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Abstract: The research investigates the validity of the simple hourly method, as introduced by the
EN ISO 52016-1 standard, for the assessment of the building energy demand for heating and cooling,
by comparing it with a detailed dynamic model (EnergyPlus). A new methodology is provided to
identify and quantify the causes of deviations between the models. It consists in the split of the
contributions of the air heat balance (AHB) equation by dynamic driving force, and in the adoption
of consistency options of the modeling parameters related to specific physical phenomena. A case
study approach is adopted in the article to achieve the research objective. The results show that the
deviations in the heating and cooling loads between the two calculation methods can be mainly
ascribed to the use of different surface heat transfer coefficients, and to a different modeling of the
extra thermal radiation to the sky. Providing a methodology to validate the calculation method,
this work is intended to contribute to the enhancement of the use of simple dynamic models and to
the improvement of the standardization activity.

Keywords: building energy modeling; simple hourly model; detailed dynamic simulation; air heat
balance equation; EN ISO 52016

1. Introduction

The use of accurate energy simulation models is crucial to assess the environmental and
energy-related impacts of buildings. These models are usually developed and employed to evaluate the
current energy performance of buildings and to predict the energy saving potentials related to building
retrofit actions [1,2]. In some cases, they also consider the effects of future climate conditions [3]. In this
framework, several building energy models are presented in literature. They considerably differ from
each other for the adopted approach since each model is usually developed for a specific purpose and
with a certain level of detail. Some building energy performance assessment models are provided by
international technical standards.

In this context, EN ISO 52016-1 [4] is one of the recently issued technical standards developed
within the Mandate M/480 [5] to support the implementation of Directive 2010/31/EU [6]. The calculation
methods of the building energy performance (EP) are widely used in the regulatory framework, either to
check compliance with EP requirements or to carry out the energy performance certification. The EN
ISO 52016-1 standard provides updated calculation procedures of the building energy needs for space
heating and cooling. A new hourly method, based on simplified assumptions and a reduced amount
of input data compared to a detailed dynamic simulation tool, is introduced.
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Even though simplified methods are less accurate than detailed ones, their adoption for the EP
assessment of buildings is usually seen as a good compromise between the accuracy of a detailed
dynamic simulation and the simplicity of a quasi-steady-state assessment model. At the same time,
simplified methods ensure the reproducibility of results without ambiguities both in algorithms and in
input/output data [7]. In literature, many research works deal with the comparison between calculation
methods of the building EP, usually investigating in what conditions and for which purposes a
simplified method can predict with sufficient accuracy the building energy performance if compared
with a detailed simulation model. According to Corrado et al. [8], attention should be paid to specific
aspects, such as the determination of heat transfer, and the zoning level of detail. According to
Millet [9], simplified simulation methods rely on simple inputs (easy to obtain and understand) and
outputs that can be easily checked. On the other hand, a detailed model still requires many input data
that are not always available or sufficiently reliable.

The new simple hourly method of EN ISO 52016-1 replaces the one of the withdrawn EN ISO 13790
standard [10]. In literature, many authors adopted the EN ISO 13790 simple hourly method to assess
the thermal performance of buildings. This method does not considerably increase the computation
time if compared with the steady-state method, and it does not need further building data to perform
the simulation. The simple hourly method of EN ISO 13790 was applied with good results in the
simulation of the energy performance of different types of buildings, as highlighted by the works of
Millet [9], Marchio et al. [11], Roujol et al. [12], and Costantino et al. [13,14]. Despite its good reliability
in simulating the thermal behavior of buildings, some limitations of this method were highlighted
in literature. The limitations especially concern the modeling of buildings with high thermal inertia
and the estimation of the energy consumption for space cooling since the building heat capacity is not
accurately and extensively analyzed.

Kokogiannakis et al. [15] compared the differences in the energy ratings (both for heating and
cooling) that result from using models that are based on the monthly and simple hourly methods of EN
ISO 13790, and from two detailed simulation tools (EnergyPlus and ESP-r). The analysis was focused
on a three-storey building and was carried out considering the variation of some parameters, such as
internal heat gains schedules, external walls constructions, and climate conditions. The results of this
work showed that, in terms of space heating, all methods gave almost the same results, while greater
differences stood out in the assessment of space cooling.

Atmaca et al. [16] focused on the differences between the simple hourly method and a detailed
simulation tool (EnergyPlus) in estimating the heating and cooling energy demand that resulted by
varying the heat capacity of the building envelope. The analyzed case study was a single-family house,
and five different types of external walls were considered. The results of this work enabled the authors
to state that the calculation of the building thermal mass of the simple hourly method can be considered
reliable in non-complex buildings.

Michalak [17] developed a Matlab/Simulink energy model in compliance with the simple hourly
method of EN ISO 13790 for the estimation of the annual energy demand for heating and cooling of a
two-storey detached house. The outputs of the model were compared with the results of a detailed
simulation tool (EnergyPlus) and of the monthly method of EN ISO 13790. The analysis concerned ten
different locations (two for each climatic zone of Poland) and demonstrated the reliability of the simple
hourly method, but pointed out the need of further investigation in the cooling mode.

