DGs as small-scale and renewable-based
units that are geographically confined near the load centers. DGs may also involve large-scale
units that are not friendly-based resources. In Reference [76], the authors defined the DGs as
electric power sources that are physically connected to a distribution network or at the meter-side
of consumers. In Reference [77], the authors classified the DGs, cogeneration, backup generation,
storage capabilities, and microgrids under the category of Distributed Energy Resources (DER).
Distributed Energy Resources are relatively small capacity sources that can be deployed to meet
regular loads. The integration of such resources may facilitate the transition toward smart grids.
The need to replace the fossil fuel generators and the mitigation of growing demands can be met by
the deployment of Renewable Energy Sources (RESs). However, processing such aggregated sources
require a tremendous amount of data that needs intelligent control capabilities.

However, the most prevailing and cited factor that motivated the expansion of DGs is the
greenhouse emission reduction [78–80]. Furthermore, the growth in electrical demands [81,82],
governmental regulations [83,84], market liberalization [85], and lower capital costs [86–88] was
reported among the motivating factors to the deployment of DGs. The deployment of DGs may
also provide a wide range of technical benefits if their size, location, and operation are properly
optimized [70]. Furthermore, DGs may contribute to network losses reduction if installed close to
the load centers [89–93], improve voltage profile as reported in References [94–97], enhance systems’
reliability [98–100], and provide computational flexibility for system controllability especially pertaining
to generation [101–103] and demand-side management [104–106].

Due to the advances in technologies and the rapid expansion of sustainable resources and
resiliency concerns, DER constitutes the backbone of the future grid infrastructure. According to
Reference [107], the DER capacity is expected to rise from 134 GW by the end of 2017 to approximately
528.4 GW in 2026 due to distributed Solar PV, small to medium-scale wind turbines, microturbines,
fuel cells, Electric Vehicles (EVs), Distributed Energy Storage (DES), and demand response (DR).
For instance, the total installed capacity of DER constituted 2% of the overall installed capacity in
the United States [108]. Distributed PV accounted for 12% of those installed in 2016. For example,
California plans to integrate 12 GW of DER by 2020. For further details on the progress of DER in the
United States, interested readers are referred to Reference [108]. In China, by the end of June 2017,
the total installed capacity of distributed PVs was 16.15 GW, which constituted 17% of the overall PV
installed capacity [109].

3.2. Reliability Assessment of DGs in Modern Grids

The electrical power grid is very complex and highly integrated. Failure in any part of the system
exposes the network to catastrophic consequences. However, there are several terms associated with
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reliability studies such as vulnerability, resiliency, robustness, and security. The reliability of the power
system is commonly used to encompass all these metrics. The authors of References [69,110–121]
have intensively investigated the reliability assessment for smart grid purposes. The reliability is
often measured differently at the transmission, generation system, and distribution levels. That is,
the Average Interruption Frequency Index (SAIFI) and the System Average Interruption Duration Index
(SAIDI) are used at the distribution level. SAIFI is used to quantify the average frequency of outages
per consumer, whereas SAIDI is dedicated to measuring the average duration of outages [122–124].
On the other hand, at the bulk generation level, the term Loss of Load Expectation (LOLE) is used
to describe the energy demanded that remains unserved over a period of time. Recently, the term
resiliency has been frequently used in the literature. EPRI [125] defines resiliency as the ability of the
grid to quickly recover after low and high-frequency events. Such events (e.g., cyber attacks or physical
attacks, natural events, and severe geomagnetic disturbances) devastate the entire electrical grid.

In order to realize the impact of DGs installment on the reliability indices, the available capacity
of the DG unit that assists in restoring the disrupted supply needs to be determined beforehand for
reliability analysis [126]. However, the following attributes should be considered when carrying out
reliability assessment studies:

• The availability of the DG: Distributed generation units are exposed to failures that might restrict
their functionality. Therefore, reliability models should consider the availability of DGs under
different contingency scenarios. Such models require probabilistic approaches to deal with such a
kind of stochasticity.

• The operating mode of DGs (Islanded and grid-connected): In Islanded mode, the lack of
appropriated control, protection capabilities, and communication infrastructure limits this kind
of operation [126]. However, numerous studies have been proposed to address the reliability
assessment of the distribution network to facilitate the transformation toward the intelligently
managed grid. Whereas in grid-connected mode, DGs are installed close to the load centers to
improve the reliability of the system by partially relieving the centralized units during heavy
loading conditions. It is, therefore, necessary to quantify the power exchange between the
feeders under the presence of DGs. A summary of the prevailing techniques within the layout of
microgrids is highlighted in Tables 4 and 5.

• The energy source (Dispatchable and Non-Dispatchable): in Dispatchable DGs, the generated
power is fixed and known in Markov State Models [126,127], whereas in Non-Dispatchable units
(e.g., wind and solar) the generated power depends on the availability of the intermittent sources.

Table 4. Reliability assessment techniques of distributed generation (DGs) in islanded mode [126,127].

Ref. Technique DG Type Generation Model Load Model

[128,129] Analytical Dispatchable - -

[130–132] Monte Carlo Simulation Dispatchable
Non-Dispatchable 3 states Markov Models Averaging

[133] Monte Carlo Simulation Dispatchable
Non-Dispatchable Probabilistic approach Probabilistic approach

[133–135] Monte Carlo Simulation Dispatchable
Non-Dispatchable Hourly profile Hourly profile

[136] Analytical Dispatchable
Non-Dispatchable Levels of a typical day Levels of a typical day

[132,137,138] Analytical Dispatchable
Non-Dispatchable Probabilistic approach Probabilistic approach

[139–142] Analytical Dispatchable
Non-Dispatchable Segment of a year Segment of a year
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Table 5. Reliability assessment techniques for DGs in grid-connected mode of operation [126].

Ref. Technique System Constraints Power Flow Transferred Capacity

[143,144] Analytical Voltage and load Yes Computed

[145] Monte Carlo Simulation Loading No Computed

[146] Analytical + Monte Carlo Simulation Loading No Computed

3.3. Demand Response

The Federal Energy Regulatory Commission defines Demand Response (DR) as “the changes
in electric usage by consumers from their normal consumption behavior in response to new pricing
schemes, elevated sense of responsibility, and incentive pricings that are mainly designed to induce
lower electricity consumption during high price periods or when system reliability is jeopardized” [147].
In Demand response, consumers are actively involved in grid operations as they can adjust their
electricity consumption during peaking hours and may benefit through financial incentives. DR may
also provide adequate capacity during the state of contingencies instead of relying on traditional
measures such as shedding loads to restore the functionality of the system [126]. In addition to the
relevant references highlighted earlier or later in this paper, the pivotal role of Demand Response in
smart grids has been thoroughly reviewed in References [148–154] and the classification of demand
response programs is depicted in Figure 2.

