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Abstract: Modern literature exhibits numerous centralized control approaches—event-based or
model assisted—for tackling poor energy performance in buildings. Unfortunately, even novel
building optimization and control (BOC) strategies commonly suffer from complexity and scalability
issues as well as uncertain behavior as concerns large-scale building ecosystems—a fact that hinders
their practical compatibility and broader applicability. Moreover, decentralized optimization and
control approaches trying to resolve scalability and complexity issues have also been proposed in
literature. Those approaches usually suffer from modeling issues, utilizing an analytically available
formula for the overall performance index. Motivated by the complications in existing strategies
for BOC applications, a novel, decentralized, optimization and control approach—referred to as
Local for Global Parameterized Cognitive Adaptive Optimization (L4GPCAO)—has been extensively
evaluated in a simulative environment, contrary to previous constrained real-life studies. The current
study utilizes an elaborate simulative environment for evaluating the efficiency of L4GPCAO;
extensive simulation tests exposed the efficiency of L4GPCAO compared to the already evaluated
centralized optimization strategy (PCAO) and the commercial control strategy that is adopted in
the BOC practice (common reference case). L4GPCAO achieved a quite similar performance in
comparison to PCAO (with 25% less control parameters at a local scale), while both PCAO and
L4GPCAO significantly outperformed the reference BOC practice.

Keywords: building energy systems; building control systems; distributed building optimization and
control; centralized building optimization and control; energy-sustainable buildings; Modelica-based
test bed

1. Introduction

According to recent research, the building sector represent the largest energy consuming sector
worldwide and so its conversion to affordable and eco-friendly structures portrays a major challenge
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for science and engineering [1]. Current policies and studies exhibit multiple energy-saving strategies
aiming at an upgraded energy efficiency and also a lower carbon footprint in structures. Usually,
these studies emphasize on the harsh-climate areas, where energy waste usually becomes severe due
to extended heating and cooling demands, and therefore, the need for an improved energy saving
plan becomes an absolute necessity [2–7]. Commonly encountered techniques—usually designated as
passive or conventional—are focusing on the appropriate selection of structure materials and also the
proper design of building’s envelope [8–12]. According to those practices, structures’ materials need to
fulfill certain mechanical and physical requirements in order to comply with buildings’ characteristics
for lowering internal energy wastage, increasing thermal storage ability and exploiting the available
renewable energy sources [13–15]. However, passive renovation or retrofitting strategies usually result
in a costly, disruptive and tedious procedure, hindering their wide applicability in the majority of
building cases [16].

Contrary to passive approaches, advanced renovation techniques involve the Internet of Things
(IoT) for automation, where the whole building structure is considered as an active ecosystem.
Those active renovation approaches are focusing on a technologically advanced and cost-efficient
automated approach, by dynamically orchestrating the active building elements for reducing the
non-renewable energy usage while utilizing elaborate control strategies—such as heating, ventilating
and air conditioning (HVAC) systems and renewable energy—through monitoring and automation
schemes [17,18]. It should be underlined that according to modern literature, solitary passive approaches
are not adequate enough to adequately exploit the energy saving potential. Therefore, a joint effort
between active and passive strategies exposed a combined approach that can increase the energy saving
potential [19,20]. As a result, modern building optimization and control (BOC) approaches promote
diverse control strategies focusing on the balanced integration of both active and passive elements.

While those efforts may deliver a significant energy saving potential, they cannot produce
a proper control optimization result due to their inflexible rule-based nature, their high building
modelling complexity and the underlying dynamically changing factors (climate alterations, occupancy,
envelopment deterioration, material aging, etc.). State-of-the-art control practices usually suffer from
slow convergence rates, low stability and poor applicability (model-indented control approaches),
exhibiting modeling oversimplifications (model-confided control approaches) as energy saving
solutions. To this end, conventional practices usually encompass cost-ineffective, peculiar and
time-wasting operations in order to create an elaborate building model, while, in most cases,
representing insufficient performances due to model exaggerations and inaccuracies [21]. The problem
becomes even more intense when BOC concerns large-scale, high-inertia buildings, due to the multiple
reaction complexities that those structures represent in comparison with the conventional ones.
In those cases, the BOC solution needs to act proactively in order to meet the building’s exceptional
thermal criteria and to adequately exploit the elaborate structure-unique characteristics to produce
a high-quality optimization result. Things become much more sophisticated when local energy
generation (e.g., Renewable Energy Sources—RES) is also involved: the problem for optimized
decision-making that preserves all the aforementioned context is being maximized, as control decisions
need to deliver an integrated efficient strategy for exploiting renewable energy utilization.

1.1. Related Work and Novelty of the Paper

Conventional optimization strategies emphasizing the development of approximately effective
agent-based BOC strategies in order to overcome the active restraints originated by systems of systems
(SoS; system of systems is the viewing of various, scattered, unrelated, yet interacting systems in
context as part of a wider, more complicated system) building ecosystem (BE) individual characteristics.
According to literature, conventional optimization strategies can be classified into three main sets:

i. Rule-based strategies that are mostly based on an ‘if-then’ type of control orders, in order to
designate, for example, when to close off or turn on the equipment. Usually, a set of simplified
control orders, determined by relevant experience, is applied. Unsuccessfully, strategies of
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this kind present a significant deficiency of adequate control and performance due to the
fact that the control thresholds used are commonly empirical and do not exactly match the
particular optimization control problem [22,23]. Actual building SoS-BEs are significantly
overwhelmed by climate and tenancy particularities and certainly by behavioral alterations,
caused by material changing or retrofitting operations. Moreover, manual manipulation of
optimization control orders presents a burdensome activity since the peculiar interplay between
the structures of SoS-BE characteristics is determined by an elaborate, nonlinear model [24–26].