Whereas the reliability of the simple hourly method of EN ISO 13790 was sufficiently investigated
in literature, the new simple hourly method introduced by EN ISO 52016-1 has not been adequately
analyzed yet. A preliminary validation of the new hourly method consistent with the BESTEST
(Building Energy Simulation Test) procedure was carried out by Van Dijk et al. [18]. Zakula et al. [19]
performed a comparison between the new method and TRNSYS (Transient System Simulation Tool)
for different climatic zones, building use categories, and envelope characteristics. Differences between
the two calculation methods were quantified up to 40% and up to 18% for annual heating and cooling
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needs, respectively. The authors pointed out that the use of constant values for the overall thermal
resistance and for the total solar energy transmittance of glazing can result in significant errors.

Campana et al. [20] compared the results obtained through a new open SIMULINK blockset
(ALMABuild) for the dynamic energy modeling of buildings and HVAC systems with the results
of the BESTEST procedure, of EnergyPlus, and of the simple hourly method of EN ISO 52016-1.
The results highlighted that the discrepancies between ALMABuild and EnergyPlus are less than 30%
for heating loads, and the evaluation of the peak power is generally lower than 5%. On the contrary,
the differences between the estimation of ALMABuild and the simple hourly method of EN ISO 52016-1
are considerable, being up to 90% for heavyweight buildings.

Mazzarella et al. [21] compared the thermal conduction model of EN ISO 52016-1 with the
methodology proposed and implemented in the Italian National Annex of the standard. The authors
demonstrated that the latter provides more accurate results.

As the EN ISO 52016-1 also provides a quasi-steady state calculation method, Bruno et al. [22]
analyzed the reliability of this method for the estimation of the cooling energy demand. In addition,
they proposed a new methodology consisting in calibrating the quasi-steady-state model with the the
results provided by the dynamic software TRNSYS through a black box approach. The performed
analyses concerned different configurations of the glazed envelope of two different case studies
(a detached house and an office building) in different climate conditions of the Mediterranean area.
The results of this work showed that the quasi-steady-state method of EN ISO 52016-1 is suitable for
the estimation of cooling requirements in buildings, but noticeable deviances can be found especially
in the presence of large portions of the glazed envelope. Consequently, a previous calibration of the
quasi-steady-state model is required.

Research from Ballarini et al. [23] was aimed at investigating the features of the hourly method of
EN ISO 52016-1 by comparing it against both the hourly method of EN ISO 13790 and the detailed
dynamic model of the EnergyPlus simulation tool. The resulting deviations, in terms of thermal loads
and energy needs for space heating and cooling, and internal operative temperature, were discussed.
Despite a greater accuracy of the new method being shown if compared with the EN ISO 13790 model,
some deviations are still observed in the prediction of the heating and cooling load profiles and in the
building thermal time constant, when compared with EnergyPlus.

The present work provides a significant extension of the research conducted in [23].
Differently from [23], whose aim was the comparison between models results through a case study,
the objective of the present work is to deepen the research study as to investigate and quantify the
main causes of deviation between the EN ISO 52016-1 and EnergyPlus calculation methods. A new
methodology is provided, higher number of simulations have been performed and more detailed
findings are presented.

The methodology consists in the split of the contributions of the air heat balance equation by
dynamic driving force (i.e., ambient temperature, internal heat sources, solar radiation) in each
simulation model. Afterwards, consistency options between the simple hourly method and the detailed
dynamic one are adopted in the modeling of specific physical phenomena, as to separate the effect of a
different modeling of the phenomena from the use of different modeling parameters.

The analysis is intended to validate the new calculation method and in general, to provide a
methodology that can be applied to every simplified energy model for the building EP assessment.
In the long-run, the work is aimed at contributing to the standardization activity by improving the
reliability of the simplified building EP calculation methods, as to enhance their application for the
energy assessment of buildings.
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2. Materials and Methods

2.1. Calculation Methods

2.1.1. Detailed Dynamic Simulation Method—EnergyPlus

EnergyPlus [24] adopts the air heat balance (AHB) algorithm to estimate the heat flow that
is needed to maintain the indoor set point temperature inside the analyzed enclosure. The AHB
assumes the uniformity of the indoor air temperature (perfect mixing), the uniformity of each surface
temperature, and the uniformity of the spatial distribution of both long-wave and short-wave radiations.
In addition, the conduction heat flow through the building envelope is considered one-dimensional
(the effects of thermal bridges are neglected) and the radiation from surfaces is considered diffusive
following the Lambert’s cosine rule. Based on the previous assumptions and neglecting the heat
transfer due to infiltration and inter-zone air mixing, the AHB reads:

Cz
dθz

dτ
=
∑N

i = 1

.
Qi,c+

∑Nsup

i = 1

.
Qi,s+

.
QV +

.
QN, (1)

where Cz is the effective heat capacity of the building internal mass (e.g., furniture) and of the indoor
air, θz is the air temperature of the thermal zone, and τ is time.

.
Qi,c is the heat flow coming from the i-th

convective heat source,
.