Figure 2. Framework and classification of demand response programs [73,155].

Demand response has a vital role in shaping the future power grid in addition to the storage
technologies, distributed generation, and communication infrastructure [73,153,155]. In conventional
power grids, consumers are effectively passive and have no choice whatsoever to monitor or/and
to participate in controlling their adjustable devices intelligently. On the contrary, in smart grids,
consumers are more involved in many aspects of the restructured power grid. Demand response can
be classified into Price-based programs and Incentive-based programs. In the former, end-users are
offered several pricing mechanisms, whereas the latter offers incentives for end-users for performing
specific tasks [73,126,155,156]. Furthermore, the latter is also broken down into Direct Control Load
(DCL) and Indirect Control Load (ICL). The former allows the utility to adjust the energy consumption
for the controllable devices with notification beforehand, while the latter is designed for appliances that
can be disrupted over a short period to reduce the peak during heavy loading conditions. The following
flowchart summarizes the DR programs.

3.3.1. Reliability of Demand Response

Although demand response causes load curtailment, it is essential to distinguish the DR actions
from the natural interruptions (i.e., partial or complete failure of the components) while carrying out
traditional reliability assessments [157]. More often, the former is planned beforehand, whereas the
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latter is unforeseen, and consumers will not be able to take any precautions to alleviate the problem.
Moreover, DR is performed on less sensitive loads (i.e., thermostatically controlled devices), thereby such
devices may remain energized. The impact of DR on reliability requires additional metrics compared to
traditional reliability assessments [126,157]. For further details, the authors of Reference [157] discussed
thoroughly different reliability techniques. Table 6 summarizes different reliability techniques that can
be used in DR programs.

Table 6. Distinct propositions and techniques for reliability assessment of DRs in the literature [126].

Ref. Technique Operating Mode DR Program DR Criteria ICT Impact

[161] Analytical Grid Connected Incentivized Interruption cost minimization No

[113] SMCS Grid Connected Incentivized Shifting less critical loads No

[158,162] Analytical SMCS Grid Connected Incentivized Minimizing interruption
cost/payback incentives Yes

[159] SMCS Off-grid TOU

Conflictive objectives to maximize
the profits of the supplier and to

minimize the payments
of consumers

Yes

[160] SMCS Off-grid Incentivized Interruption cost minimization Yes

The available capacity that might exist once the loads are curtailed needs to be precisely allocated
and considered during conducting reliability studies. Besides, load profiles over different time
horizons are necessary to model the demand in reliability assessment. Furthermore, Sequential Monte
Carlo Simulation (SMCS) is frequently used to assess the reliability as in References [113,158–160].
DR programs can be classified into three classes according to the party in-charge as follows:

• Reliability-based (Incentive-based) Programs: in this program, a set of demand curtailment signals
are sent to the participants in the form of voluntary requests or mandatory commands.

• Rate-based Programs: the prices are set beforehand over a period. Consumers are obliged to pay
higher rates during peaking instants and lower prices during off-peak periods. This program is
seen as a Time-of-Use (TOU) structure.

• Demand Reduction Bids: in this program, the participating consumers submit their bids to the
demand aggregator or the independent system operator (ISO) offering their available capacity to
be curtailed.

3.3.2. Applications of Demand Response

Controllable demands or aggregated demand response (DR) may act as a Virtual Energy Storage
Systems (VESS). Intelligent management of the power and energy consumption of DR may result in
functions similar to those provided by energy storage devices. Furthermore, the smart utilization of
the existing assets will provide the ancillary services required at a much lesser cost. For instance, 1.5 m
of aggregated refrigerators with a total capacity of 20 MW would cost £3 m as compared to the VESS,
which costs nearly £20–£25 m, [163–165]. Furthermore, DR has the potential to reduce the ESS market
share by 50% in 2030 [165].

Frequency regulations services can be provided by proper adjustments to the power consumption
of the controllable devices [166–174]. A control algorithm for dynamically controlled refrigerators was
proposed in Reference [166] to provide primary frequency control services in Great Britain. The authors
of Reference [167] investigated the ability of dynamically controlled loads to maintain grid frequency
within a particular range after a sudden loss of generation. The study indicated a significant delay
in frequency fall and less reliance on rapidly deployable backup generators. In Reference [168],
the authors used aggregated controlled bitumen tanks to provide sufficient reserve capacity for
frequency support applications. The model was proved to be more reliable and faster in response
compared to a frequency-sensitive generating units.
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The authors of Reference [169] investigated the potential range of average power that can be
offered by electric water heaters if adequately controlled for power-balancing applications. The control
strategy was achieved by adjusting the setpoint temperature and the drawn hot water. The authors in
Reference [170] presented a methodology to support grid frequency and voltage profile by using a
controllable load consisting of an electric water heater and electric vehicles. A decentralized controllable
protocol was developed to suppress active and reactive power fluctuations of renewables. In addition,
Reference [175] proposed aggregated electric vehicles to provide a centralized supplementary
frequency regulation through a mediator between the demands and the power system control center
considering the charging requirements. The authors in Reference [171] investigated the availability
of domestic refrigerators and industrial bitumen tank load to provide frequency response services.
A decentralized controller was proposed to adjust load power consumption in proportion to grid
frequency. In Reference [172], a two-layer control algorithm for thermostatically controllable loads to
effectively participate in fast frequency regulation services due to the scarcity of AGCs in Microgrid
that is highly penetrated by RESs has been proposed.

On the other hand, the authors of Reference [173] proposed a collaborative control scheme to
improve the stability of islanded Microgrids. Unlike other control schemes, this study deploys all
agents in the Microgrid to provide the reserves needed to achieve system stability. The presented
algorithm used an MPPT to limit the power output of the solar panels during frequency rise events.
In Reference [174], a comprehensive central demand response strategy for frequency regulation support
with minimal adjustments to the load was presented. A simulation on the 13-bus IEEE benchmark was
carried out to validate the study.