ii. Model-driven strategies, where analytical or partial model information and its cost function is
needed to utilize optimization and control approaches [27–30]. Such approaches, though, do not
build the model from scratch but assume it as available, a practice that is usually not suitable
considering the majority of real-life cases; advanced simulation approaches deliver cases based
on predetermined simulation element templates (libraries) to structure the SoS-BE model, in a
time adequate way. Besides manual modeling, black-box identification and machine learning
methods [31–35] that assume the availability of elaborate historical datasets are also usually
being utilized, extending the pre-application effort even more. Usually, modelling complexity
issues are handled using general assumptions and modeling simplifications. In all modelling
cases (manual or machine learning based), though, identifying a building SoS-BE is considered
a tiresome and cost-inefficient process, imposing estimation errors that are circulated to the
model-based BOC strategy.

iii. Agent-based techniques, where distributed computational load is of main importance.
Unfortunately, agent-based topologies can achieve quite efficient behavior at the expense
of higher data exchange rates or shared workspaces among each agent, a fact which limits their
applicability only to smaller-scale control problems [36,37]. On the other hand, to minimize
data exchange rates, several applications consider an isolated noncooperative optimization of
local problems which share the same principal of minimizing locally-referring performance
index [38–40]. Other approaches follow a double-layer architecture, where a central node is
used to calculate global optimization indexes and constraints [41,42].

Following the paradigm of double-layer approaches, an advanced control optimization method
considering buildings—identified as Local for Global Parameterized Cognitive Adaptive Optimization
(L4GPCAO) [43,44]—has been specially formulated in order to effectively tackle the aforementioned
implications in complicated BOC problems with uncertain dynamics. L4GPCAO exhibits the
decentralized version of its centralized counterpart, PCAO, that has been extensively analyzed, revealing
a remarkably high energy saving potential, even in real-life evaluations [45–50]. The L4GPCAO
approach—similar to PCAO—demands nothing more than a single observable data point that
summarizes the information of the entire performance to be periodically measured and shared
de-centrally, unlike PCAO where all actions are executed centrally. The innovative characteristic of
L4GPCAO is manifested from its agent-based character, where the overall centralized optimization
problem is shattered into a set of several constituent parts. Each constituent part is determined by
a dedicated agent, taking advantage of the decreased set of locally-available data for improving the
global optimization goal. PCAO and L4GPCAO are independent considering the rational performance
dynamics, demanding just one single evaluation of the holistic energy and discomfort performance
periodically, while the overall objective function is considered observable but analytically unknown.
In order to examine and evaluate its effectiveness, a holistically certified simulative building ecosystem,
concerning the E.ON. Energy Research Centre of RWTH Aachen campus, is employed [51–53].
The primary target of this research effort is to measure and compare L4GPCAO’s performance towards
the respective performance achieved by PCAO and by the existing market-oriented control strategy of
the building. According to the comparisons, L4GPCAO’s ability to successfully shatter the complicated
optimization control problem into several locally-driven ones proved successful, presenting a higher
energy saving potential.
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It should be underlined that the novelty of the presented study resides in the extended
(simulative tests during different weather and seasonal conditions) verification tests conducted
in an elaborated simulative environment as compared to previous studies of L4GPCAO, which did not
extensively focus on the comparison of the thoroughly evaluated centralized (PCAO) and decentralized
(L4GPCAO) methods [43,44]. The presented simulation results strongly underline the efficiency levels
of the decentralized L4GPCAO as a locally-driven (i.e., local measurements are used for decentralized
control feedback), minimal cross-system awareness (i.e., a single data point of global performance is
shared across the system periodically), plug-n-play (i.e., readjustments of the optimization parameters
are not required even, when different external conditions occur throughout the year) optimizer
(see Section 3.5 for more details).

1.2. Test Case Building

The subject of this study consists of a dynamic model that is specifically structured in order to
emulate the working behavior of the HVAC and control systems in the central building of E.ON Energy
Research Center, located in Aachen, Germany [51,53,54]. Figure 1 portrays the front façade and the
core energy supply system of the building. Its structure concerns a heated floor area of 1332 m2 while
the main floor space is 892 m2. According to an aggregated long-term analysis, the heating demand is
almost 30 kWh/m2 (5.3 kWh/m3) and the heated floor area demand is about 20 kWh/m2 per year.
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Figure 1. E.ON. Energy research center: south façade mock-up view (left); central energy supply
system (right) [55].

The envelope of the building includes wide glass openings, revealing the strong reliance of the
internal thermal and visual conditions on the available (direct and indirect) sunlight levels, as illustrated
in Figure 1. The energy design criteria for the particular building considered DIN EN 13779 [56] for
thermal comfort, indoor air quality 2 (IDA 2), while indoor temperature is between 20 and 26 ◦C—
a constraint that is necessary to be met for more than 50 h per year.

1.2.1. Building Ecosystem

The building is equipped with a complex energy conversion system supplying the building
with thermal energy and electricity. Beside the non-renewable energy sources of gas and electricity,
renewable energy sources and storages are available to operate the SoS-BE under an ecologically
and economically high degree of quality. The distribution systems’ design was made by focusing on
maximized load/demand coverage by renewable energy whilst the thermal comfort is preserved.