Qi,s is the convective heat flow from the i-th surface of the thermal zone.
.

QV and
.

QN are the ventilation heat flow and the convective portion of the HVAC heat loads, respectively.
The heat conduction through the walls is solved using either the finite difference method or the

transfer function algorithm, with a sub-hourly time discretization and adopting the “Ideal Load Air
System”. In this way, infinite heating and cooling loads are provided to the thermal zone and the
features of the HVAC system (e.g., efficiencies and maximum capacities) do not affect the results.

2.1.2. Hourly Method—EN ISO 52016-1

As far as the level of detail is concerned, the hourly method of EN ISO 52016-1 [4] stands between
a detailed dynamic simulation model and the simple hourly method of EN ISO 13790 [7].

Similar to EnergyPlus, it adopts the AHB algorithm to estimate the heat flow that is needed to
maintain the indoor set point temperature inside the analyzed enclosure. Nevertheless, compared to
EnergyPlus, some simplifications are introduced, such as a simplified distribution of mass in each
construction, time-invariant convective/long-wave heat transfer coefficients, and total solar energy
transmission through glazing considered as directly entering the zone as shortwave radiation.

Similar to the simple method of EN ISO 13790, the hourly method of EN ISO 52016-1 is based on
the thermal-electrical analogy between the analyzed thermal zone and an equivalent electrical network
(RC model). While the EN ISO 13790 hourly model considers only one heat capacity for the whole
envelope and five thermal resistances that represent the heat transfer coefficients of the thermal zone,
the EN ISO 52016-1 hourly model assumes a few nodes for each construction element. Up to five
heat capacities and four thermal resistances are used for modeling each opaque component (Figure 1),
and two nodes are considered for each window or door.

Whereas EnergyPlus splits the solar radiation incident on the window into the fraction directly
transmitted into the zone and that one absorbed inside the glass panel and then transferred inside
the thermal zone, on the other hand, the EN ISO 52016-1 method evaluates a total amount of solar
gains through windows into the zone by applying the total solar energy transmittance of glazing (ggl).
EN ISO 52016-1 requires that, for windows with non-scattering glazing, the g-value is calculated by
correcting the total solar energy transmittance at normal incidence (ggl,n) by a factor (Fw) that takes
into account the effective incidence angle of solar radiation. In the present work, this correction factor
was calculated on an hourly basis as a function of the incidence angle, and applying the empirical
model developed by Karlsson et al. [25].
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Figure 1. The equivalent Resistance-Capacitance (RC) model of an opaque element behind the EN ISO
52016-1 hourly method [7].

The EN ISO 52016-1 standard requires adopting constant values of the surface heat transfer
coefficients, as provided in Section 9.5 of EN ISO 13789 [26]. These values are in agreement with
the conventional surface resistances in EN ISO 6946 [27], and are calculated assuming linearized
radiative surface heat transfer coefficients, constant values of surface emissivity (0.9), and of wind
speed (4 m·s−1). The standard external convective heat transfer coefficients are therefore overestimated
compared with those calculated in EnergyPlus by considering the real wind speed and assuming a
sheltered surrounding. Moreover, EnergyPlus adopts non-linearized formulation of the longwave heat
transfer, by applying the Stefan–Boltzmann law.

The hourly model of EN ISO 52016-1 evaluates separately the extra thermal radiation to the sky
from the external radiative heat transfer towards the uniform external environment assumed at the
same temperature as the air. The extra thermal radiation to the sky is calculated assuming fixed values
of the external radiative surface heat transfer coefficient, the view factor to the sky, and the average
difference between the air temperature and the apparent sky temperature.

2.2. Workflow

In order to identify the main causes of the deviation between the detailed dynamic method and
the simple hourly method, the workflow of Figure 2, further detailed in Figure 3, has been followed.
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Starting from the building thermal model, a preliminary activity consists in the application of
consistency options of the input data as to make the results of the two calculation methods comparable.
A detailed performing of this activity is described in [23] and summarized in Section 3.3 for the
analyzed case study.

Subsequently, three different analyses characterized by different levels of detail are carried out.
The first level analysis consists of the split of the AHB contributions by driving force. The dynamic driving
forces that affect the different terms of the air heat balance (AHB) equation are identified, and listed
as follows:

• ambient temperature since it causes the heat transfer by thermal transmission, T-tr,
• ambient temperature since it causes the heat transfer by ventilation, T-ve,
• internal heat sources, Int,
• solar radiation, Sol.

In each calculation method, the terms of the AHB equation (Equation (1)) are split as a function of
the above-mentioned dynamic driving forces, following the methodology developed and validated
in Ballarini et al. [28]. Sequential simulations are run on the same building model and in the same
indoor conditions, adding a different driving force each time. This methodology adopts the principle
of superposition of effects, in order to identify the amount of each driving force to the AHB. For each
simulation in the sequence, the amount of each contribution is obtained by difference between the
results of that simulation and the results of the previous one.

All the simulations have to be run under the same indoor temperature schedules so that the
consistency of the results and the absence of mutual effects between the different driving forces
are assured.