3.4. Energy Storage Technologies

Energy Storage Systems (ESSs) are fundamental parts when it comes to renewable energy resources
incorporated in smart grids. The variability of such resources can be mitigated by an efficient operation
of the ESSs. Energy systems store the excessive energy during off-peak periods and supply it back
during peaking hours. Conventional storing technologies can provide numerous applications in power
systems in addition to their primary functions, as depicted in Figure 3 [176]. The application of energy
storage is not new, yet the technologies require further developments. Similarly, the operational
schemes for the energy-storing devices are designed intensively for respective exclusive applications.
Their inherent degraded efficiencies and high capital costs are still questionable despite the rapid
developments in other fields, owing to the Electric Vehicles (EVs). Therefore, their operation and
size need to be carefully optimized. In this respect, the authors of References [177–183] have
thoroughly reviewed the role of storage systems in modern smart grids in terms of applications, costs,
characteristics, optimal operation, sizing, and hybridization of storage technologies. For instance,
the applications may include, but not limited to, energy arbitrage [184–189], peak shaving [190–192],
frequency regulation [193–196] and [197], spinning reserves [198], voltage support [199–201], black start
capabilities [202], intermittency smoothing [203], congestion mitigation [204], system expansion
deferrals [205], multi-agent grid services [206–209], and load-following applications [210]; Tables 7
and 8 highlight the most recent characteristics of storage technologies.

Within the layout of ancillary services, Electric Vehicles (EVs) can be used as an independent
energy source. Once the EV is parked, the energy can be retrieved back into the grid (Vehicle to Grid
V2G) [211–213]. Fixed or roaming energy storage systems can be deployed to provide sufficient reserve
capacity for ancillary services purposes [214–218]. For instance, the authors of Reference [212] have
proposed a real-time control strategy for a fleet of EVs to provide ancillary services. The proposed
controller has considered the bidirectional charging/discharging efficiency in an extended effect during
the implementation of Model Predictive Control (MPC). The simulation that has been carried out
has revealed a significant improvement in battery lifetime extension, tracking error, and regulation
capacity. A planning framework for a virtual investor that aims to provide ancillary services to a
wholesale market has been proposed in Reference [213]. Two alternatives have been presented for
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the investor. The former has used a dedicated battery to achieve the objective, whereas the latter has
deployed aggregated EVS to achieve the same task. The objective of the proposed optimization model
is to maximize the long-term payoffs for the investor by providing an optimized daily bidding strategy.
The proposed study has used an economic measure (i.e., present worth) to compare the alternatives.
A sensitivity analysis has been carried out to investigate the impact of planning and operation variables
on the feasibility of the two alternatives.

Figure 3. Multifaced applications of energy storage systems in smart grids [176,219].

Table 7. Technical characteristics of energy storage technologies [220,221].

Energy S. Technology Energy Density Power Density Discharge Time Lifetime Capital Cost Technological
Maturity

Wh/kg W/kg (Year) $/KW $/KWh

Mechanical Energy Storage

PHES 0.5–1.5 - 1–24 h+ 40–60 600–2000 5–100 Matured

CAES 30–60 (0.5–2.0) 1–24 h+ 20–40 400–800 2–50 Developed

Flywheel 10–30 400–1500 Millisec–15 min 15 50–300 500–1000 Commercial

Electrochemical Energy Storage

Lead Acid Battery 30–50 75–300 Sec–hrs 5–15 200–300 120–150 Commercial

NiCd Battery 50–75 150–300 Sec–hrs 10–20 500–1500 800–1500 Commercial

Sodium Sulfur (NaS)Battery 150–240 150–230 Sec–hrs 10–15 1000–3000 300–500 Commercial

Lithium Battery (Li-ion) 75–250 150–315 Mins–hrs 5–15 1200–4000 300–1300 Demonstration

VRFB 10–30 – Sec–10 h 5–10 600–1500 50–1000 Demonstration

Electrical Energy Storage

SuperCapacitor 2.5–15 500–1300 Millisec–60 Min 20+ 100–300 300–10,000 Developed

SMES 0.5–5 500–2000 Millisecs–sec 20+ 200–300 1000–10,000 Demonstration

Chemical Energy Storage

Hydrogen Fuel Cells 800–10,000 500+ Sec–24 h+ 5–15 – 6000–20,000 Developing

SNG 10,000 (0.2–2) 1–24 h+ 10–30 - - Developing

Thermal Energy Storage

CSP −43.05 - Mins–hrs 30 - 3500–7000 Developing
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Table 8. Associative characteristics of energy storage technologies [220,221].

Energy S. Technology Power Rating Storage
Duration

Self-Discharge
per Day

Cycle Life
(cycles)

Round trip
Efficiency (%) Response Time Class

Mechanical Energy Storage

PHES 100–5000 MW Hrs–Mons Very small – 65–87% L–2 min Long term

CAES 5–300 MW Hrs–Mons Small - 50–89% 1–2 min Long term

Flywheel 0–250 kW Sec–Mins 100% - 85–95% 1–2 min Short term

Electrochemical Energy Storage

Lead Acid
Battery 0–20 MW Mins–days 0.1–0.3% 500–1000 75–80% Seconds Long term

NiCd Battery 0–40 MW Mins–days 0.2–0.6% 2000–2500 85–90% Seconds Long term

Sodium Sulfur (NaS) battery 50 kW–8 MW Sec–Hrs 20% 2500 80–90% Seconds Short term

Lithium Battery (Li-ion) 0–100 kW Mins–days 0.1–0.3% 1000–10,000+ 85–90% Seconds Long term

VRFB 30 kW–3 MW Hrs–months Small 12,000+ 85–90% Seconds Long term

Electrical Energy Storage Systems

Double Layer
Capacitor/super Capacitor 0–300 kW Sec–hrs 20–40% 100,000+ 90–95% Milliseconds Short term

SMES 100 kW–10 MW Sec–hrs 10–15% 100,000+ 95–98% Millisecond Short term

Chemical Energy Storage Systems

Hydrogen Fuel cell 0–50 MW Hrs–months Nearly 0 100+ 20–50% Sec–Mins Long term

Thermal Energy Storage Systems

CSP 10 kW–20 MW – 1% – <60% 10 min Long term

On the other hand, the authors of Reference [214] proposed a Virtual Energy Storage System
(VESS) that consists of controllable demands and Flywheel Storage System (FSS) to provide power
system ancillary services. Feasibility studies were carried out to validate the benefits of deploying
such protocols over conventional measures. A hybrid ultra-capacitor and battery storage systems
were proposed in Reference [215] to provide large scale regulation services. The proposed scheme
aims to mitigate the abusive utilization of the battery and to increase the profitability of regulation
services. Moreover, Reference [216] presented a vanadium-redox flow battery-based energy device
model to provide multi-ancillary services focusing on peak-shaving application and frequency
support. A cooperative dynamic energy level balancing based on consensus control among distributed
energy storage devices offering frequency regulation capabilities in a droop-controlled Microgrid was
investigated in Reference [217].