There are four distribution systems of different temperature levels. On the heating side, there is a
high-temperature circuit containing gas-fired condensing boilers (as backup and for high-temperature
applications) and a gas-fired combined heat and power system (CHP), which provides electricity,
mainly for the heat pump. The turbo compressor-driven heat pump is meant to shift heat from
the low-temperature heat circuit to the high-temperature cooling circuit. If the cooling loads are
insufficient to cover heat demand by pure heat shifting, additional renewable energy can be used
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from the geothermal field, which is a 40-bore-hole heat exchanger in the building’s surrounding soil.
Furthermore, a glycol cooler is available to ensure heat removal out of the system to the ambience
if the energy balance is requiring that. The additional chiller supplies the low-temperature cooling
circuits of server rooms and laboratories. A more detailed description of the energy concept of the
building can be found in [51,57].

The building is used for research in building-application technology. Therefore, it is equipped
with a high-standard energy supply system and a variety of HVAC equipment. However, the selected
SoS-BE test-bed [52,58] represents three conventional conference rooms equipped as follows:

• Measured data/sensors: room temperature (T), room CO2 level, occupants’ presence contact (PS),
window-opening sensor (WS), manual temperature dial (TD); energy consumption (EN) meters;

• Controlled devices/actuators: (i) air chiller (AC) systems for cooling the supply air from the central
air handling unit individually for each room; and (ii) volume flow control (VFC) systems for
adjusting the air flow rate individually for each room, separately, in supply and return air ducts.

• Non-actuatable: (i) concrete core activator (CCA) systems for base heating loads which are
not eligible for real-time control due to building operation limitations and user comfort
preservation purposes.

It should be noted that the controllable HVAC components (ACs and VFCs) are being supplied
with energy by a combination of renewable and non-renewable sources integrated within the central
energy system.

1.2.2. Simulation Tools and Libraries

The following paragraphs explain the arrangement of the simulation models of the building use
case and the simulation framework with respect to the implementation of the Local4Global optimization
algorithm. The dynamic behavior of the Thermal and Hydraulic system is simulated using Modelica,
an object-oriented modelling language embedded in the commercial simulation environment called
Dymola. For modelling purposes, the Modelica Standard library (URL: https://github.com/modelica/

Modelica) as well as the AixLib Library (URL: https://github.com/RWTH-EBC/AixLib) are applied.
AixLib portrays an open-source Modelica model library suitable for simulations that are being related
with energy performance in building structures (https://github.com/RWTH-EBC/AixLib) [52].

The Control System is simulated using MATLAB/Simulink. Each room is controlled with a separate
control algorithm and a higher level controller for coordinating the control parameters regarding the
varying space sizes as a result of the folding walls between the rooms.

As a consequence of using these different simulation environments, there is a need for co-simulation.
Therefore, TISC (http://www.tlk-thermo.com/en/software-products/tisc.html) is applied, transferring
sensor values from Modelica to Simulink and control signals vice versa. Therefore, the control-related
interrelations of both parts are modelled, even though the overall building structure has been modelled
in separate simulation environments.

A scheme of the implementation platform of the Local4Global optimization algorithm is described
in Figure 2 as well as in [52]. Equivalent to the real-life implementation of the algorithm in [44],
the Local4Global optimization algorithm is processed simultaneously with the base control algorithm.
The implementation uses the Local4Global optimization algorithm as a kind of ‘middleware’ optimizing
the systems of systems building ecosystem (SoS-BE) operations by modifying the control signals
received from Simulink before transmitting them to the actuators modelled in Modelica. This cycle is
repeated in each communication step.

https://github.com/modelica/Modelica
https://github.com/modelica/Modelica
https://github.com/RWTH-EBC/AixLib
https://github.com/RWTH-EBC/AixLib
http://www.tlk-thermo.com/en/software-products/tisc.html
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Figure 2. Schematic illustration of the Local for Global Parameterized Cognitive Adaptive Optimization
(L4GPCAO) implementation framework.

The rest of the paper is organized as follows: Section 2 presents the main ideas behind the
proposed Local4Global PCAO methodology applied to BOC system design; Section 3 focuses on the
specified building’s control objectives; in Section 4, the Local4Global PCAO BOC system design is
extensively tested in numerous simulation scenarios and evaluated against the commercial reference
control case used in practice and the centralized PCAO performance; and finally, Section 5 concludes
the paper.

2. Local4Global PCAO for Control System Design

L4GPCAO is derived by discretizing the centralized optimization problem, which was considered
for the Parameterized Cognitive Adaptive Optimization tool (PCAO) design, into several locally
referring equivalent ones solved in a parallel manner. In reality, L4GPCAO coordinates several locally
referring instances of PCAO where the distributed self-learning mechanisms are utilizing the overall
performance instead of the local. The interested reader is referred to [46,59–61] for more details on
PCAO. PCAO has already been tested and thoroughly evaluated within several simulations and
real-life applications, presenting efficient behavior without the need for tedious pre-application effort
and tuning [45,48–50].

Let us assume that the number of the locally driven L4GPCAO agents is set equal to N ∈ N
while Eg,L4GPCAO is the overall performance index considered; then, the algorithmic execution of
L4GPCAO—against the respective one for PCAO—is explained below in a nutshell, with the following
steps (see, also, Figures 3 and 4):
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Step PCAO L4GPCAO

1

Initialize the central control matrix to be
semi-definite positive between e1 and e2
eigenvalues (where e2 > e1 > 0) and define a
scalar time-decaying continuous function a(t) to
be used as the constantly decaying exploration
radius for the generated central candidates
considered in Step 4.