The performed simulations follow the sequence listed below.

• A first simulation is run using a dead band thermostat with the lower limit equal to the heating
set-point temperature, the upper limit equal to the cooling set-point temperature, and considering
all the driving forces. The hourly values of the indoor temperature obtained as outputs are used
as a fixed set-point temperature schedule in the subsequent simulations.
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• A second simulation is performed removing the solar radiation and the internal heat sources,
so that the only considered driving force is the ambient temperature. In this way, it is possible to
identify the only effect of the outdoor temperature (T-tr), which determines thermal transmission
through the envelope components, on the AHB terms. The AHB terms are the convective heat
flows that are exchanged between the internal air and the surfaces of the building components.
The heating/cooling loads can be determined as well. The effect of ventilation due to the outdoor
air temperature (T-ve), as a purely convective thermal load, can be obtained directly.

• A third simulation includes the internal heat sources (Int). It is possible to identify the convective
part of the internal heat gains, which is a direct load on the node air, and the convective heat flows
exchanged between the internal air and the surfaces due to the radiative part of the internal heat
gains, by difference from the second simulation.

• Finally, the comparison between the third and the first simulation allows to identify the contribution
of the solar radiation (Sol), in terms of the convective heat flows exchanged between the
internal air and the surfaces, due to the solar radiation entering into the room through the
envelope components.

The comparison between the results deriving by the application of this methodology to each
calculation method allows to identify those contributions of the AHB equation for which the highest
deviations occur.

The second and third (detailed) analyses allow to further split the AHB contribution of each
driving force by class of components (e.g., walls, windows, slab-on-ground floors . . . ) and by physical
phenomena involved (e.g., infrared radiation, convection, conduction, storage), respectively.

For each driving force, it is possible to identify and to investigate the different physical phenomena
that correlate the cause (i.e., driving force) to the effect (i.e., AHB contribution). In this way, it is
possible to quantify the effect that a different modeling of the physical phenomenon by the simulation
methods has on the building EP.

For each phenomenon, consistency options of modeling parameters are applied both to the simple
hourly method and to the detailed dynamic one. In this way, it is possible to separate the effects of
different modeling parameter from the effects of the model itself.

For both EnergyPlus and EN ISO 52016-1, the quantification of these effects is assessed by the
differences with respect to the results obtained in the previous simulation, in which the modeling
parameter or physical phenomenon has not been made consistent between the calculation methods.
Thermal loads—in case of heating/cooling operation—and indoor operative temperature—in case of
free-floating condition—are provided as outputs.

The present work focuses on the T-tr driving force. The deepening of the other driving forces
was excluded at the moment, as justified later in Section 4.1. As concerns the T-tr driving force,
the consistency of modeling parameters involved the surface heat transfer, by setting consistent
convective heat transfer coefficients in EN ISO 52016-1 and EnergyPlus. Modeling parameters related
to other physical phenomena, such as the heat transfer to ground and the heat transfer to unconditioned
spaces, were excluded at the moment because such adjacent environments are absent in the analyzed
case study.

According to the workflow shown in Figures 2 and 3, the split of AHB contributions by physical
phenomena proceeds with the removal of specific phenomena in both the models as to neutralize them.
In the present study, as part of the T-tr driving force, the extra thermal radiation to the sky was annulled
both in the simple hourly model and in the detailed dynamic one.
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3. Application

3.1. Case Study Description

The analysis was applied to the archetype of a two-storey single-family house selected within the
IEE-TABULA (Typology Approach for Building Stock Energy Assessment) project [29]. Its geometry is
representative of the single-family house type in northern Italy.

The analysis was carried out for the second storey of the building (Figure 4). The main geometric
data of the building storey are listed in Table 1, while the thermo-physical parameters values of
the building envelope components are shown in Table 2. The materials that constitute the building
envelope components are listed in Table 3 together with their thermo-physical parameters.Energies 2020, 13, x FOR PEER REVIEW 8 of 18 
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Table 1. Geometric data of the case study.

Quantity Value Unit

Conditioned gross volume, Vg 362 m3

Conditioned net volume, Vn 269 m3

Conditioned net floor area, Af,n 99.5 m2

Compactness ratio, Aenvelope/Vg 0.69 m−1

Windows area, Awin 12.4 m2

Window-to-wall ratio, WWR 0.09 -

Table 2. Thermal transmittance (U), periodic thermal transmittance (|Yie|), and time shift (∆t) of the
building envelope components.

Building Component U [W·m−2K−1] |Yie| [W·m−2K−1] ∆t [h]

External wall 0.365 0.091 8.3
Upper floor (roof) 0.305 0.049 9.8

Window 1.62 - -
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Table 3. Thermo-physical parameters of the materials constituting the envelope components.

