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Abstract: This paper proposes an optimal route and charging station selection (RCS) algorithm based
on model-free deep reinforcement learning (DRL) to overcome the uncertainty issues of the traffic
conditions and dynamic arrival charging requests. The proposed DRL based RCS algorithm aims to
minimize the total travel time of electric vehicles (EV) charging requests from origin to destination
using the selection of the optimal route and charging station considering dynamically changing traffic
conditions and unknown future requests. In this paper, we formulate this RCS problem as a Markov
decision process model with unknown transition probability. A Deep Q network has been adopted
with function approximation to find the optimal electric vehicle charging station (EVCS) selection
policy. To obtain the feature states for each EVCS, we define the traffic preprocess module, charging
preprocess module and feature extract module. The proposed DRL based RCS algorithm is compared
with conventional strategies such as minimum distance, minimum travel time, and minimum waiting
time. The performance is evaluated in terms of travel time, waiting time, charging time, driving time,
and distance under the various distributions and number of EV charging requests.

Keywords: electric vehicle; electric vehicle charging station; intelligent transport system; electric
vehicle charging navigation system; Markov decision process; deep reinforcement learning

1. Introduction

In recent years, electric vehicles (EV) are considered a promising eco-friendly means of
transportation that alleviate the environmental pollution problems caused by the use of traditional
fossil fuel sources [1]. Although EVs aim to provide zero fossil fuel consumption and emits no
greenhouse gases, the additional charging power generated by the increase in the use of EVs may be
concentrated in a specific time period, depending on the user’s charging patterns, which significantly
result in high peak demand. The required amount of charging electricity for EVs will increase power
losses, voltage fluctuations and grid overloads, making the operation of power plants inefficient and
negatively affecting the stability and reliability of the power grid [2]. The electric vehicle charging
stations (EVCS) are playing an important role in recharging EVs. These EVCSs buy power from
the power grid at a lower price and then sell power to EVs at a higher price in order to make a profit [3].
Compared with home charging, the charging stations could offer lower charging prices because of
the lower rate of purchasing from the wholesale market. In order to support the grid integration of
EVs and alleviate the high peak demand issues, hourly rates (day-ahead pricing or real-time rates) are
widely used to move loads and stabilize the power systems.
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The grid integration of electric vehicles and charging/discharging capabilities of the charging
stations have received much attention in different applications including vehicle-to-home (V2H),
vehicle-to-vehicle (V2V), and vehicle-to-grid (V2G). In V2H, a single electric vehicle is connected to
a single home/building for charging/discharging based on the home/building control scheme. In V2V,
multiple electric vehicles are able to transfer energy to a local grid or other electric vehicles using
bidirectional chargers. In V2G, a large number of electric vehicles can be connected to a grid for
charging/discharging such as parking lots and fast charging stations [4,5].

Many studies have proposed different charging schemes for scheduling and optimizing
the operation of EVs. These methods aim to mitigate power peaks using dynamic electricity prices.
However, most studies determine the charging time and the charging speed when EVs are parking
at home and parking lots for a long time. However, EV users may need the charging service while
driving for a short mileage due to limited EV battery capacity. Therefore, an electric vehicle navigation
system (EVNS) will play an important role to recommend the appropriate route and charging station
for charging, taking into account user preferences such as the driving time, the charging price, and
the charging wait time [6–11].

Authors in [6] proposed an integrated EV navigation system (EVNS) based on a hierarchical game
approach considering the impact of the transportation system and the power system. The proposed
system consists of a power system operating center (PSOC), charging stations, an EVNS, and EV
terminals. The competition between charging stations has been modeled as a non-cooperative game
approach. Authors in [7] proposed a charging navigation strategy and an optimal EV route selection
based on real-time crowdsensing using a central control center. The control center is collecting
information from EV drivers such as the real-time traffic information (vehicle speed and location)
while charging stations are uploading charging station information. Authors in [8] proposed an electric
vehicle navigation system (EVNS) based on autonomic computing and a hierarchical architecture
over vehicle ad-hoc network (VANET). The proposed architecture consists of EVs, charging stations
and a traffic information center (TIC). The main functions of TIC are monitoring, analysis, planning
and execution. Authors in [9] proposed an integrated rapid charging navigation system based on an
intelligent transport system (ITS) center, a power system control center (PSCC), charging stations and
EV terminals. The EV terminal determines the best route based on the broadcasted data from the ITS
center (status of the traffic system and the power the grid) without any uplink data from the EV side that
ensure driver privacy. Authors in [11] proposed a hybrid charging management framework for optimal
choice between battery charging/swapping stations for urban EV taxis. The main entities are EVs,
charging stations, battery-swapping stations, and a global controller. The global controller is a central
entity that receives real-time information from charging/swapping stations and accurately determine
the optimal station for supporting the EV taxi charging. However, the above methods are performed
in a deterministic environment and do not consider the uncertainties due to the dynamically changing
traffic conditions and waiting time of the charging stations. The randomness of the traffic conditions
and the charging waiting time can have a significant impact on the performance of the route and
charging station selection schemes. In addition, EV charging requests that arrive dynamically according
to EV user’s behavior patterns are also another important factor. Therefore, dealing effectively with
the uncertainty of unknown future states to select the appropriate route and charging station presents
a very considerable challenge. Reinforcement learning can be applied to complex decision-making
problems, as reinforcement learning does not rely on prior knowledge of uncertainty.