Furthermore, the authors of Reference [222] presented a study that assesses the financial
performance of a battery energy storage system (BESS) to provide market-based frequency regulation
services. The potential impact on profitability was also highlighted and evaluated. On the other
hand, the replacement of bulky conventional generators by renewables may result in an inertial mass
reduction, which jeopardizes grid stability. Therefore, the authors of Reference [193] have proposed a
coordinated control scheme to effectively operate a hybrid system that is composed of ultra-capacitor
and batteries for ancillary services purposes in the electricity market.

4. Data Management

4.1. Energy Data Management in Smart Grids

One of the main challenges toward the transformation into a functional smart grid is the scarcity
of resources [223]. A smart city incorporates engineering solutions and informatics capabilities to
effectively run a reliable network. It encompasses a wide range of intelligent services such as smart
grids, smart transportation, smart education, smart waste management, and smart communication.
Among these, the smart grid forms the backbone of the hierarchal structure of the smart city because it
supplies sustainable energy to all other parts to guarantee a successful integration. Smart grids should
comprise intelligent data systems in order to function appropriately. Capturing and processing such a
massive amount of information needs to be carefully addressed. For instance, the References [224–235]
are dedicated to investigating the progress in the field of big energy data management by enumerating
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different studies that have been reported to cover several data management aspects that involve data
collection, data preprocessing, data integration, data analytics, data storage, visualizing the data,
and decision-making.

The traditional grid heavily relies on primitive data that can be collected through limited points
within the network, such as demand data, voltage data, and current data. On the contrary, the smart
grid captures real-time data through enormous data points within the grid where the process can be
referred to as big energy data. It may include smart meter data, dispersed sensors data, weather forecast
data, load profile patterns, and may even carry out online operations for a wide range of power
system applications. However, once the data are collected, proper analyses are performed to assist
decision-makers in making their right decisions. The collected online data may also assist consumers
to adjust their electricity consumption during peaking periods. They also help utilities in determining
the faulty networks and restore the grid to regular operation. However, the expansion in advanced
infrastructure brings new challenges from the data standpoint of view (e.g., data security, data privacy,
cost of data storage, and retrieval).

4.1.1. Data Collection

The flow of data management in smart grids is sequentially organized, as depicted in Figure 4.
However, the data collection phase is the first step in the data management process, where the
information is collected from the data centers [236]. The ultimate source of data is the so-called
advanced metering infrastructure (AMI) that retrieves the information from end-users’ premises.
The AMI measures and collects the data every 10–15 min. The data are prone to an escalation in
size, depending on the population of a given location. For instance, in Australia, Sydney has a
population of nearly 4,000,000, where the last report from the Australian Bureau of Statistics indicates
that there are a total of 1850 dwellings are located in Greater Sydney [237]. Such a large number of
dwellings emphasizes that there are approximately 267,228,432 messages sent to the control center
each day. There are, however, several data loggers that can transmit data in smart grids such as sensors
data, power metrics data, mobile terminals, metadata, control devices, historical data, and reliability
data [238]. Geographic information systems (GIS) may also contribute to smart grids by providing
a piece of valuable information that can be utilized to perform specific tasks such as identifying the
proper PV farm to be installed, visualization of generation, and distribution facilities [239–241].

Figure 4. Flow of data in smart grids.
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There has been continuous progress in this area to address some challenges, such as standards,
security, privacy, reliability, and scalability [223]. For instance, the authors of References [242,243]
investigated the data collection attribute from the security and privacy point of view. On the
other hand, the authors of References [244,245] investigated the data collection in a nonhierarchical
network. The proposed studies developed a lightweight message authentication framework for smart
grid data communication, considering privacy [246]. Other studies were devoted to investigating
reducing storage when establishing multiple sessions with source devices/sensors [247]. The authors
in Reference [248] proposed a smart meter data reporting strategy based on three novel data collection
mechanisms to optimize the performance of the communication network and the performance of
TCP-based communication in IEEE 802.11s mesh AMI networks.

4.1.2. Data Preprocessing

In this phase, the data collected undergo several processes before performing any task of analysis.
However, the data acquired might be incomplete, inaccurate, and need to be filtered out where this
process is known as data cleansing [249]. The data-cleansing phase comprises five steps. That is,
once the erroneous data are received, they are defined, identified, corrected, documented, and modified
to avoid future faults [250]. For instance, in smart grids, data cleansing helps in forecasting the
generation from the PV system to decide the proper dynamic tariff rate [251,252].

The acquired data may even suffer from redundancy and repetition, which require more storage
capacity and add more cost. Hence, the redundant data need to be identified and eliminated [253–255].
The authors of Reference [256] presumed that the data collected from smart grids facilities are equivalent
to the data generated from media platforms. As reported above, data preprocessing may involve
data cleaning, data aggregation, redundancy, repetition, and elimination [257–260]. In particular,
the authors of Reference [261] discussed the data aggregation aspects where most of which were
devoted to addressing privacy preservation. However, data aggregation helps in keeping them
anonymous to preserve privacy.

4.1.3. Data Integration

Before the data get assimilated once originated from scattered data points, the data collected
are not uniform and need to be appropriately integrated before the analysis [223,262]. For example,
the load profile data and weather condition data are integrated to help utilities optimize and schedule
their power production in accordance to the demands considering uncertainties [262–264].

4.1.4. Data Storage

In the data storage phase, the data get stored, located, and can be accessed at any instant of
time [224]. In traditional grids, the load data profiles are stored for load forecasting purposes, hence they
do not require excessive data storage capabilities. On the contrary, in smart grids, a wide range of data
needs to be allocated and stored. The speed of processing the input/output information of the data
storage is crucial due to the online operations that need to be performed [265]. Smart grids collect a
massive amount of diversified data from various spots. The ability to access the stored data needs to
be fast enough for real-time operations. There are several approaches reported in the literature for
effective data storage mechanisms. For instance, the authors of Reference [266] proposed using the
Simplified Mandatory Access Control Kernel (SMACK)-based framework, which combines Kappa and
Lambda for data storage in Microgrids, while [267] utilized a graph storage approach to effectively
store collected data in smart grids. The authors suggested an automatic migration of a database from
the Resource Description Framework (RDF) to a graph storage engine. The schematics representation
of the overall data flow is presented in Figure 4.
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4.1.5. Data Mining and Data Analytics

In smart grids, a massive amount of data is regularly gathered. Several applications are then
performed on the data gathered, such as end-users’ behavior analysis, state analysis, and fault analysis.
The analyses that need to be carried out are classified according to the response time required while
processing the data. The first category, which does not require high response time, may include
nonurgent operations such as long load forecasting [268] and customer analysis. Faults analysis and
smart metering data are designated among those applications that need to be analyzed as quickly as
possible. For example, the authors of Reference [224] proposed the use of a machine-learning algorithm
to process local data to save network bandwidths, reduce time delays. Furthermore, the proposed
study deployed a central processor to act as a mediator between local processors. Such a mixing
approach contributed to overall cost reduction.