Building
Component

Material
(from the Internal Side

to the External Side)

Thermo-Physical Parameters 1

s
[m]

ρ
[kg·m−3]

λ
[W·m−1K−1]

R
[m2
·K·W−1]

c
[J·kg−1K−1]

External
wall

Gypsum and mortar
plaster 0.015 1400 0.70 0.021 840

Brick masonry 0.16 1600 - 0.271 840
Expanded polystyrene 0.10 20 0.044 2.273 1250
Concrete and mortar

plaster 0.025 1800 0.90 0.028 840

Upper floor
(roof)

Concrete and mortar
plaster 0.01 1800 0.90 0.011 840

Reinforced
brick-concrete slab 0.18 1800 - 0.30 840

Concrete 0.02 2000 1.16 0.017 1250
Polyurethane and

waterproof finishing 0.09 40 0.032 2.813 1250

1 s is thickness, ρ is density, λ is thermal conductivity, R is thermal resistance, c is mass specific heat capacity.

Table 4 reports the areal heat capacity of the building components that was calculated as:

C =
∑Nlayers

i = 1
si · ρi · ci, (2)

where for each i-th layer of the building component, si is the thickness (in m), ρi is the density (in kg·m−3),
and ci is the mass specific heat capacity (in J·kg−1K−1). In Table 4, it is also provided the effective
areal heat capacity (κ) that reflects the dynamic response of the opaque component to a harmonic
temperature variation that occurs on the internal/external side of the component, in accordance with
the EN ISO 13786 standard [30].

Table 4. Areal heat capacity (C) and effective areal heat capacity (κ) of the building components.

Building Component C [kJ·m−2K−1] κinternal [kJ·m−2K−1] κexternal [kJ·m−2K−1]

External wall 273 60.4 39.2
Internal wall (partition) 65.5 52.3 52.3

Upper floor (roof) 342 69.0 5.80
Intermediate floor 204 71.4 62.3

The thermal insulation is placed on the exterior side of external walls and of horizontal enclosures.
The external opaque surfaces are clear colored. The windows have double low-e glazing and wood
frame, without solar shading devices. The first storey of the building is conditioned at the same
temperature as the second storey, hence the intermediate floor was assumed adiabatic.

3.2. Boundary Conditions and Simplifying Assumptions

The hourly schedules of the sensible internal heat gains and natural ventilation flow rate were
defined for workdays and weekends, distinguishing between occupied and unoccupied periods.
The weekly mean value of internal gains is 5.4 W·m−2 and 0.4 h−1 of ventilation air change; both refer to
a standard residential use. Continuous thermal system operation with a dead-band thermostat range,
with lowest limit at 20 ◦C (heating mode) and highest limit at 26 ◦C (cooling mode), was considered.

The building is located in Torino (north-west of Italy). Torino (45◦ North latitude, 230 m a.s.l.
altitude) is characterized by 1.3 ◦C and by 23.7 ◦C as mean outdoor air temperature in the coldest
month (January) and in the warmest month (July), respectively. The test reference year database of the
Italian Thermotechnical Committee [31] was used as source of weather data.

To carry out a preliminary comparison of the calculation methods, some boundary aspects were
excluded from the numerical simulations by adopting the following simplifying assumptions:
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• building envelope without thermal bridges,
• neither ground nor unconditioned rooms as boundary spaces,
• absence of external obstructions (no solar shading).

3.3. Consistency Options of Input Data

Consistency options of input data were adopted in the models to make the results comparable.
In addition, some input parameters of the EN ISO 52016-1 method were calculated in a more accurate
way, differently from the default values of the standard, as to allow the comparison with the detailed
dynamic simulation. In this way, the deviations with respect to EnergyPlus only depend on the
modeling options of the physical phenomena and not on the input data.

It is important to highlight that some input data are only required by one of the two calculation
methods. An example of these data is shown in Table 5. The wind speed is only needed in EnergyPlus
to assess the convective heat transfer coefficient, while the simple method adopts a fixed value of this
coefficient. The air density is a fixed key parameter of the simple hourly method, while the detailed
dynamic model evaluates it in function of the air temperature. The solar properties of the glazing
differ in the two calculation methods: detailed properties (i.e., solar transmission and solar absorption
factors provided by angle of incidence, for each side of the glazed pane) are required in EnergyPlus,
while EN ISO 52016-1 requires the total solar energy transmittance (g-value) of the glazing. With the
purpose of giving consistency to input data, the detailed solar properties were set in EnergyPlus as to
provide the same g-value used in the simple hourly model.

Table 5. Difference between the key input data and parameters of the two models (some examples).

Parameter EN ISO 52016-1 EnergyPlus

Wind speed not used required input
Air density fixed value variable value

Total solar energy transmittance of glazing required input not required
Detailed solar properties of glazing not required required input

Consistency options of the modeling parameters are then applied afterwards, as described in
Section 2.2, to specifically derive the causes of deviations.

The adopted consistency options of the input data are listed and described as follows.

1. Heating and cooling set-point temperatures. For both models, heating and cooling set-points are
referred to the operative temperature.

2. Sky temperature. The extra thermal radiation to the sky was modeled fixing an 11 K difference
between the air temperature and the apparent sky temperature, as specified in EN ISO 52016-1.

3. Convective and radiative fractions of heat gains. In both models, the heat supplied by heating
and cooling systems to the thermal zone was set completely convective, while the heat flow from
internal sources was assumed 40% convective and 60% radiative.