Deep reinforcement learning (DRL) is a combination of reinforcement learning (decision-making
ability) and deep learning (perception function) which is able to address the challenging problems
of sequential decision-making. Under a stochastic environment and uncertainty, most of
the decision-making problems can be modeled by the Markov decision process (MDP). The MDP is
a basic formulation for reinforcement learning, which provides a framework for optimal decision
making under uncertainty. The DRL can be divided into two categories: model-based methods and
model-free methods. To evaluate the decision behavior, the DRL uses the reward function [12–15].
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With respect to charging navigation of electric vehicle on the move, the main challenges are the location
of the electric vehicle (the selected route and charging station are different based on electric vehicle
location), charging mode (slow/fast charging), battery state of charge (the travel distance is proportional
to remain battery status). Other factors include the randomness of user behaviors, traffic conditions,
waiting time at the charging station, and charging prices [16–22].

Most studies using Reinforcement Learning are studied for the purpose of energy management
and cost minimization in EVs, charging stations, and smart buildings [16–21]. There are few studies
for charging station selection. To minimize charging cost and time, the EV charging navigation using
reinforcement learning is proposed in [22]. The proposed system selects the optimum route and
charging station without prior knowledge of traffic conditions, charging price, and charging waiting
time. However, the proposed system only considers the route from the starting point to the charging
station and can significantly increase complexity in the large-size network due to the extraction of
features using optimization techniques from inter-node movements. In addition, the impact between
EVs serviced by the navigation system and the uncertainty of future EV charging requests was
not considered.

In this paper, we propose an optimal route and charging station selection (RCS) algorithm based
on model-free deep reinforcement learning. The proposed RCS algorithm minimizes the total travel
time with the uncertainty of the traffic conditions and dynamic arrival charging requests. We formulate
this RCS problem as a Markov decision process (MDP) model with unknown transition probability.
The proposed deep reinforcement learning (DRL) based RCS algorithm learns the optimal RCS policy
by the DQN through repeated trial and error. To obtain the feature states for each EVCS, we present
the traffic preprocess module, charging preprocess module, and feature extract module. The energy
consumption model and link cost function are defined. The performance of the proposed DRL based
RCS algorithm is compared to the conventional strategies in terms of travel time, waiting time, charging
time, driving time, and distance under the various distributions and number of EV charging requests.
The novelty and attribution of the paper are as follows:

• Model-free deep reinforcement learning based optimal route and charging station selection (RCS)
algorithm is proposed to overcome the uncertainty issues of the traffic conditions and dynamic
arrival EV charging requests.

• The RCS problem is formulated by the Markov Decision Process (MDP) model with unknown
transition probabilities.

• The performance of the proposed DRL based RCS algorithm is compared to the conventional
algorithms in terms of travel time, waiting time, charging time, driving time, and distance under
the various distributions and number of EV charging requests.

The rest of this paper is organized as follows. In Section 2, we discuss the related work. In Section 3,
we proposed EV charging navigation system architecture and deep reinforcement learning-based RCS
algorithm. Various simulations are carried out in Section 4 to prove the effectiveness and benefits of
the proposed approach. Finally, conclusions are drawn in Section 5.

2. Related Work

Generally, the electric vehicle system consists of two main layers: the physical infrastructure layer
(electric vehicles, charging stations, transformers, electric feeders, etc.) and the cyber infrastructure layer
(IoT devices, sensor nodes, meters, monitoring devices, etc.) [5]. There are many challenges associated
with the charging/discharging of the electric vehicles considering many sources of uncertainties and
the interaction among different domains including electric vehicles, charging stations, the electric power
grid, communication networks, and the electricity market. Deep reinforcement learning has received
much attention and is considered as a promising tool to address the aforementioned challenges.

With respect to the electric power grid, authors in [12] introduced the applications of deep
reinforcement learning in the power system such as operational control, electricity market, demand
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response, and energy management. With respect to communications and networking, authors in [13]
presented the applications of the deep reinforcement learning approach to address many emerging
issues such as data rate control, data offloading, dynamic network access, wireless catching, network
security, etc. In [14], the authors presented the application of deep reinforcement learning for the future
IoT systems, called autonomous IoT (AIoT), where the environment has been divided into three
layers: the perception layer, the network layer, and the application layer. In [15], the application of
deep reinforcement learning for cyber security has been presented to solve the security problem with
the presence of threats/cyber-attacks.

A comprehensive review of the application of reinforcement learning for autonomous building
energy management has been presented in [16]. Reinforcement learning has been applied to different
tasks such as appliance scheduling, electric vehicle charging, water heather control, HVAC control,
lighting control, etc. In [17], the authors presented a reinforcement learning for scheduling the energy
consumption of smart home appliances and distributed energy resources (electric vehicle and energy
storage system). The energy consumptions of home appliances and distributed energy resources are
scheduled in a continuous action space using the actor-centric deep reinforcement learning method.
Authors in [18] proposed a reinforcement learning-based energy management system for a smart
building with a renewable energy source, energy storage system, and vehicle-to-grid station to minimize
the total energy cost. The energy management system has been modeled using the Markov decision
process describing the state space, transition probability, action space, and reward function.