Initialize all N local control matrices to be
semi-definite positive between e1 and e2
eigenvalues (where e2 > e1 > 0) and define a
scalar time-decaying continuous function a(t) to
be used as the constantly decaying exploration
radius for the generated local candidates
considered in Step 4.

2

Define the update Th period and apply the
current control matrix for a whole update period.
At the end of the period, calculate the overall
performance index Eg,PCAO (see Appendix A.2).

Define the update Th period and apply the
current control matrices to the referring
constituent plants/sub-systems for a whole
update period. At the end of the period,
calculate the overall performance index
Eg,L4GPCAO (see Appendix A.2) and distribute it
to all local constituent L4GPCAO agents.

3

Train a central linear-in-parameters estimator
using the calculated Eg,PCAO values and the
respective central control matrices as the central
regressor vector.

Train a linear-in-parameters estimator in every
constituent agent using the calculated Eg,L4GPCAO
values and the respective N local control matrices
entries as the regressor vectors.

4

Generate a randomly perturbed by a(t) version of
the applied central control matrix, using it as the
perturbation center and the value of the
time-decaying function defined in Step 1 as the
exploration radius.

Generate randomly perturbed by a(t) versions of
each locally applied control matrix, using them as
the perturbation centers and the value of the
time-decaying function defined in Step 1 as the
exploration radius.

5

Estimate the performance of all generated central
candidates from Step 4 using the respective
central linear-in-parameters estimator from Step
3 and select the one expected to present the best
overall performance.

Estimate the performance of all generated
candidates from Step 4 using the respective local
linear-in-parameters estimators from Step 3 and
select the ones expected to present the best
overall performance.

6
Set the selected matrix as the current one and GO
TO Step 2 until performance convergence
is achieved.

Set the selected matrices as the current ones and
GO TO Step 2 until performance convergence
is achieved.
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The sequence of the L4GPCAO algorithm steps is illustrated herein. For additional information
regarding the formulations and the underlying mathematical operations of the algorithm, the interested
reader is referred to [43,44] and also to Appendix A.2.

3. Control Application Objectives

Climate control represents the largest segment of energy consumption in building structures, a fact
that strongly depends on uncertain influences by user behavior and weather conditions. The simulation
tests allow for evaluating different control strategies under the same conditions. The goal is to study
L4GPCAO’s and PCAO’s potential of transforming the specific testbed into an energy-sustainable
building while preserving indoor air and thermal comfort through intelligent HVAC use. As a key
performance indicator, we focus on the non-renewable energy consumption (NREC). It represents the
fraction of fossil energy used inside grids’ energy distribution for generating the net energy used for
the building plant. This portion is assumed as 100% for every kWh gathered from the gas grid and
70% for each kWh taken from the electrical grid (it should be underlined that that selection of the
energy share fractions is representing a scaling factor and does not modify the control optimization
challenge evaluation analysis). The net energy consumption (NEC) is directly measured and used as
the base for calculating NREC through an estimation of the actual energy supply system to ensure
comparability with the results of the real life experiments [44]. In order to efficiently determine the
NREC—stationed by the NEC—the fNR agent is utilized for the ratio of non-renewable energy in the
net energy usage—presented in [44]; the control application is the NREC-driven regulation of the after
cooler’s water valve (AC), supply and exhaust air volume flow (VFC), maintaining indoor air and
thermal comfort.

This task is extremely demanding since it requires a sophisticated compound of quite extended
and very short effect times of the HVAC system, a quite well-insulated structure increasing the effect of
internal loads and solar radiation, and different, quite uncertain, unstable weather conditions. As a
result, a quite complicated network of interlinked subsystems that exhibit different response times and
constants determines the structures’ behavior under diverse situations and time intervals.

3.1. Operational Setup

PCAO and L4GPCAO were made MATLAB/Simulink-ready for the adequate execution of
the simulation experiments. The finalized implementation workflow considered in the specific
building application case is shown in Figure 5. Similar to the application deployment in [44],
reconfigured instances of L4GPCAO and PCAO, in order to comply with the simulative application
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environment, e.g., TISC interfacing requirements and utilization of historical weather data were
adopted. It should be noted that two asynchronous loops reflecting the actuation (control loop
employing a simulation period of dt = 15 min) and the control recalibration (optimization loop
employing a simulation period of Th = 4 × 24 = 96 h) schemas were implemented. The control loop is
described using the dashed arrow, and additionally, the optimization loop is described with the solid
arrow as Figure 5 portrays.Energies 2020, 13, x FOR PEER REVIEW 9 of 28 
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3.2. Optimization Setup

The simulative application allowed for replicated experiments considering the exact same external
conditions (weather and occupancy conditions) in all three different control scenarios (reference building
control (RBC), PCAO and L4GPCAO) to filter any discrepancies affected by them. In contrast to
the application in [44] where this was not practically feasible, the optimization process workflow
adopted considered an offline simulation schema for the tests (see, for example, Figure 6) where the
control strategy is tuned for a certain simulation period by repeating the exact same model realization
conditions (weather, occupancy) several times, while the applied control strategy is updated at the end
of each repetition/iteration based on either PCAO (centralized control matrix) or L4GPCAO (constituent
control matrices). The optimization process is active until performance convergence has been reached,
i.e., the overall performance levels do not present significant changes between consequent simulation
realizations/iterations.
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3.3. Benchmark Control

In this particular research effort, we utilize the baseline case control approach and also PCAO
control approach as the two comparison means against the performance of L4GPCAO. Two diverse
control techniques were tried out and examined. Similar to the benchmark control case, the L4GPCAO
and PCAO control strategies consider only the office working hours and days as the active control
period from 8:00 until 17:00. For the simulation tests, the benchmark control strategy (base case)
was based on real-life field observations—abbreviated, from now on, as reference building control
(RBC)—since its commercial patent is protected by intellectual property and prototyping rights
(i.e., it was considered as a black box). An RBC strategy that takes into account the simulation tests was
planned and conducted, in the corresponding building management system (BMS), by the building
designers and the commercial system contributor in a regular event-based procedure. That kind
of technique utilizes a closed PID-based control loop that has been structured to respond to indoor
temperature and CO2 variation in ACs and VFCs during heating periods in winter. Moreover, to avoid
behavioral discrepancies of the plant itself among different control strategies’ application, the plant
considered for evaluating the RBC strategy was the exact same one utilized also in the L4GPCAO and
PCAO simulative tests, contrary to the limited real-life experiments case presented in [44].