4.1.6. Data Visualization

Data visualization provides a visual representation to help decision-makers for better analysis
assimilation [269,270]. The insights provided by data visualization may contain graphs that are more
efficient to understand than digesting only numerical data. It provides visual patterns that help in
recognizing the sources of concerns and sources of opportunities. There are several visualization tools
(e.g., 2D and 3D Vis tools) available in the market that can be used by both consumers and utilities to
visualize the end-user power consumption, generation of renewable-based sources, and power quality
data. Moreover, GIS software such as ArcGIS, QGIS, MapInfo, and Maptitude are valuable alternatives
for visualizing smart grid data on the maps [270].

4.1.7. Online Decision-Making

Smart grids allow a real-time and automated decision-making process where such features are
unlikely seen in traditional grids [271]. Important decisions can be taken, such as real-time pricing
mechanisms, the capability of providing on-demand renewable generation, and estimating capacity
constraints [271,272]. The ability to provide real-time analysis and decisions is impacted on reliability
improvement in smart grids and thereby increasing end-user’s confidence in the technology. Based on
real-time analysis, it is easier to visualize the faulty sections in the smart grids, isolate them, and take
the proper corrective measure to mitigate such issues [273].

4.1.8. Data Management Challenges in Smart Grids

The data gathered from various spots support the functionality of smart grids and helps to attain
intelligent decisions once needed. The data collected supports consumers and utilities to manage
their energy effectively, helps both participants to optimize their usage or production, and allows an
interactive mode among different participants. However, such massive data bring numerous challenges
in terms of volumes, reliability, scalability, as well as data security and privacy. Storing such massive
data requires enormous storage capacity. However, the current infrastructure may lack the skilled
workforce to manage such amount of data. Therefore, active participation from end-users to deal with
smart metering data is mandatory to ensure maximum utilization. On the other hand, data reliability
and scalability are essential attributes and required to place confidence in the data for a trustworthy
decision-making process.

4.2. Cyber Security of Smart Grids

Due to the necessity of data security issues, we devoted this sub-section to highlight the
complexity of the widespread problems in cybersecurity. The advanced automation and communication
capabilities in smart grids expose the entire system to cyber threats. Although the integration of smart
grids empowers electric utilities and end-users and enhances the reliability and availability of the
service with the ability to monitor and manage the behavior of the demands continually, it brings
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various security constraints and vulnerabilities [274,275]. Antagonists may illegally and arbitrarily
disrupt the system dynamics or induce a secondary perturbation if no proper security measures are
taken [276]. Cybersecurity issues, threats, vulnerabilities, and countermeasures have been extensively
investigated in the literature, particularly during the past decade due to the rapid advancements in
automation [277–289]. However, within the analysis framework, it is very critical to find adequate
mathematical models that describe the cyber attacks. However, cyber attacks can be classified into
Denial of Service (DoS) attacks, reply attacks, and deception attacks whose models are summarized in
Table 9.

Table 9. Mathematical models of cyber attacks [276,290].

Type of Attack Mathematical Model

DoS attacks yk ∈ φ: refers to data failure, yk and yk are the received data and the measured data, respectively.

Reply attacks yk ∈ Y : refers to the previous information.

Deception attacks yk = ya
k + yk: where ya

k indicates to the erroneous data injected by intruders.

DoS refers to the attempts that are carried out by adversaries to disrupt system resources and
make them unavailable. Up to date, there are few models reported that can quantify the performance
degradation, among which the Queuing models [291–293], Bernoulli models [294], and Markov
models [295]. In Queuing models, attacks are transformed into a timely delayed system where
the traditional analysis can then be performed to investigate the stability [296–298]. For example,
the authors of Reference [292] proposed a round-trip-based predictive control protocol to neutralize
the adverse impact that results from weak DoS attacks. On the other hand, in Replay attacks,
antagonists maliciously contaminate the valid data. Such attacks are not easily detectable since they
pass the examination of cryptographic keys [276]. Further beyond, attackers may create channels
between two terminals acting as a mediator, and they lunch repetitive messages [299]. In Deception
attacks, adversaries manipulate the integrity of the transmitted data [300,301]. The objective of cyber
attacks is to destroy the performance of the system and immobilize the network temporarily or
permanently. The impact of cyber threats is not only limited to the service provided but also extended
to affect the economy [276]. Therefore, attack detection techniques are vitally crucial in cyber-physical
systems especially in power system applications. Bad data detectors are incorporated to detect the
deviated estimates and may provide alarming according to the tolerance that is set beforehand [302–305].
However, there are two defense approaches against cyber attacks, the former protects the essential
components before the attack takes place, whereas the latter identifies the contaminated data that were
injected by adversaries afterward [306]. For example, sensitive information can be placed inside normal
readings using a wavelet-based steganography technique [307]. In the second approach, the incorrect
data are isolated and removed once the attack is detected. So far, there are four detection schemes in
cyber system: (1) Bayesian detection [308–310]; (2) weighted least square (WLS) [311–314]; (3) Kalman
filters-basedχ2-detector [315,316]; and (4) quasi-FDI (fault detection and isolation) techniques [317,318].

Within the framework of smart grids, it is very imperative to realize the interaction between
the physical system and the cyber system. The Supervisory Control and Data Acquisition (SCADA)
system, which controls the electrical grid, can be regarded as the primary target for attackers [319].
For instance, the authors of Reference [320] imputed the cyber-vulnerabilities to the data being
exchanged by the Wide Area Network (WANs) between various entities. SCADA incorporates various
sophisticated units such as AMI, DER, and Distribution Automation (DA) in the distribution system,
which increase the level of damages once attacks take place. However, the systems that can be affected
by attacks may include SCADA, Programmable Logic Controller (PLCs), and nuclear facilities [321,322].
An assessment layout to evaluate the potential vulnerabilities in the SCADA system was proposed
in Reference [323]. The authors proposed a meantime-to-compromise as an index to quantify the
vulnerabilities. In addition, the high-level penetration of AMI in smart grids brings more challenges in
terms of data security. However, the forms of cyber attacks that may target the AMI units, such as
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leakage of the customer information, false data injection, and energy theft, have been identified in
References [324–327]. However, the common detection techniques that can be adopted in smart grids
are briefly summarized in Table 10.