Authors in [19] proposed a model-free real-time electric vehicle charging scheduling based
on deep reinforcement learning. The scheduling problem of EV charging/discharging has been
formulated as a Markov decision process (MDP) with unknown transition probability. The proposed
architecture consists of two networks: a representation network for extracting the discriminative
features from electricity prices and a Q network for optimal action-value function. Authors in [20]
proposed model-free coordination of EV charging with reinforcement learning to coordinate a group
of charging stations. The work focused on load flattening/load shaving (minimizing the load and
spreading out the consumption equally over time). Authors in [21] proposed a reinforcement learning
approach for scheduling EV charging in a single public charging station with random arrival and
departure time. The pricing and the scheduling problem have been formulated as a Markov decision
process. The system was able to optimize the total charging rates of electric vehicles and fulfill
the charging demand before departure. Authors in [22] proposed a deep reinforcement learning for EV
charging navigation with the aim to minimize charging cost (at charging station) and total travel time.
The proposed system adaptively learns the optimal strategy without any prior knowledge of system
data uncertainties (traffic condition, charging prices, and waiting time at charging stations).

Most of the above-mentioned studies are aimed at managing energy and minimizing costs in EVs,
charging stations and smart buildings [16–21]. In [22], The proposed system selects the optimum route
and charging station without prior knowledge of traffic condition, charging price, and charging waiting
time. Due to the extraction of features using optimization techniques from inter-node movements,
the proposed system can significantly increase complexity to calculate the feature states in the large-size
network. In addition, the uncertainty in future EV charging requests was not considered because
the MDP model was designed from a single EV perspective. Table 1 provides a summary of the literature
review for the main entities of EVNS. It can be observed that the main entities in our system are EVs,
charging stations, ITS center, and EVNS control center. Table 2 provides a comparison between our
work and other related work for the main objectives and challenges of reinforcement learning.
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Table 1. Summary of literature review for main entities of electric vehicle navigation system.

Ref. Contributions Main Entities Decision

[6]
An integrated EV charging
navigation system based on

a hierarchical game approach

EV terminals, EVCS,
power system operation

center (PSOC), and
EVNS

EVs decide when to charge and
which EVCS should be selected

[7]
EV route selection and

charging navigation based on
crowd sensing

Electric vehicles,
charging stations,

decision making center

The decision making center send
charging navigation decisions &

route selection to EVs

[8]
Electric vehicle navigation
system based on vehicular

ad-hoc networks (VANETS)

EVs, charging stations,
traffic information center

The traffic information center
analyzes the traffic information

and plans routes accordingly

[9]

Rapid charging navigation
strategy based on real time

traffic data and status of
the power grid

EVs, charging stations,
ITS center, power system

control center (PSCC)

The ITS and PSCC do not
require data from EV side to

take decision. EV owners are not
required to upload information

[11]

Hybrid charging management
framework for optimal choice
between battery charging and
swapping for urban EV taxi

Electric taxi, charging
station, Battery

swapping station, Global
controller

The global controller selects
a proper charging/swapping
station as well as enabling

charging reservation

[22]
EV charging navigation based

on deep reinforcement
learning,

EVs, Charging stations,
ITS center

EV driver decides based on
received EVCS charging price,
waiting time and road velocity

Current
work

EV navigation algorithm
based on deep reinforcement

learning,

EVs, charging stations,
ITS center, and EVNS

control center

The EVNS selects send charging
navigation decisions & route

selection to EVs

Table 2. Summary of literature review of main objectives and challenges of reinforcement learning for
different electric vehicle applications.

Ref. Objective EV Problem Method Challenges

[18] Min. Operation
energy cost

Charging/discharging
schedules of Building

RL,
Q-Learning

Unknown future
information (load, energy

prices, and amount of energy
generation)

[19] Min. Charging cost Charging/discharging
schedules of EV

DRL, DQN,
LSTM

Randomness in traffic
conditions, user’s

commuting behavior, and
the pricing process

[20]
Min. Cost of

charging a group of
EVs

EV charging scheduling
of EVCSs

RL, fitted
Q-iteration

Curse of dimensionality due
to the continuity and scale of
the state and action spaces

[21] Max. Profit of
EVCS

Optimal pricing and
charging scheduling RL, SARSA Random EV arrivals and

departures

[22] Min. Total cost of
an EV Navigate an EV to EVCS DRL, DQN

Uncertainty in traffic
conditions, charging price,

and waiting time

Current
work

Min. Total travel
time of multiple

EVs

Navigate multiple EVs to
destination via EVCS DRL, DQN

Uncertainty in traffic
conditions, randomly arrival

requests
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3. DRL Based Route and Charging Station Selection Algorithm

In this section, we define the overall architecture of EV charging navigation system (EVCNS) and
propose the deep reinforcement learning (DRL) based optimal route and charging station selection
(RCS) algorithm.