The two calculation methods implement different models of the building heat capacity. In the
present work, in EnergyPlus, external walls, roof and intermediate floor were geometrically modeled,
and the finite difference heat conduction model was applied. Internal vertical partitions were modeled
considering the thermo-physical properties of the internal walls layers and the area exposed to internal
air. The partitions interact convectively and radiatively with the zone air and the other surfaces of
the zone.

In EN ISO 52016-1, the building components were modeled as well. Following Table 4, the heat
capacity of each envelope component was applied to the internal surface node, in accordance with the
mass position class (Class I—mass concentrate at the internal side) defined in EN ISO 52016-1—Annex
B [4]. In both dynamic models, furniture heat capacity was applied on the air node.
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As the analysis has been focused on the assessment of the thermal loads for space heating and
space cooling, the effects of specific technical building systems were not considered and an ideal system
operating with an infinite heating/cooling capacity was assumed in both calculation models.

4. Results and Discussion

4.1. Split of the AHB Contributions by Driving Force

The monthly values of the energy needs for heating and cooling of the case study for the simple
hourly method and EnergyPlus are shown in Figure 5. The annual heating energy need normalized on
the conditioned net floor area amounts to 51.2 and to 49.5 kWh·m−2, assessed by the hourly method of
EN ISO 52016-1 and by EnergyPlus, respectively. Thus, the simplified method overestimates the yearly
heating need of 3.4% compared to the detained method. The annual cooling energy need normalized
on the conditioned net floor area is 16.8 and 17.8 kWh·m−2, assessed by the hourly method of EN
ISO 52016-1 and by EnergyPlus, respectively. Thus, the simplified method underestimates the yearly
cooling need of 5.6% compared to the detailed method.
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Figure 5. Monthly energy needs for heating and cooling.

Despite the deviation in the energy needs being low, the main deviations occur in the hourly
profile of the thermal loads for heating and cooling, as shown in Figures 6 and 7 for a sample week
of January and July, respectively. The root mean square deviation (RMSD) of the two calculation
methods is 1.78 W·m−2 for the heating load and 2.33 W·m−2 for the cooling load, both normalized on
the conditioned net floor area, in the respectively analyzed weeks.Energies 2020, 13, x FOR PEER REVIEW 11 of 18 
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Figure 6. Heating loads for a week of January.
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Figure 7. Cooling loads for a week of July.

Through the split of the air heat balance contributions by dynamic driving force, it is possible to
quantify to what extent the deviation between simulation models can be ascribed to each driving force,
and consequently, to the related physical phenomena. In Figure 8, the AHB terms for each driving
force are presented for some representative months.
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Figure 8. AHB contributions by driving force: comparison between the EnergyPlus (E+) and the EN
ISO 52016-1 (52016) models.

Figure 8 highlights that the EN ISO 52016-1 hourly method always underestimates the contribution
of each driving force if compared to EnergyPlus. More in detail, the analysis shows that the
greatest percentage differences between the considered models regard thermal transmission (T-tr)
during summer, being −23% and −28% in August and July, respectively. In winter, the difference is
quite negligible.

Other important differences concern the effects of solar radiation (Sol). In both seasons, in fact,
the EN ISO 52016-1 underestimation is between −17% and −21%.

As far as the ventilation heat exchange (T-ve) is concerned, the deviations are considerably lower,
ranging from −5% in January and March up to −9% in July. These discrepancies are due to the value of
the air density that is fixed in the simple hourly method while varies in function of the air temperature
in EnergyPlus. At present, this modeling option has not been made consistent between the calculation
methods and will be analyzed in future work.
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Finally, no differences due to the effect of internal heat sources (Int) exist between the models.

4.2. Consistency Options of Modeling Parameters

The analysis proceeded to investigate the modeling of physical phenomena related to thermal
transmission. As for ventilation, the solar radiation is excluded for now and will be analyzed in
future works.

As concerns the T-tr driving force, the modeling parameters consistency involved the surface heat
transfer, and the extra thermal radiation to the sky. In a first step, to make heat transfer consistent
between the two models, the convective average heat transfer coefficients derived from EnergyPlus
were applied to the EN ISO 52016-1 model. In sequence, the longwave thermal radiation to the sky
was annulled.

The results are reported for January and July (one example week each), as representative months of
the heating and the cooling season, respectively. For January, the heating loads are provided, while for
July, the hourly profile of indoor operative temperature (free-floating) is given, because the absence of
solar radiation and internal heat sources makes the cooling need equal to zero (i.e., indoor temperature
lower than the set-point) in large part of the time.

In Figure 9, the heating loads are shown for both EN ISO 52016-1 and EnergyPlus, considering the
only effect of the T-tr driving force in the simulation of the case study. In Figure 10, the heating loads
are provided assuming, in addition to the only effect of the T-tr driving force, consistent values of the
convective heat transfer coefficients. To this purpose, the average convective heat transfer coefficients
derived from EnergyPlus were applied to the EN ISO 52016-1 model. In sequence, the addition of
the annulling of the longwave thermal radiation to the sky determines the heating loads shown in
Figure 11 for both calculation methods.
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Figure 9. Heating loads during a winter week, considering ambient temperature as the only
driving force.
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Figure 10. Heating loads during a winter week, considering ambient temperature as the only driving
force, and adopting consistent convective heat transfer coefficients.
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Figure 11. Heating loads during a winter week, considering ambient temperature as the only driving
force, adopting consistent convective heat transfer coefficients, and removing the extra thermal radiation
to the sky.