3.4. Cost Function

Similar to the respective L4GPCAO real-life case study [44], to also avoid complexities during
evaluation usually introduced when considering Fanger and PPD (predicted percentage of dissatisfied)
metrics, the optimization criterion considered a simpler formulation that blends the non-renewable
energy and the user discomfort factors as follows:

Totalscore = w·
Energyscore

EnergyBscore
+

(1−w)DisCom f ortscore

DisCom f ortBscore
(1)

where 0 < w < 1 controls the significance of each respective factor in the cost function. Having in
mind a harmonious, equally dependent optimization criterion among the non-renewable energy and
discomfort, the w factor was set to 0.5. It should be mentioned that sophisticated research regarding
the impact of different factor “w” selections is exists in literature [48,49].

The “Energyscore” factor corresponds to the total non-renewable energy consumption (NREC)
(excessive energy requirement towards the possible renewable amount) normalized with the
respective value “EnergyBscore” observed during the respective benchmark control tests (RBC case).
The “DisComfortscore” was calculated using temperature and CO2 levels as the most significant indoor
air (CO2) and thermal (temperature) discomfort-affecting variables—considering indoor humidity
almost constant since no window openings are imposed in the simulative test scenarios—filtered to
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consider only the occupancy period. In order to fairly blend temperature and CO2 in a single evenly
(f = 0.5) weighted index:

DisCom f ortscore = Occupancy·( f ·Tempcost + (1− f )CO2cost) (2)

where

Tempcost =



(
Troom−Tb,lower

Tmax

)2
, Troom < Tb,lower

0, Tb,lower ≤ Troom ≤ Tb,upper(
Troom−Tb,upper

Tmax

)2
, Troom > Tb,upper

(3)

CO2cost =



(
CO2room−CO2b,lower

CO2max

)2
, CO2room < CO2b,lower

0, CO2b,lower ≤ CO2room ≤ CO2b,upper(
CO2room−CO2b,upper

CO2max

)2
, CO2room > CO2b,upper


(4)

both are normalized to range between [0, 1], considering large-enough denominator values; respectively,
Tmax = 28 ◦C in (3) and CO2max = 1100 ppm in (4). Similar to [44], the discomfort index is aligned
with ASHRAE 55-2013 [62], EN 13779:2007 [56] (for indoor temperature acceptable value area) and
ASHRAE 62.1-2013 [63] standards (for indoor CO2 acceptable value area), considering as an acceptable
(non-penalizing) range for indoor temperature 21 and 24 ◦C in Equation (3) and 0 and 800 ppm for
CO2 in Equation (4), respectively (see Equations (3) and (4) and Figure 7).
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Figure 7. Indoor temperature and CO2 penalization formulation.

As a result, both “Energyscore” and “DisComfortscore”, being unitless and ranging between [0, 1],
contribute evenly (w = 0.5) to the total optimization index.

3.5. Closed-Loop Feedback Vector

For the closed-loop feedback vector formation, indoor measurements expressing the current
condition of every constituent system along with the forecasted values of uncertain disturbance
points (weather, occupancy) were considered. The prediction time interval that was elected was 3 h,
short enough to guarantee low prediction/forecast faults. The feedback closed-loop vector structure,
used in each optimization approach application, is shown in Table 1.
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Table 1. Feedback vector structure for PCAO and L4GPCAO application cases.

Annotation

PCAO Centralized
Control Feedback Vector

for All 3 Test Rooms
[zg(x)]

Size

L4GPCAO Decentralized
Control Feedback Vector

in Each Constituent
Agent [zi(x)]

Size Annotation

xg

Current measurements of
indoor rooms temperature 3 Current measurement of

indoor room temperature 1

xi
Current measurements of

indoor CO2 levels 3 Current measurement of
indoor CO2 level 1

Current states of
occupancy 3 Current state of occupancy 1

dg

Current measurement of
ambient temperature 1 Current measurement of

ambient temperature 1
di

Current measurement of
total solar radiation 1 Current measurement of

total solar radiation 1

pdg

Hourly averaged
predicted occupancy levels 9 Hourly averaged

predicted occupancy 3

pdi

Hourly averaged
predicted ambient

temperature
3

Hourly averaged
predicted ambient

temperature
3

Hourly averaged
predicted total solar

radiation
3

Hourly averaged
predicted total solar

radiation
3

1
A constant term since the
equilibrium of the system

is not in the origin
1

A constant term since the
equilibrium of the system

is not in the origin
1 1

ug

Set point of the Air Chiller
water valve 3 Set point of the Air Chiller

water valve 1

ui
Set point for Volume Flow

Control supply system 3 Set point for Volume Flow
Control supply system 1

Set point for Volume Flow
Control exhaust system 3 Set point for Volume Flow

Control exhaust system 1

Total 36 Total 18

Moreover, after performing algebraic manipulations [43], based on the Hamilton–Jacobi–Bellman
equation [64], the approximated optimal control formula can be written as follows:

PCAO centralized L4GPCAO decentralized

u∗g ≈ −BT
g
∂zg

∂xg
Pgzg

zg =


xg

dg

pdg

1
ug



u∗i ≈ −BT
i
∂zi
∂xi

Pizi

zi =


xi
di

pdi
1
ui


where z represents the full column control feedback vector for the centralized and decentralized case
as shown in the table above, x represents the respective localized or centralized state vectors, ∂z∂x are the

Jacobian matrices of z w.r.t. x, and BT
i =

[
0
I

]T

is a constant matrix sized so as to filter the effect of the

partial derivatives z(x), z(d), z(pd) w.r.t x. Finally, Pi represents the square control matrices for each
respective constituent system (L4GPCAO) and Pg is the global one (PCAO).
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By summarizing the number of the aforementioned feedback vector entries, the local measurements
that were pointed out at every control time interval (dt = 15 min) (without the constant term) were 17.
It should be mentioned that the parameters of the local squared control matrix Pi for every constituent
room are 18 × 18 = 324, i.e., when considering the (L4GPCAO) approach, every local agent contributes
to the adjustment of 324 parameters. The number of the parameters that the centralized optimization
strategy was adjusting raised to 36 × 36 = 1296—this number portrays the central squared control
matrix parameters Pg, and the number of pointed-out measurements that were collected centrally,
without the constant term, is equal to 35.

It is obvious that in the L4GPCAO case, the centralized optimization problem (1296 parameters)
turns into a computationally cheaper one (3 sub-problems × 324 parameters = 972 parameters overall).
Additionally, in contrast to the centralized optimization strategy (35 data points that were necessary
at a central node), the decentralized approach demand in data points was significantly lower and
equal to 17 in every local sub-system, while only 1 data point is demanded centrally—as noted in
Section 2—a fact that lowers the communication and infrastructure cost requirements for collecting
data to a central node. That kind of diverse behaviour may be even greater when the scale of the
relative building structure becomes even larger—for instance, when it concerns a larger amount of
rooms, or even districts.

4. Simulation Experiments

This section provides details on the simulation experiments conducted for the test case building.
Note that the number of sub-systems was considered equal to the number of the available rooms
for tests, i.e., N = 3, and the optimization period was considered equal to four days, i.e., Th = 96 h,
while the control period was set equal to dt = 15 min in all test cases. Moreover, the same values were
adopted in all simulation cases for the optimization and control parameters as follows: e1 = 5e− 6,
e2 = 2·e1 = 1e − 5, for the boundary conditions of all semi-definite positive Pg, Pi matrices and
a(t) = a0·e−t, where a0 = 0.2 as the time-decaying perturbation step formula. In all optimization
cases, the control scheme was initialized with the exact same strategy, based on the defined lower
and upper positive eigenvalue bounds (e1, e2), as also explained in [44]. At this point, it should be
mentioned that the decision of e1, e2 values was defined so that the control decisions that resulted
are mathematically acceptable (see Appendix A.2) and realistic (scaled so as to vary between the
defined operational control bounds). Finally, the occupancy schedule simulated is the same in all
cases, emulating working hours between 9:00–18:00, following the same profile as the available control
variables (e.g., see Figure A1c,d). In an attempt to maintain the readability, reduce the size and avoid
too many details in the current document, the authors decided to provide a compact evaluation analysis
of the presented simulation tests.

The simulation tests have been conducted using historical data collected in 2014 using an elaborate,
validated building energy performance simulation (BEPS) [52] model for the building established
in Modelica [65]. As already mentioned, several different simulation period cases (winter, spring,
summer and autumn) have been considered, all with the same 4-working-day duration. The different
climatic conditions, in terms of outdoor temperature and solar radiation, across the different seasonal
periods are shown in Figure 8c. In addition, for performance comparison purposes, two different
control and optimization topologies have been considered: centralized (PCAO) and decentralized
(L4GPCAO). The centralized optimization counterpart (PCAO) tool was considered to provide a
secondary benchmark point—besides the RBC module—reference control.
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Figure 8. Offline results summary: (a) Total non-renewable energy consumption (NREC) in all building
optimization and control (BOC) and season cases (top). (b) Total DisComfort in all BOC and season
cases (middle). (c) Average daily ambient temperature and average daily solar radiation for all
season cases (bottom).

Results Analysis and Evaluation

As mentioned previously, the simulation horizon for the offline simulation tests was set equal
to 4 days (Th = 96 h). The summarizing results from the three different control cases—(i) RBC,
(ii) centralized PCAO and (iii) decentralized L4GPCAO—are presented in Figure 8. The respective
absolute performance differences, in terms of NREC and DisComfort, observed between each building
optimization and control (BOC) application case (centralized PCAO and decentralized L4GPCAO) and
the reference building control (RBC) case are normalized over the latter (see Figure 9) to demonstrate
the improvement percentages achieved respectively. It can be observed that in all L4GPCAO and
PCAO cases, the total discomfort conditions are improved in comparison with the RBC reference
control case. More specifically, L4GPCAO and PCAO improve the total performance by specifically
minimizing both NREC consumption as well as indoor air and thermal discomfort index during
autumn, spring and summer. A special occasion, though, is outlined during winter tests, where overall
performance is improved again but by only significantly optimizing/minimizing the discomfort index
through a small NREC increase. This dynamic implies that the RBC case was parameterized focusing
on heavy winter heating periods when the energy demand for indoor climatizing is more intense.
Note that the presented results for PCAO and L4GPCAO cases are referring to the ones generated
after convergence was achieved (see the Subsection “Optimization Setup” above). For the PCAO case,
performance convergence was achieved to a different centralized controller than the local controllers
for each of the three constituent conference rooms in the L4GPCAO case.
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Figure 9. Improvement percentages respect to the reference building control (RBC) case for: (a) total
NREC in PCAO and L4GPCAO cases (top); (b) total comfort index in PCAO and L4GPCAO cases
(bottom).