3.1. System Architecture

The overall architecture of the proposed EVCNS is illustrated in Figure 1. It consists of four main
elements: electric vehicles (EVs), electric vehicle charging stations (EVCS), intelligent transport system
(ITS) center, and EVNS center. The detailed description of each element is given below.
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3.1.1. Electric Vehicle (EV)

This study considers the scenario where EVs are on-the-move and regularly check the battery
state-of-charge (SoC). If the current SoC is below a threshold value or the EV driver wants to charge,
the EV can request the EVCNS center to recommend an appropriate charging station for charging
considering the EV’s current location and the final destination.

3.1.2. Electric Vehicle Charging Station (EVCS)

The EVCSs are usually distributed around the city at different locations. Each EVCS consists
of parking spots with charging poles. All EVCSs send their information such as current charging
price, number of charging EVs, number of waiting EVs to the EVCNS center. Based on the received
information, the EVCNS center is able to calculate the expected waiting time and charging time at
each EVCS.

3.1.3. Intelligent Transport System (ITS) Center

The ITS center is an advanced management system for transportation which aims to monitor
the real-time traffic condition in order to reduce traffic congestion. The information on road traffic
conditions such as the number of vehicles on the road and the average velocity are collected using
different monitoring devices (IoT sensors, CCTV, roadside units (RSU), etc.) [7,8]. The ITS center
updates real-time information on the average road speed to the EVNS center.
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3.1.4. Electric Vehicle Charging Navigation System (EVCNS) Center

The EVCNS center is a centralized system that communicates with all entities (EVs, EVCSs and ITS
center) using wired/wireless communication networks. The EVCNS enables the selection of the optimal
route and the appropriate EVCS for the charging request based on the real-time received information
from EVs, EVCSs and ITS center. The detailed operation and description of the EVCNS are described
in Section 3.3.

3.2. System Operation

A typical information flow among EVs, EVCSs, ITS center and EVCNS center is shown in Figure 2.
Note that, different communication technologies including wired/wireless technologies could be used
for data transmission among different entities.

• Step 1: The EV which needs a charging service is requesting for the route & charging station
selection service from the EVCNS center. The EV request is transmitted to the EVCNS center
through wireless communication technologies.

• Step 2: The EVCNS center is continuously receiving the monitoring information of EVCSs (number
of charging vehicles, number of waiting vehicles, etc.) and the road traffic condition (road states,
average velocity, etc.) from the ITS center.

• Step 3: Based on the received information from EVCSs and ITS center, the EVCNS center
recommends the optimal route & charging station for the requested EV.

• Step 4: The EV confirms the recommended charging station and sends a confirmation message
for reservation information to the EVCNS center. The EVCNS center stores the reservation
information for the next charging requests.
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3.3. Electric Vehicle Charging Navigation System

The EVCNS consists of four main modules: traffic preprocess module (TPM), charging preprocess
module (CPM), feature extract module (FEM), and route & charging station selection module (RCSM),
as shown in Figure 3.
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3.3.1. Traffic Preprocess Module (TPM)

The main function of the TPM is to create and manage traffic matrix and network topology using
the received monitoring data by ITS such as center average velocity and road conditions, and the EV
charging request. This traffic matrix and the network topology made in the TPM are used as inputs to
the feature extract module (FEM).

The network topology can be denoted by a directed graph G = (V, E), where V = {1, 2, 3, · · ·N} is
a set of vertices and E =

{
li j

∣∣∣i, j = 1, 2, 3, . . . , N
}

is a set of edges. Each node represents an intersection
or end point of the road where li j ∈ E is expressed as the road between node i and j. The average road
velocity vt

i j between node i and j at time step t is managed as the traffic matrix. The traffic network can
be modeled as a weighted directed graph, assigning weight to each link. This weight can be variously
defined, but in this paper, we aim to minimize the total travel time of EVs, so the weight is defined as
follow:

wt
i j =

di j

vt
i j

, (1)

where wt
i j is the weight value of li j and di j is the distance of li j. In other words, the weight value

means the time required to pass through the li j. When weights are applied for all links, we can
obtain the shortest time path using Dijkstra algorithm, which is used to find the least cost path
problem [23]. Thus, the TPM provides the traffic matrix and network topology to the FEM by updating
and maintaining traffic information collected from the ITS center in real time.

3.3.2. Charging Preprocess Module (CPM)

The main function of the CPM is to communicate with all EVCSs distributed around the city.
The received information from EVCSs includes charging status data such as number of charging EVs
and number of waiting EVs. This information is used by CPM to calculate the available charging time
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and waiting time for all EVCSs. In addition, the available charging time and expected waiting time are
used for the FEM. This information is updated periodically, as soon as EV’s requests arrive.

The CPM manages the charging reservations to estimate charging waiting time for future EV
charging requests. The expected waiting time at each EVCS k is expressed as τk

wait. This charging
waiting time can be obtained using the algorithm to obtain the expected charging waiting time from
Ref. [24]. The algorithm can estimate the expected waiting time for the charging request based on past
information of EV charging reservations.

3.3.3. Feature Extract Module (FEM)

The FEM takes inputs from TPM, CPM and EVs. The FEM extracts the feature state of a request
for each EVCS, such as expected driving time, driving distance, arrival time, and charging time.
The output of the FEM is the input to the route & charging station selection module (RCSM). These
feature states are used to represent states used in the Markov decision process (MDP) model.