Figure 9 shows that, when the only ambient temperature is applied as driving force,
significant differences exist between the heating loads estimated by the two energy simulation
methods (RMSD = 1.23 W·m−2). The heating load of EnergyPlus is less sensitive to the outdoor air
temperature fluctuations compared to the EN ISO 52016-1 hourly method. This behavior is particularly
evident, for example, on January 10th and 14th during which the sudden increases of the outdoor air
temperature cause remarkable discrepancies between the heating loads.

A possible cause of this deviation consists in the convective heat transfer coefficients of the building
envelope components, whose estimation differs between the models. In the simple hourly model
of EN ISO 52016-1, fixed values of the surface heat transfer coefficients are assumed in compliance
with the EN ISO 13789 standard [26], while EnergyPlus determines time-variant surface heat transfer
coefficients as a function of wind speed. The former is generally higher than the latter, assessed on a
monthly average. Higher external convective heat transfer coefficients in the simple dynamic model
cause higher sensitivity of the heat transfer—and consequently of the heating load—to the outdoor
temperature variation, compared to EnergyPlus. This hypothesis seems to be confirmed by the results
of Figure 10, in which the consistency option adopted for the convective heat transfer coefficients
(i.e., replacing of fixed values in the simple hourly model with those derived from EnergyPlus)
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reduced the amplitude of the heating load profile in the EN ISO 52016-1 model (RMSD = 0.58 W·m−2).
In addition, by removing the effect of the extra longwave radiation to the sky (Figure 11), the deviation
between the two assessment methods is further reduced (RMSD = 0.31 W·m−2); the heating loads now
present very similar trends.

In Table 6, the root mean square deviations of the heating loads between the models are summarized
for each consistency option applied. In winter, the effect of different modeling of the surface heat
transfer on the heating loads deviation between the calculation methods is higher than that deriving
from a different modeling of the extra thermal radiation to the sky.

Table 6. Results of the modeling consistency for a winter week: deviations of the heating load
normalized on the floor area between the simple hourly model and the detailed dynamic model.

Modeling Options RMSD [W·m−2]

Ambient temperature as the only driving force 1.23
-plus consistent values of convective heat transfer coefficients 0.58

-plus removal of extra thermal radiation to the sky 0.31

For the week of July, the output is the indoor operative temperature, considering the only effect of
the T-tr driving force (Figure 12), and adding in sequence, the consistency option of the convective
heat transfer coefficients (Figure 13), and the absence of the heat flow by extra thermal radiation to the
sky (Figure 14).

Energies 2020, 13, x FOR PEER REVIEW 14 of 18 

 

surface heat transfer on the heating loads deviation between the calculation methods is higher than 

that deriving from a different modeling of the extra thermal radiation to the sky. 

Table 6. Results of the modeling consistency for a winter week: deviations of the heating load 

normalized on the floor area between the simple hourly model and the detailed dynamic model. 

Modeling Options RMSD [W·m−2] 

Ambient temperature as the only driving force 1.23 

-plus consistent values of convective heat transfer coefficients 0.58 

-plus removal of extra thermal radiation to the sky 0.31 

For the week of July, the output is the indoor operative temperature, considering the only effect 

of the T-tr driving force (Figure 12), and adding in sequence, the consistency option of the convective 

heat transfer coefficients (Figure 13), and the absence of the heat flow by extra thermal radiation to 

the sky (Figure 14). 

 

Figure 12. Indoor operative temperature during a summer week, considering ambient temperature 

as the only driving force. 

 

Figure 13. Indoor operative temperature during a summer week, considering ambient temperature 

as the only driving force, and adopting consistent convective heat transfer coefficients. 

0

5

10

15

20

25

30

35

 07/16

01:00:00

 07/16

13:00:00

 07/17

01:00:00

 07/17

13:00:00

 07/18

01:00:00

 07/18

13:00:00

 07/19

01:00:00

 07/19

13:00:00

 07/20

01:00:00

 07/20

13:00:00

 07/21

01:00:00

 07/21

13:00:00

 07/22

01:00:00

 07/22

13:00:00

T
em

p
er

a
tu

re
 [
 C

]

Internal operative temperature - EnergyPlus Internal operative temperature - EN ISO 52016-1

Outdoor air temperature

0

5

10

15

20

25

30

35

 07/16

01:00:00

 07/16

13:00:00

 07/17

01:00:00

 07/17

13:00:00

 07/18

01:00:00

 07/18

13:00:00

 07/19

01:00:00

 07/19

13:00:00

 07/20

01:00:00

 07/20

13:00:00

 07/21

01:00:00

 07/21

13:00:00

 07/22

01:00:00

 07/22

13:00:00

T
em

p
er

a
tu

re
 [
 C

]

Internal operative temperature - EnergyPlus Internal operative temperature - EN ISO 52016-1

Outdoor air temperature

Figure 12. Indoor operative temperature during a summer week, considering ambient temperature as
the only driving force.
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Figure 13. Indoor operative temperature during a summer week, considering ambient temperature as
the only driving force, and adopting consistent convective heat transfer coefficients.
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Figure 14. Indoor operative temperature during a summer week, considering ambient temperature as
the only driving force, adopting consistent convective heat transfer coefficients, and removing the extra
thermal radiation to the sky.