Both PCAO and L4GPCAO applications achieved significant NREC savings during the 4-day
simulation period—while improving, slightly, the indoor comfort conditions—during the autumn,
spring and summer test periods. On the other hand, the winter tests presented a higher NREC,
when ambient temperature is always below 15 ◦C and the CCA systems are operated by the RBC
strategy in heating mode. Both PCAO and L4GPCAO resulted in an increased NREC and AC usage
(see Figure 9a) since indoor overheating combined with high CO2 levels would occur if the ACs were
not used to cool down the indoor environment (see Figure 9b). It must be underlined that overheating
and high CO2 concentration were both compensated, both by PCAO and L4GPCAO, which were
responsible for controlling only the ACs and VFCs, while the RBC was responsible for controlling
the CAs at all times. A more detailed analysis on the behavior of the three control strategies (PCAO,
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L4GPCAO and RBC) is also discussed in the Appendix A below to provide indicative insights during
the autumn and winter tests.

Finally, the total average daily savings (in absolute numbers), presented in Table 2 below, could be
translated into monetary values. The average daily NREC and comfort index values as well as the
respective differences with the RBC cases have been included in Table 2. The average daily differences in
the comfort index during the autumn, spring and summer periods suggest that quite similar indoor air
and thermal conditions were achieved in all test cases. More specifically, the average total daily NREC
reduction for the offline PCAO case during the autumn, spring and summer periods (when similar
indoor conditions to the RBC case were achieved) is about 1.3 kWh/day and can be translated to
0.27 EUR/day by considering the EU-28 average electricity costs of 0.21 EUR/kWh (including tax) [66].
The respective NREC difference for the offline L4GPCAO case is about 1.1 kWh/day which can be
translated to 0.23 EUR/day. On the other hand, offline PCAO and L4GPCAO consumed 0.7 kWh/day
(i.e., 0.14 EUR/day) and 0.4 kWh/day (i.e., 0.08 EUR/day) more, respectively, during the winter period,
while the indoor daily average comfort index was around 50% better.

Table 2. Overall daily average savings and improvements of PCAO and L4GPCAO.

B
O

C
A

pp
ro

ac
h Average Daily NREC|Average Daily

Difference w.r.t. RBC [kWh/day]

Average Daily Comfort Index|Average Daily
Difference w.r.t. RBC
[×10−4 unitless/day]

Autumn Spring Summer Winter Autumn Spring Summer Winter

O
ffl

in
e

O
pt

im
iz

at
io

n
(4

-d
ay

pe
ri

od
)

R
B

C

20.1|0 16.4|0 7.5|0 19.7|0 52.5|0 60.5|0 56.0|0 1401.8|0

PC
A

O

18.1|2 15.2|1.2 6.8|0.7 20.4|−0.7 49.5|3 53.3|7.2 52.8|3.2 605.3|796.5

L4
G

PC
A

O

18.3|1.8 15.4|1 6.9|0.6 20.1|−0.4 50.8|1.7 49.3|11.2 47.8|8.2 712.5|689.3

As expected, PCAO, which is a centralized optimization approach, slightly outperformed
L4GPCAO, which employs several constituent reduced optimization parallel problems (i.e., a lower
amount of information is required by each local optimizer). However, in essence, the L4GPCAO
approach achieved comparable levels of improvement to its thoroughly verified and evaluated
centralized counterpart PCAO (see Table 2 and Figure 9) within the same application horizon,
by calibrating, in total, 1296 − 972 = 324, i.e., 25% less parameters (see Subsection “Closed-Loop
Feedback Vector” above). Such a difference may become even more evident when the scale of the
application becomes even larger, i.e., more rooms (or even buildings or districts) are involved.

5. Conclusions

Considering the construction and insulation features of the particular structure, PCAO and
L4GPCAO strategies accomplished a noticeable improvement of the overall performance. The specified
building case is considered a quite well-designed structure; wide-scale glass facades fostering a
sunlight advantage, particularly efficient HVAC equipment (VFCs and ACs) and also advanced
insulation materials that are adequate to significantly boost the energy saving potential of the structure.
Additionally, the reference control case (RBC) is considered as one of the most trustworthy and effective
commercial products that concerns the market of the building automation and management sector.