Each EV charging request randomly arrives at the EVNS center during the time horizon T. The EV
charging request consists of the following tuple: CR =

{
Ps, Pd, SOCcur, SOCreq

}
, where Ps is the initial

position, Pd is the location of the destination, SOCcur is the current battery state of charge, and SOCreq

is the required SOC. In order to extract the features of the expected arrival time, the charging time, and
the charge amount of EVs, the route for each charging station from the current position of the EV must
first be selected. To find the shortest time path for each EVCS, the above-mentioned Dijkstra algorithm
and the weighted graph are considered. Based on that route, the estimated arrival time to each charging
station and the expected total driving time required to the final destination are calculated. The values
calculated here are expected values based on the current traffic condition without any prior knowledge
that will vary in the future. It is also possible to calculate the expected charge of EV by using the path
to the specific EVCS. Note that each feature state is extracted based on the current time information.

We define energy consumption and time models of EVs. The energy consumption and time model
are used to represent the states of EVCSs and traffic conditions.

el = εdl, ∀ l ∈ E, (2)

where el, ε and dl are energy consumption of link l, energy consumption rate (kW/km), and distance of
link l, respectively.

When the EV arrives at EVCS k, the SOCk
arr is given as follows:

SOCk
arr = SOCcur −

∑
∀l∈Lk

f

el
Emax

, 0 < SOCk
arr < SOCreq, ∀k ∈ K, (3)

where Lk
f is the set of links from origin to EVCS k and Emax is the maximum battery capacity of EVs.

From Equations (2) and (3), the estimated charging amount energy Ek
ch at EVCS k can be calculated

by the following Equation (4).

Ek
ch =

(
SOCreq − SOCk

arr

)
× Emax, ∀k ∈ K (4)

The charging time τk
ch at EVCS k is also estimated by using Equation (5) based on the estimated

charging amount.

τk
ch =

Ek
ch
ηµ

, ∀k ∈ K (5)

where η is the charging efficiency and µ is the charging power of EVCS. We assume that the charging
poles of all charging stations provide the same charging power.
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Similar to Equation (1), driving time τt
l to move a link l at time step t is represented by dl/vt

l .
Therefore, the total driving time τk

drive of route Lk from the origin to the destination via the EVCS k is as
shown in Equation (6).

τk
drive =

∑
∀l∈Lk

τt
l , ∀k ∈ K (6)

Expected arrival time τk
arr at EVCS k can be calculated as follows:

τk
arr = τr +

∑
∀l∈Lk

f

τt
l , ∀k ∈ K (7)

where τr is the charging request time and
∑
∀l∈Lk

f

τt
l is the driving time to EVCS k.

Therefore, the total estimated travel time for the EV charging request is as follows:

τk
tr = τk

drive + τk
wait + τk

ch, ∀k ∈ K (8)

where the estimated travel time is determined by the EVNS upon arrival of the charging request and is
not the actual value. This value is used as the reward function of the MDP in the training of DQN.

The feature states for each EVCS can be obtained from the above formulations. Note that these
values are the estimated values based on the information of current time step. It is difficult to use all
information about the environment as a feature state under the curse of dimensionality. Therefore,
the current environment is defined using the estimated values for each EVCS as reduced feature states.

3.3.4. Route & Charging Station Selection Module (RCSM)

The function of the RCSM is to make a decision for the optimal route and the EVCS for each EV
charging request using a well-trained Deep Q Network (DQN). Due to the curse of dimensionality,
it is difficult to use Q-learning with the table look-up method for large-scale problems in real-world
scenarios. In this work, we use the DQN to approximate the optimal action-value function. The feature
states of each charging station extracted from the FEM and the charging request information of the EV
are concatenated as state st at time step t. The state st concatenated feature vector is used as an input to
that DQN. We deal with the training process and details of DQN in detail in Section 3.4.

3.4. Deep Q Network for Route and Charging Station Selection

3.4.1. Markov Decision Process Modeling

In this section, we formulate the route and charging station selection problem as a Markov Decision
Process (MDP) model without the unknown transition probability. The MDP is a classical formalization
of a sequential decision-making problem. The MDP is characterized by a finite state space, a finite
set of actions, transition probability, and a reward function associated with the transition. In view of
the EVNS, the EV charging request that arrives dynamically in the operation time is modeled as MDP
in a stochastic environment. The MDP is defined as a set of states, actions, transition probability, and
reward function.