Table 10. Detection techniques in smart grids [319].

Range of Protection Domain-Based Detection System

SCADA Networked [328–330]

Substations

Host [331]

Networked [332]

Integrated [333–335]

Wide area monitoring (WAM) Host [274,336]

GPS (PMU) Host [337]

Distribution system Host [338]

AMI Host [339–342]

Intruders may access medium control layers and inject false signals or malware that may lead
to a complete failure of the entire network. Therefore, the data need to be encrypted to avoid future
threats. For instance, during June of 2017, a catastrophic and unprecedented cyber attack took place
against the Ukrainian power system, causing a six hours blackout [343]. This incident was considered
a milestone in cybersecurity because it was the first major attack that caused a substantial collapse
affecting 80,000 people. Two types of malware were cultivated in the facilities. The perpetrators
flooded the company’s call center with calls to make matters worse and prevent the consumers from
reporting their outages. However, the severity of the attack raises new concerns and promotes calls for
serious countermeasures to avoid cyber attack severe issues.

5. Pricing Mechanisms in Smart Grids

The earliest traditional power grid started as a unidirectional power flow that permits the electricity
flow from the generation to distribution centers. The typical structure of the conventional power grid
is vertically integrated, where a single entity owns, operates, and controls the generation, transmission,
and distribution. Regulated monopolistic utilities are obliged to serve certain regions with a predefined
pricing rate [344]. The utilities are allowed to set the prices that recover the operating cost plus “normal”
profits where a reviewing process to the prices takes place to mitigate profits reduction [345]. Critics,
however, argue that such a policy lacks appropriate pricing mechanisms for effective pricing control
and promotes inefficiency, monopoly. They also added that this model had run its course, and the costs
of the mistakes that utilities make should not be passed into consumers. Public utilities very often are
close to governments where politics may intervene and side with an entity against another [346].

However, the rapid growth in demands, the pressure exerted by critiques led to restructuring
the current electricity market. The resulted restructured (Deregulated) market induced the following
entities: GENCOs (generating utilities), TRANSCOs (transmission utilities), DISCOs (distribution
utilities), RESCOs (Retailers), and ISOs (independent system operators) [347]. International Energy
Agency (IEA) indicates that restructuring electricity markets breaks the monopolistic approach exercised
by firms and encourages competition among participants. The electric utility has undergone several
reforms to lower entry barriers in electricity markets, increase the reliance on market-based output prices,
and allow consumers a choice of power suppliers [348]. Such reforms shift the vertically integrated
structure toward an open competition in the market, modifying the traditional regulatory regime that
somehow protected utilities from the risk effects in terms of cost and demand variations [349]. From the
government’s perspective, deregulation brings capitals and encourages competitors to diversify their
resources. If companies were granted the opportunity to compete for the provision of electricity freely,
the efficiency due to such reforms would be impacted by the consumers. In a perfectly competitive
market, when all participants compete as ‘price takers’ (i.e., no big company affects the prices),
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the most efficient generators would make more profits [350]. Once the market-clearing price is defined,
efficient generators are always infra-marginal producers. In a deregulated market, renewable-based
generators may bid exactly zero marginal cost since there is no operating cost involved [351]. One might
observe why perfect competition encourages efficient electricity production.

5.1. Dynamic Pricing Mechanisms

In contrary to the conventional grids where the demand is relatively a passive participant,
demands in smart grids are more involved in various applications. Electric Power Research Institute
(EPRI) introduced demand Side management (DSM) in the 1980s. DSM is a global term that may include
various activities ranging from load consumption management to improving energy efficiency [352].
DSM can be implemented through energy efficiency or demand response (DR). The dynamic pricing
framework is designed to provide economic incentives for consumers to participate in demand
management by means of “the participation of demands”. The smart grid infrastructure allows the
interactive mode that takes place between the consumers and the utility to accomplish such tasks.
However, several dynamic pricing modalities have been proposed for demand response such as
Time-of-Use (TOU), Critical Peak Pricing (CPP), Real-Time Pricing (RTP), and Day-Ahead Pricing
(DAP) [353]. For instance, the articles [354–359] have adopted the TOU as a price modality, whereas the
References [360–370] have used the RTP scheme. Furthermore, CPP modality can be efficiently utilized,
as reported in References [371–377], while the authors of References [378–383] have proposed a DAP
as a pricing modality in a competitive electricity market. However, the complexity and cost issues
may constitute the main barriers toward the expansion in adopting different pricing frameworks as a
day-to-day tool in the existing grid [384,385].

The objective of demand response programs is to flatten the load pattern either by consumption
reduction during peaking hours or by shifting part of the loads to off-peak periods. Demand response
programs can be classified into two broader categories, as depicted in Figure 5, that is, dispatchable and
non-dispatchable price-driven programs. The ability for a utility to control the load during peaking
hours is known as a dispatchable program. The price-driven programs (i.e., non-dispatchable) are
price-sensitive programs that provide different pricing options (Dynamic Pricing Schemes) to control
the demand [386–388].

Figure 5. Classification of demand-side management techniques.
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5.2. Time-of-Use

In the time-of-use (TOU) approach, a set of different tariffs for different instants of time daily or
seasonally is predefined beforehand for a given tariff cycle. TOU is an attempt provided by utilities to
alleviate the surge in demands during peaking hours by enforcing a tariff structure that charges higher
rates for energy consumption during peaking periods [389]. Time-of-Use tariffs are more often used in
areas where consumers have been subjected to a flat rate. Ideally, such a pricing scheme should shift
the demand from peak hours to off-peak periods. Although the TOU pricing approach suffers from
several challenges, it remains a preferred modality for utilities due to its simplicity. Consumers still
tend to prefer such a pricing scheme over other approaches due to the fact that: (i) consumers are used
to the fixed tariffs and they might feel hesitant to adhere to frequently changing rates (ii) end-users
might not feel comfortable with the variability of Real-Time Pricing [390].

TOU remains one of the most important pricing schemes utilized in DR programs. Naturally,
the TOU is a static time-dependent pricing scheme. Although the cost of implementing such pricing
approaches is relatively low, difficulties may arise when it comes to real implementation in the
existing distribution system. The existing infrastructure lacks the facilities to provide real-time data
of consumers’ behavior. Therefore, the attempts to replace the current conventional meters with
smart meters would significantly impact the expansion of such a pricing policy. Moreover, there are
uncertainties involved when it comes to the design of TOU policy due to the constant volatility of
generation and demand [355]. Furthermore, different jurisdictions apply different market structures;
therefore, they require different TOU policies according to their needs. For instance, the inclusion of
space heaters is needed when designing a TOU mechanism in certain territories, whereas, in some
places, such a factor is not required depending on the climatic conditions. The presence of DER also
needs to be considered when designing an effective TOU scheme.