Figure 12 shows a significant offset between the trends of indoor operative temperatures estimated
by the two models. In particular, the EN ISO 52016-1 model overestimates the indoor operative
temperatures during the analyzed period compared to EnergyPlus (RMSD = 2 ◦C).

The adoption of consistent convective heat transfer coefficients determines a reduction of the
indoor operative temperature offset (Figure 13, RMSD = 0.4 ◦C). In addition, the exclusion of the
extra thermal radiation to the sky from the simulations positively affects the estimation of the indoor
operative temperature during the warm season (Figure 14), in such a way as to eliminate any difference
between the simple hourly model and the detailed dynamic one.

In Table 7, the root mean square deviations (RMSD) of the indoor operative temperature between the
calculation models are summarized for each consistency option applied, for the analyzed summer week.

Table 7. Results of the modeling consistency for a summer week: deviation of the indoor operative
temperature between the simple hourly model and the detailed dynamic model.

Modeling Options RMSD [◦C]

Ambient temperature as the only driving force 1.98
-plus consistent values of convective heat transfer coefficients 0.41

-plus removal of extra thermal radiation to the sky 0.04

The performed analysis is useful to identify the presence of compensations in the deviations
between the calculation methods. In fact, the small difference (1%) that has been identified in Figure 8,
related to the ambient temperature effect in the two simulation models, is not really due to a similarity
between the models in simulating the thermal transmission in January. It is instead attributable to
the compensation between the effect of the convective heat transfer coefficients and the effect of the
extra thermal radiation to the sky. During winter, the overestimation of the convective heat transfer
coefficients counterbalances the underestimation of the extra thermal radiation to the sky in the simple
hourly model. In the warm season, since the convective heat transfer coefficients do not affect the heat
balance as much as in winter, due to a reduced indoor–outdoor temperature difference, the influence
of the extra thermal radiation to the sky increases and major deviations occur (28% and 23% in July
and August, respectively, as shown in Figure 8).

Figure 15 provides updated results of the analysis of the AHB contributions by driving force,
obtained by annulling the above-mentioned compensation effects. These modifications entail considerably
differences if compared to Figure 8.
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Figure 15. AHB contributions by driving force: comparison between the EnergyPlus (E+) and the EN
ISO 52016-1 (52016) models, with the application of modeling consistency (consistent convective heat
transfer coefficients and absence of extra thermal radiation to the sky).

Figure 15 shows that the options applied to give consistency to modeling parameters and
phenomena lead to a reduction of the deviations between the simulation methods as concerns the
ambient temperature driving force. The deviations are almost nulled in winter, while some differences
still occur in the warm season. Further analyses, mainly focused on the effect of the heat conduction
models and the building heat capacity, are needed.

As far as the solar radiation is concerned, the underestimation of its effect by the EN ISO 52016-1
model highlighted in Figure 8 (−17% in January and −21% in July) is denied in Figure 15, even showing
an overestimation, above all in summer. The previous underestimation is due to the effect of the
convective heat transfer coefficients, whose overestimation by the simple hourly model in winter
produces a reduction of the effect of the solar radiation absorbed by the external envelope surface.
Future works will focus on the analysis of the deviations related to the effect of the solar heat source,
that are evident in summer (about 7%), but less noticeable in winter due to the limited amount of the
incident solar radiation.

5. Conclusions

The present work is aimed at investigating the main causes of deviation between the new simple
hourly model of the building energy performance assessment, introduced by the EN ISO 52016-1
standard, and a detailed dynamic model (EnergyPlus).

To this purpose, a new validation methodology based on the split of different AHB contributions
and on the adoption of consistency options of input data and modeling parameters was developed
and applied to a case study. This analysis makes it possible to understand to what extent each specific
driving force and each modeling simplification relates to the differences that stand out between the
compared models.

The main goal of the present research is to provide a new effective approach to validation rather
than deliver general figures on numerical deviations. The specific results here presented are closely
related to the selected case study and to the considered climate location, but the provided approach
could be used in other research works with similar purposes.

The adoption of modeling parameters consistency options performed in this work does not mean
that there is the need to assure total congruency of the simulation models. However, the results of
this work point out that attention should be paid in the construction of the models and in the input
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data, being aware that different modeling options may lead to not negligible deviations. To reduce the
deviations, further work should be done to increase the accuracy of simple models.

In the next future, further models of physical phenomena will be analyzed, as for instance the
modeling of the building heat capacity and the effect of solar radiation on the AHB contributions.
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