• System States: The state including the arrived EV charge request CRt and information for each
EVCS is represented as st, as given in Equation (9), where ATt, WTt, DTt, Dt are the set of expected
arrival time, waiting time, driving time, and driving distance for each EVCS, respectively. The EV
charge request CRt consists of the starting point Ps, the destination location Pd, the request time
τr, the request time interval ∆t, the current SOC, SOCcur, and the required SOC, SOCreq, as given
in Equation (10). Since the charging requests arrive dynamically, the time difference ∆t between
the past request and the current request is provided as an additional feature. We assume that
a fixed number of EV charge requests CRt arrive within the operation time T because the possible
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status is infinite when the CRt continues to arrive. The set of expected waiting time, driving time,
and driving distance represents the expected values for each EVCS selection, which is to reduce
the number of rapidly increasing dimensions to represent the current environment.

st = {CRt, ATt, WTt, DTt, Dt} (9)

CRt =
{
Ps, Pd, τr, ∆t, SOCcur, SOCreq

}
(10)

ATt =
{
τ1

arr, τ
2
arr, . . . , τ

k
arr

}
, ∀k ∈ K (11)

WTt =
{
τ1

w, τ2
w, . . . , τk

w

}
, ∀k ∈ K (12)

DTt =
{
τ1

drive, τ
2
drive, . . . , τ

k
drive

}
, ∀k ∈ K (13)

Dt =
{
d1

w, d2
w, . . . , dk

w

}
, ∀k ∈ K (14)

• Action and Transition Probability: The EVNS can take an action for each state st. This action
represents an index of EVCS and includes the route planned corresponding EVCS k from Ps to Pd
via an EVCS k using the FEM. The action space is the set of K.

at ∈ {1, 2, . . . , k} (15)

The function P(st+1
∣∣∣st, at) is transition probability from st to st+1 by the agent taking an action at.

Without accurate models of the environment and prior knowledge of uncertainty, it is difficult
to define the transfer probability. Therefore, in this work, transition probability is learned
using model-free deep reinforcement learning approach with unknown transition probability.
The learning process is to learn the policy that maximizes cumulative rewards through repeated
trial and error.

• Reward: The reward function is divided into two parts, one for terminal state and one for
non-terminal state. Where the terminal state indicates when operation time T expired. If it is not
a terminal state, the reward is defined as the expected travel time that can be obtained by selecting
action at with the corresponding EVCS, even if the EV chooses the EVCS, because the actual travel
time has not been revealed due to the real-time traffic conditions and the charging behavior of
other EVs. In terminal state, the actual travel time of all EV requests is revealed, and the difference
between actual travel time and expected travel time is defined as the reward. The reward function
is formulated as

rt =

 −τa
tr , t , T

−
∑

n ∈ NCR
τtrue

tr, n − τ
ept
tr, n , t = T

, (16)

where τtrue
tr,n is the actual travel time for charging request n, τept

tr,n is the expected travel time for
charging request n. The reward function has negative values in both cases. The reinforcement
learning aims to maximize cumulative rewards. Therefore, it is defined as a negative value to
minimize travel time.

• Action-Value Function: The action-value function denotes Qπ(s, a), which is the expected total
summation of future rewards for using action a in a certain state s following a policy π.

Qπ(s, a) = Eπ[
∑
∞

k=0
γkRt+k+1|st = s, at = a] (17)

where γ is the discount factor, 0 < γ < 1, which balances the importance between the immediate
reward and future rewards. The objective of the EVCS selection problem based on the DQN is
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to find an optimal policy π to maximize the cumulative rewards or minimize total travel time.
The optimal action-value function is shown as follow:

Q∗(s, a) = max
π

Qπ(s, a) (18)

3.4.2. Training of DQN

The objective of training DQN is to find the optimal action-value function. To get the optimal
action-value function, we use the Deep Q-learning based on Bellman optimal equation. We use the fixed
target-network and experience replay buffer [25,26].

The Algorithm 1 summarizes the procedures of the DRL based EVNS with DQN. Firstly, the DQN
parameters θ is initialized randomly. The target network θ is initialized by θ and an empty experience
buffer is generated to store samples given by (st, at, rr, st+1). The training of DQN is carried out
through M episodes. For each epoch, we assume that NCR charging requests are dynamically arrived
at EVNS within operation time. The DQN takes an action at based on ε-greedy strategy. Then EVNS
recommends an EVCS indexed at. The DQN obtains immediate rt and st+1 is generated with new
arrived CRt+1 from the environment. We store the experience sample (st, at, rr, st+1) in the experience
replay buffer. Here we use training threshold ψ to train after a certain number of samples have been
accumulated. The target action-value yt is calculated as Equation (19). The Q-learning update uses
the loss function of Equation (20). The loss function is minimized by updating the Q network parameter
θ using gradient decent as Equation (21). If the number of samples in the buffer is larger than ψ,
then the gradient descent step is performed to update the DQN parameters using mini-batch with
random samples. After that, the target network is updated after every B training sessions on the DQN.
The training of DQN is illustrated in Algorithm 1 and the training process are present by Figure 4.

yt = rt+1 + γmax
a′

Q
(
st+1, a′

∣∣∣θ) (19)

L(θt) =
∑F

i=1

[
(yt − Q (s, a

∣∣∣θt)
2
]

(20)

θt+1 = θt + α∇L(θt) (21)

Algorithm 1. Training process of DQN.