Given the above, there are several attempts reported in the literature to overcome the challenges
usually encountered when applying TOU policy. Table 11 summarizes the challenges and the recent
developments of the TOU approach.

Table 11. Recent advances in time-of-use (TOU) modality.

Ref. Year Aim

[356,391] Jan 2019, May 2013 A game-theoretic approach has been proposed to design an optimal
TOU pricing by designing utility functions to reach a Nash equilibrium.

[357] August 2012

The authors proposed variation inequality models to design an optimal
TOU pricing policy under different market structures. The proposed
study considered the variations in social welfare under different
market schemes.

[358,359] May 2018, 2013 The authors have investigated the impact of the existence of DER on the
TOU tariffs.

[392] December 2013
The authors used a stochastic optimization approach and quadratic
programming to design an optimal TOU price, considering the
uncertainties in demand/Generation.

5.3. Real-Time Pricing Method

The Real-Time Pricing (RTP) principle was proposed in early 1982 [360]. It has been widely
recognized as one of the promising approaches that maximize the social welfare between consumers
and service providers. RTP is a dynamic pricing approach that reflects the spot price of the wholesale
market [63]. Electricity (i.e., Energy) is a commodity that can be transacted through biddings and
offers. The transactions are settled and cleared by the system operator or market operator through
the market clearing process. Once the price is cleared, a price signal is sent to market participants
according to the market timeframe (i.e., a day ahead, an hour ahead). In contrary to the TOU pricing
policy that follows a pricing scheme by blocks over a predefined cycle, RTP frequently responds to
the spot market, and hence it is constantly changing. In a distribution network, a retailer may reveal
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the price a day ahead or on an hourly basis so the end-users can adjust their energy consumption
accordingly [361–366].

However, the challenges that may arise when implementing this scheme need to be considered.
Among these, a win-to-win case for both consumers and electricity providers needs to be taken care of
when designing the framework. Moreover, consumers’ load profiles and comfort need to be considered.
The availability of consumers to take corrective actions once the price signal is received is not guaranteed
and, thereby, consumers might be heavily charged during their absence. However, automated load
management capabilities may lessen such adverse impacts to some extent. Furthermore, applying such
a pricing policy requires advanced infrastructure and intelligent metering technologies where the high
penetration of intelligence increases the exposure to cyber threats. The following Table 12 highlights
some of the recent developments in the RTP structure.

5.4. Critical Peak Pricing

Several obstacles prevent the expansion of adapting TOU pricing schemes and RTP. The former
lacks the incentives that may further reduce the peak demand during heavily loading conditions,
while the latter is rather complex when it comes to implementation [393]. However, the shortcomings
usually encountered in the TOU and RTP mechanisms, along with the fast-evolving infrastructure,
have promoted more interest in peak reduction by utilizing dynamic rates. In a Critical Peak Pricing
(CPP) mechanism, a penalty is imposed during the operation within the peaking periods that are
known beforehand [371]. CPP pricing policy augments a TOU pricing framework with a dispatchable
price (i.e., penalized rate) whenever the system is heavily loaded [393]. Although the CPP policy is
relatively less dynamic, it is considered a successful approach in reducing demand peaks. CPP pricing
structure is a typical TOU policy with the addition of critical events that are adjusted by the utilities
due to system constraints [63]. Such critical events are usually announced a day ahead; thereby,
the CPP does not precisely reflect the prices of the wholesale market. Furthermore, the utilities should
carefully optimize the new tariffs to make profits even though the demands are expected to be curtailed.
For instance, if the prices were set very high, users may not shift their demands. On contrary, if the
prices were set low, consumers may not respond to the new price signals in order to cut down their
energy consumption.

Table 12. Recent development in real-time pricing (RTP) pricing policy.

Ref. Year Purpose

[367] Jan. 2019

The authors have proposed a distributed online pricing strategy for demand-side
programs under uncertainties and restricted communication links. Performing the
optimization process aims to allocate the minimum operating cost for the utility
considering time variant DRs. The proposed study has succeeded in reducing the gap
between the online algorithm and the offline optimization process.

[368] Dec. 2010 The authors used a least-square support vector machine to compute short-run tariffs
by applying a model predictive control.

[369] Jun. 2012

An optimal load management strategy for residential consumers that uses the
communication capability of a typical smart grid was proposed in Reference [369].
The main objective was to allocate the optimal relationship between the spot price and
users’ electrical appliances, including electric vehicles in a typical smart building.

[370] May 2018

Markov’s decision-based multi-stage optimization algorithm has been proposed in
Reference [370] to maximize the social welfare under the RTP pricing scheme.
The optimization process has been divided into sub-problems; the former optimizes
the problem from the consumers’ perspectives, while the latter is dedicated to the
energy supplier that uses a dual-sub gradient convex optimization.

[394] Jan. 2019

The authors have presented a real-time Energy Management System (EMS) that is
suitable for the rooftop PV system integrated with battery storage. The EMS is
grid-connected, where the price signal controls the flow of power within the system.
The proposed study aims to maximize the revenue over a given cycle using Lagrange
multiplier-based optimization algorithm.
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The structure of a successful CPP mechanism needs to be carefully designed since the CPP
possesses more constraints compared to RTP. For instance, the authors of Reference [372] developed a
CPP framework to maximize the utility’s profits considering end users’ response to dynamic pricing,
the total number of critical events, duration cycles, and peak rates. The proposed study utilized a profit
index to address the impact of the previous metrics on the profits incurred. The implementation of the
CPP approach resulted in a significant reduction in the average consumption of users. In Reference [373],
the authors carried out a study to compare a TOU and a CPP framework to investigate the behavior of
consumers under both pricing structures. The proposed analysis revealed the success of CPP over TOU
in reducing the overall energy consumption. Dynamic pricing approaches may be less attractive in the
distribution network where consumers lack the interest to follow price signals regularly. The authors in
Reference [384] investigated the impact of applying such approaches on a group of people of different
ages. Consumers were allowed to choose either to switch their electrical appliances or leaving homes
during the events of higher rates. The study concluded that the dynamic pricing mechanisms have a
negative impact on elders due to their restriction on mobility; thereby, they are exposed more likely to
high prices. Table 13 summarizes the advancements achieved to optimize the CPP frameworks.