However, the PCAO and L4GPCAO decentralized BOC approaches achieved comparable
improvements as far as non-renewable energy consumption is concerned, and also the indoor
discomfort index, as compared to the RBC case. A special SoS-BE dynamic was revealed during the
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winter period tests, denoting that non-adaptive, on-the-fly optimization control is usually focused
on certain extremely heavy occasions when high energy demand is expected. L4GPCAO, however,
utilized 25% less parameters, narrowing the computational and data-transmission requirements of the
overall SoS-BE optimization problem. Despite its decentralized nature, where a central BOC scheme and
full knowledge of the system is absent at the local level, L4GPCAO achieved similar performance levels
compared to the centralized one. Employing L4GPCAO renders the PCAO centralized optimization
problem into a considerably lower computationally task. In cases where the scale of the plant becomes
even larger, this optimization advantage may prove even greater—such as in larger building cases
with a significantly greater number of rooms or even large building ecosystems or districts.
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Nomenclature

AC Air Chiller L4GPCAO Local4Global PCAO

BCS Base Case Scenario MCIS
Monitoring, Control and
Information System

BE Building Ecosystem MPC Model Predictive Control
BEPS Building Energy Performance Simulation NEC Net Energy Consumption
BOC Building Optimization and Control NREC Non-renewable Energy Consumption

CCA Concrete Core Activation PCAO
Parameterized Cognitive
Adaptive Optimization

CHP Combined Heat and Power RBC Reference Building Control
CIP Computer Investment Program SoS System of Systems
HJB Hamilton–Jacobi–Bellman VFC Volume Flow Control
HVAC Heating ventilating and air conditioning VA,SUP Air Volume Supply Rate
kWth Kilowatt Thermal VA,EXH Air Volume Exhaust Rate

Appendix A

Appendix A.1. Control Strategies Behavioral Analysis and Comparison

Since an elaborate discussion on the control behavior of all three strategies (PCAO, L4GPCAO and
RBC) is out of the current study’s scope, this issue is briefly discussed herein in order to provide valuable
yet indicative insights to the interested reader. To simplify their control behavior analysis further,
the results presented originate from one single conference room. However, as depicted in Figures A1
and A2 for both cases, both PCAO and L4GPCAO behaved almost identically, presenting quite minor
control discrepancies which eventually resulted in their minor differences in NREC. Note that despite
the fact that the AC valves were set equal to zero (eliminating the ACs’ cooling capability) outside of
the occupancy period, for safety reasons, the respective VFCs were set to 0.3 (30%) in order to maintain
the CO2 levels as low as possible while consuming a small amount of non-renewable energy due to the
low availability of renewable energy during the same period of the day (afternoon and night).

During the autumn tests, both PCAO and L4GPCAO were able to utilize the AC-valves and the
respective VFC flows less when compared with the RBC strategy, as shown by the control setpoints for
all 4-day simulation periods in Figure A1c,d below. This phenomenon allowed to consume around
8–9% less total NREC (see Figure A1e) while achieving almost similar (i.e., around 3–5% better) comfort
conditions (see Figure A1a,b,f).

http://www.local4global-fp7.com/
http://www.local4global-fp7.com/
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During the winter tests, both PCAO and L4GPCAO were able to utilize the AC valves and the
respective VFC flows more when compared with the RBC strategy, as shown by the control setpoints
for all 4-day simulation periods, shown in Figure A2c,d below. This phenomenon allowed to consume
around 2–3% more total NREC (see Figure A2e) while achieving significantly (i.e., over 50%) better
discomfort conditions (see Figure A2f). Despite the fact that the RBC controller was designed to
utilize only the CAs—while the ACs were disabled and VFCs were set close to zero to compensate
with indoor air quality only without significantly affecting the indoor temperature (Figure A2c)—
for heating purposes during winter, both PCAO and L4GPCAO were able to minimize the overheating
(see the spikes over 23 ◦C in Figure A2a) as well as the unacceptably high CO2 levels (see the spikes
over 1000 ppm in Figure A2b) caused by this strategy. Both optimized strategies decided to use a
small portion of energy by setting the AC valves close to 10–15% (Figure A2c) and the VFCs to around
50–55% (Figure A2d) to compensate both with overheating (exceeding 23 ◦C) and high CO2 levels
(exceeding 1000 ppm) during the occupancy period.
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Appendix A.2. Optimization Problem Formulation

The classic control optimization problem of minimizing the total score (as formulated in Section 3.4)
can be reformulated as calibrating the control parameters (for the centralized PCAO denoted
with Pg; for the decentralized L4GPCAO denoted with Pi for i = 1, 2 . . . , N) by minimizing
the approximation error of each agent’s optimal cost-to-go function (denoted with Vg

(
zg, Pg

)
= zT

g Pgzg

for PCAO and
∑N

i=1 Vi(zi, Pi) =
∑N

i=1 zT
i Pizi for L4GPCAO) time derivative as derived by the

Hamilton–Jacobi–Bellman equation [64] for the optimal strategy:

For PCAO : min
{
Eg,PCAO

}
= min

{
∂Vg(zg,Pg)

∂t + Totalscore

}
For L4GPCAO : min

{
Eg,L4GPCAO

}
= min

{
N∑

i=1
Ei

}
= min

{
N∑

i=1

∂Vi(zi,Pi)
∂t + Totalscore

}
, i = 1, 2, . . . , N

Note that the aforementioned formulation denotes that PCAO and L4GPCAO are solving
equivalent but not strictly equal control optimization problems. Moreover, the parabolic formulation
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of the Bellman cost-to-go function was selected considering the imposed constraints of always being a
positive and continuous function. As a consequence, all control parameter matrices P were defined to
be semi-definite positive e1 < P < e2 (where 0 < e1 <e2 are both positive; being the boundary conditions
for the eigenvalues of the P matrices defined) so that the respective cost-to-go functions V are always
positive. The PCAO setup considers a centralized manner where all information (zg, Pg, Totalscore) is
available while L4GPCAO is trying to minimize an equivalent index by utilizing the local measurements
(zi); the local control parameters (Pi); and only the shared Totalscore global metric. As a result, each local
agent is dedicated to minimizing the respective local performance index which blends the global
Totalscore metric, thus employing a locally-driven (i.e., room-driven), coordinated, parallel optimization
of an equivalent set of sub-problems.
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