1. Randomly initialize DQN parameters θ.

2. Initialize target network parameters θ = θ.
3. foreach epoch = 1 to M do
4. Generate the initial state s0

5. foreach CR = 1 to NCR do
6. Take an action at based on ε-greedy
7. Execute action at and then obtain reward rt and st+1

8. Store sample(st, at, rt, st+1) in experience replay buffer
9. if ψ > Nsp do

10. yt = rt+1 + γmax
a′

Q
(
st+1, a′

∣∣∣θ)
11. Perform a gradient descent step on (yt–Q(st, at|θ)

2 using sample batch
12. Update DQN parameters θ using (21)

13. Update target-network every B steps, θ = θ
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3.4.3. EVCS Selection Using Trained DQN

For dynamically arrived charging requests, the EVCS selection using well-trained DQN by
Algorithm 1 works as shown in Figure 5 and Algorithm 2. Firstly, the trained DQN parameters are
loaded. A charging request arrives within the operation time, an input feature vector for the request
is generated using the FEM. The feature vector is used as the input of DQN, then DQN calculates
Q∗(st, a|θ) as the output. The action with the maximum Q is selected. The selected action represents
the index of EVCS and the corresponding path is also recommended.

Algorithm 2. Route & Charging Station Selection.

1. Load the DQN parameters θ trained by Algorithm 1.
2. foreach CR = 1 to NCR do
3. Generate input feature vector using FEM
4. DQN calculates action-value Q∗(st, a|θ)
5. at = argmax

a∈K
Q∗(s, a)

6. Recommend EVCS at and corresponding route
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4. Performance Evaluation

In this section, we give a detailed description of the environment and training parameters
setting for the simulations. The performance of the proposed algorithm has been evaluated with
the conventional charging station selection strategies.

4.1. Simulation and Training Setup

This work considers electric vehicles with a maximum battery capacity of 54.75 kWh [27]. The initial
SoC and required SoC of EVs are configured using a uniform distribution. The charging power of
EVCS is 60 kW [9] and the energy consumption rate is 0.16kW/h [28], as shown in Table 3. The network
topology consists of 39 nodes and 134 links [22]. We assume that the three EVCS are scattered at
the network topology. The roads are divided into three categories according to the maximum speed
limits. The speed limits of each category are 60 km/h, 80 km/h, and 120 km/h, respectively. The average
speed of each load is randomly generated between (vmax × 0.7, vmax) and updated every 5 min.
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Table 3. Simulation parameters.

Parameter Value

Max. Battery capacity 54.75 kWh
Initial SOC Uniform (0.2, 0.4)

Required SOC 0.9
Energy consumption rate 0.16 kW/km

Number of EVCS 3
Number of charging pole 2

Charging power 60 kW
Charging efficiency 0.9
Number of nodes 39
Number of links 134

The simulation is performed in a variety of environments in order to show the efficiency and
flexibility of the proposed algorithm. For example, we considered varying the number of different EV
charging requests and the distribution of arrival time for the EV charging requests [29]. The arrival time
of EV charging requests is randomly generated according to the uniform distribution and the normal
distribution. The EV charging requests arrive between 360 and 1200 min for the uniform distribution.
The mean of the normal distribution is 600 min and the standard deviation is 200 min. The two
distributions are shown in Figure 6.Energies 2020, 13, x FOR PEER REVIEW 15 of 22 
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The simulation code is written in Python with TensorFlow [30]. The training environment is on
a computer with i7-6700 CPU and GTX 970. The DQN consists of an input layer with 18 nodes, three
hidden layers with 800 nodes, and the output layer size is 3. The training parameters of the proposed
model are given in Table 4. The convergence of cumulative rewards during the training process is
shown in Figure 7. Up to the first 50 epochs, the experience is stored in the replay buffers according to
random policy and subsequently learned by the ε-greedy strategy. Figure 7 shows convergence in 6000
epochs. The training time is about 7 h.

Table 4. Training parameters.

Parameter Value Parameter Value

Number of epochs, M 7000 Target Net. update period, B 10
Discount factor, γ 0.99 Batch size, F 256
Learning rate, α 0.01 Training threshold, ψ 5000
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4.2. Performance Evaluation

The proposed DRL based algorithm is evaluated and compared with three conventional
benchmarking strategies. The Benchmarking strategies are summarized in Table 5.

Table 5. Benchmarking strategies.

Objective EVCS Selection Function

Min. Distance argmin
k∈K

(
∑

l∈Lk dl)

Min. Travel Time argmin
k∈K

(
Tk

drive + Tk
waiting + Tk

ch

)
Min. Waiting time argmin

k∈K

(
Tk

waiting

)

• First, the Minimum Distance (MD) strategy aims to minimize the traveled distance, therefore,
the charging time and waiting time at the charging station are not considered. This approach is
used as a benchmarking strategy [6,27,31].

• Second, the Minimum Travel Time (MTT) strategy aims at minimizing the total travel time,
including driving, waiting, and charging time, similar to the proposed algorithm. The strategy
selects the EVCS and corresponding route that takes a minimum travel time [24].

• Third, the Minimum Waiting Time (MWT) strategy aims to select an EVCS with a minimum
waiting time [24,32]. The MWT selects a corresponding route with minimum driving time.