Table 13. Recent developments in critical peak pricing (CPP).

Ref. Year Purpose

[374] Jun. 2018

The authors have combined pricing framework (RTP and CPP) to allocate the
optimal operation cycle for a smart home appliance based on a priority list.
The proposed study has used an enhanced differential evolution (EDE) and
teacher learning-based optimization (TLBO) to attain the maximum
satisfaction of consumers.

[375] Jan. 2019

A bi-level framework that aims to maximize the profits of a smart distribution
company with electric vehicle parking lots has been proposed. The objective is to
minimize the cost of energy purchased from the wholesale market for the leader
(e.g., distribution company) and to maximize the profits of parking lots owner
(e.g., follower) under Critical Pricing Policy.

[376] Dec. 2018

A mixed-integer linear programming model to allocate the optimal size and
optimal planning scheme of Onsite Generation System (OGS) under a Critical
Pricing structure has been proposed by Reference [376]. The results have
indicated a significant reduction in electricity cost if the OGS is appropriately
sized and operated.

[370] May 2018

The authors have proposed a Markov decision-based multi-stage optimization
algorithm to maximize the social welfare under the RTP pricing scheme. The
optimization process has been divided into sub-problems; the former optimizes
the problem from the consumers’ perspectives, while the latter is dedicated to the
energy supplier that uses a dual-sub gradient convex optimization.

[377] Jun. 2018

A security-constrained program to schedule the supply–demand by designing an
optimal pricing scheme has been proposed. The proposed study aims to find the
best pricing modality for different demand-side programs (i.e., TOU, CPP, and
RTP) that improves efficiency while guaranteeing the environmental restrictions.
A multi-objective optimization approach has been used to minimize the ISO
operational cost and the greenhouse emissions resulted from the generating units.

5.5. Day-Ahead Pricing

Due to the growing developments in the industry of smart metering technologies, along with the
dire need to increase the price-responsive demands, utilities have proposed and utilized various price
modalities to incentivize consumers to reduce their consumption, particularly during peak periods [378].
In addition, recent studies have indicated that the exposure of end-users to hourly real-time pricing
mechanisms succeeded in driving consumers to a wiser and efficient energy utilization [395–397].
RTP allows consumers to reduce their bills following the price deviation during low-periods and
high-periods. However, there are some barriers associated with real-time pricing mechanisms,
including regulatory concerns, lack of interest, and implementation issues. Therefore, it is essential to
figure out a pricing mechanism that overcomes the barriers introduced earlier and possess advantages
for both utilities and consumers. Day-Ahead Pricing (DAP) policy is a time-dependent pricing scheme
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that is set day ahead. Such a pricing scheme is more attractive to consumers since they have the ability
to schedule their energy consumption, and therefore they may benefit from the operation during the
off-peak periods [101]. Table 14 presents numerous strategies and progress achieved to optimize the
mechanism of day-ahead pricing.

Table 14. Developments in day-ahead pricing mechanism.

Ref. Purpose

[380] Jan. 2019
The authors have used a bi-objective optimization model to achieve a minimum
electricity cost and to reduce the aggregated peak demands for residential
Electric Vehicles (EVs) under a day ahead pricing structure.

[381] Jan. 2019

The authors have discussed the feasibility of trading electrical power as a
commodity in a day-ahead electricity market instead of trading energy.
The objective of this study is to overcome the coarse discretization that is
commonly seen in wholesale energy markets.

[382] Jan. 2019

The authors have proposed an optimal hourly configuration and day
head-pricing scheme in a smart distribution system considering the operation of
protective devices. The authors have used a metaheuristic-based optimization
model to minimize the purchasing power from the wholesale market and
distributed resources owners, cost of power loss, cost of switching actions,
and the cost of implementing the demand response Programs.

[383] Jan. 2019

A game-theoretic multi-stage optimization model to simultaneously determine
the dynamic pricing policy for the Independent System Operator and EV parking
lots has been proposed. The study aims to minimize the electricity bills of EV
owners while ensuring the profitability of the ISO in a day-ahead
pricing framework.

Day-ahead modality looks promising approach for users and energy providers. However, there might be
some challenges that need to be addressed for a successful application. The design of an optimal
price beforehand may involve several factors that should be considered, such as load forecasting [398],
supply availability, climatic forecasting, and energy price forecasting. Therefore, robust optimization
algorithms are needed. Furthermore, since the prices are set and sent day ahead, the utility may incur
a financial loss if the peak occurs during low-price periods [399].

6. Conclusions

A thorough review of the advances on the prevailing applications of smart grids has been presented
mainly focusing on data management, cybersecurity, different pricing modalities, demand response,
renewable power integration, and reliability indices. Since the various components in a smart
grid generate a massive amount of data, a complete section is dedicated to investigating the flow,
analysis, and management of such a broad set of heterogeneous data. The associated challenges and
recent developments have also been presented. Due to the high-level penetration of informatics and
communication infrastructure, which exposes the network to security vulnerabilities, the presented
study has highlighted the potential sources of threats, the type of cyber-attacks, and the mathematical
models that can be used to describe the attacks. The study has also highlighted the advances in
detection techniques in the cyber system within the layout of smart grids. The power system is vast and
complex, which is geographically spread over a wide area; therefore, increasing the immunity of the
system against cyber attackers can also be a significant challenge. The majority of the pricing modalities
proposed in this study are either price-based or incentive-based schemes. Therefore, consumers have
little choice once the tariff rate is agreed upon. Such deficiency allows different entities to set the prices
the way they want during peaking hours; thereby, consumers are obliged to follow the pricing schedule.
However, the expansion in the advanced metering infrastructure increases the flexibility for consumers
to control their energy consumption more effectively. The presented study has extensively investigated
different pricing mechanisms that can be deployed by means of demand response. The state-of-the-art
in that area has also been highlighted. Furthermore, the presented work has comprehensively reviewed
the role of demand response in leveraging the transition toward the smart grid. Demand response
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can be regarded as a promising technology to promote the functionality of end-users to be more
involved not only in electricity bill management but also in increasing the efficiency of the electricity
market. It is pointed out that behavioral science might assist in unlocking the potentials of a successful
smart grid transformation. The emerging advances in demand response applications have also been
enumerated. The integration of distributed generation (DG) along with energy storage in smart grids
is very imperative. We have briefly presented the recent applications in this emerging area as well.
The reliability indices associated with the deployment of DGs and demand response (DR) in smart
grids have also been summarized.
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