The total travel time of EVs represents the total trip time including the driving, charging, and
waiting time from source to the destination via an EVCS. Figure 8 shows the average travel time of
EV charging requests according to different strategies with various distributions of EV requests. This
result was carried out under scenarios in which 100 requests are generated according to uniform and
normal distributions. The proposed DRL based algorithm shows the best performance with the lowest
average total travel time. Compared with MTT, MWT and MD strategies in the uniform distribution
case, DRL shows performance improvements of about 4%, 20% and 30%, respectively. In the normal
distribution scenario, where EV charging requests occur intensively at certain times, the ability to
reduce total travel time by 5%, 20% and 29% for DRLs is also identified.
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The MTT strategy selects the route and an EVCS with the least total travel time when EV charging
requests arrive. Although MTT and the proposed algorithm have the same objective, it can be seen
that the proposed algorithm can efficiently select the appropriate route and EVCSs for dynamically
arrived EV charging requests. In particular, showing shorter waiting times with similar results in other
factors means that the policy to select the optimal route and EVCS has been well trained. In the normal
distribution scenario, the wait time for all strategies is increased because EV requests are gathered at
a specific time. The proposed DRL showed improvements over other strategies, even in a scenario
where many requests occur at a certain time, such as the rush hour. Therefore, the proposed DRL
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has the ability to select the optimal route and EVCS flexibly and efficiently for future unknown EV
charging requests.

In addition, the performance of the proposed DRL algorithm is also analyzed for the number
of EV charging requests. As with the above scenarios, we set the number of EV charging requests
occurring during the day to 80, 100, 120, and 140, depending on each distribution. Figures 9 and 10
show the total distance and travel time according to different numbers of EV charging requests.Energies 2020, 13, x FOR PEER REVIEW 19 of 23 
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In Figure 9, we can observe that the proposed DRL selects a longer path compared to MD but
the total travel distance of MTT is similar. The MWT can select the EVCSs with minimum waiting time
by selecting long-distance EVCSs, which increases total driving distance and time. From the perspective
of total travel time, it can be confirmed that the influence of waiting time is greater than driving
distance and driving time.

Figure 10 shows the total travel time of each strategy under the different number of EV
charging requests. The total travel time of all strategies is increased as the number of EVs charging
requests increases, but the proposed DRL in all scenarios showed the lowest total travel time. From
the above results, we have confirmed that the proposed DRL has well learned the policy of selecting
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the optimal route and EVCS regardless of the distribution or number of EV charging requests.
Therefore, the proposed well-trained DRL based algorithm showed the potential capacity to provide
the optimal route and EVCSs selection for minimizing total travel time in stochastic environments
where the distribution and number of future EV charging requests according to EV user behavior
patterns are unknown.

5. Conclusions

This paper proposed a framework for an electric vehicle charging navigation system (EVCNS)
which aims to select the optimal route and electric vehicle charging station (EVCS). The proposed
architecture consists of four main elements: EVs, EVCSs, an intelligent transport system (ITS) center,
and an EVCNS center. The EVCNS includes four main modules: traffic preprocess module (TPM),
charging preprocess module (CPM), feature extract module (FEM), and route & charging station
selection module (RCSM). The TPM module receives traffic information from the ITS center such
as the average road velocity where the data are processed in order to define the road traffic matrix
and the network topology. The CPM module communicates with EVCSs and received information
such as the number of charging vehicles, number of waiting vehicles. The FEM module extracts
the feature state from inputs (TPM, CPM and EVs), and feeds it to the route & charging station
selection module (RCSM). The RCSM makes the decision based on a well-trained Deep Q Network to
select the optimal route and the charging station for each EV charging request. The performance of
the proposed algorithm is compared with conventional strategies including minimum distance strategy,
minimum travel time strategy, and minimum waiting time strategy in terms of travel time, waiting time,
charging time, driving time, and distance under the various distributions and number of EV charging
requests. The results showed that the proposed well-trained DRL based route and charging station
selection algorithm improved the performance by about 4% to 30% compared to conventional strategies.
The proposed well-trained DRL based algorithm showed the potential capacity to provide the optimal
route and charging station selection for minimizing total travel time in real-world environments where
the distribution and number of future EV charging requests according to EV user behavior patterns
are unknown. Future work would consider applying the proposed algorithm for a real scenario with
actual EV user behavior patterns.
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Nomenclature

Sets and indices
G Network topology
V Set of vertices, which represent intersections or end points of the road
E Set of edges, which are roads between node i and j
K Set of EVCSs
CRt Charging request of EV at time step t
Lk Set of links from the origin to the destination via the EVCS k
Lk

f Set of links from origin to EVCS k



Energies 2020, 13, 6255 21 of 22

Parameters
α Learning rate
ε Energy consumption rate (kW/h)
γ Discount factor,
µ Charging power of EVCS
η Charging efficiency
Variables
el Energy consumption of link l
Emax Maximum battery capacity of EV
Ek

ch Estimated charging amount energy
Ps Location of the source
Pd Location of the destination
SOCreq Required state of charge
SOCcur Current state of charge
SOCk

arr State of charge when EV arrives at EVCS k
dl Distance of link l
τr Charging request time
τt

l Driving time to move a link l at time step t
τk

drive Total driving time of route Lk via the EVCS k
τk

arr Expected arrival time at EVCS k
τk

ch Estimated charging time at EVCS k
τk

wait Expected waiting time at each EVCS k
vt

i j Average road velocity vt
i j between node i and j at time step t

wt
i j Weight value of li j
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