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Abstract: Remote inspection is critical for smart factories, power systems and undersea and space
exploration, among other domains. However, these applications have conflicting requirements: operators
should experience high situation-awareness, implying a considerable amount of data to be presented,
while having a minimal sensory load, not to compromise the time to make decisions. Recent research
suggests computer vision inspection and the adoption of virtual reality (VR) as an alternative to traditional
SCADA interfaces. Nevertheless, although VR may provide a good representation of a substation’s state,
it lacks some real-time information, available from online field cameras and microphones. This work
discusses a method to augment virtual environments of power substations with field images, enabling
operators to promptly see a virtual representation of the inspected area’s surroundings. In addition,
the system interacts with a SCADA database, continuously comparing the equipment states against
the ones inferred by processing the field images. Whenever a discrepancy is found, a virtual camera
can be teleported to the affected region, speeding up system reestablishment. Our results concern the
registration accuracy and performance impact for a simple scenario. The collected metrics suggest good
registration levels and low impact on real-time rendering performance.

Keywords: substation automation; SCADA; remote monitoring; registration error; augmented virtuality

1. Introduction

In an industrial context, control room panels have evolved from LEDs and gauges to computer
screens with windows, associated with custom layouts and computer graphics animations. More recently,
electrical power substations have benefited from the virtual reality (VR) technology by exploring the
potential of this advanced user interface to complement the usual single-line diagrams [1]. Since power
systems are critical, one may not always rely solely on the state reported by the supervisory control and
data acquisition (SCADA) sensors.

Some failures need a quick visual inspection for better diagnostics. To safely allow the site to be
unmanned, remote visual inspection, called Remote Inspection (RI) henceforth, becomes a valuable
technique. Referring to the SCADA integration, it is possible to check the network’s reported state for a
disconnect switch against the one inferred from the last image [2,3], acquired by an RI system.

However, traditionally, such inspection systems demand a high level of diffuse attention from the
user, who needs to visualize and analyze images in multiple screens or windows. The operator can be
“easily overwhelmed with the task of integrating these varied forms of data into a complete global view
and understanding of a scene” [4]. In this manner, one reasonable option to be considered is the integration
of RI data with the SCADA user interface. To be aligned with the concept of cyber-physical systems
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(CPS), one of the main features of Industry 4.0 [5], this integration can be done to the virtual environment
associated with the factory [6,7]. Considering the case of power substations, a field image, as captured by a
RI system, can be surrounded by a tridimensional model of the nearby “as-built” structure, providing more
contextual information and extending its scope. The problem of inserting an image so that their objects
match their counterparts in the virtual environment is known as 2D–3D spatial image registration [8],
and it is one of the key techniques for augmented virtuality (AV) systems [9]. Recent research work has
already suggested that this technique significantly improves operator situation-awareness, especially
when the camera views are unintuitive or limited [10]. Telemetry information can also be displayed along
with the virtual environment.

While many studies on AV have been published, with fields ranging from surgery [11,12] to
gaming [13] and teleoperation [10], so far, none of such AV systems is aware of SCADA states. Although
these works mainly concern 2D–3D registration, the captured images could be processed to infer important
data. In contrast, substation inspection systems, based on image processing techniques [14], are still not
integrated with their digital twins’ counterparts (virtual power substation virtual environments).

This work proposes and evaluates a novel way of integrating these technologies, combining VR with
on-line images and SCADA data in a single solution. It allows VR applications to query the last known
color or thermal images for a given set of regions of interest, providing 2D–3D registration for these images.
We evaluate the particular case of disconnector switches’ images, which are processed by an existing
state inference machine based on computer vision techniques [15]. The inferred states are then compared
against the ones reported by SCADA. Whenever there is a discrepancy between these states, the system
teleports the VR camera and triggers an alarm. This allows for a quicker system reestablishment routines
and failure diagnostics. Viewing the field state from inside the operations center improves safety and
reduces costs: a local operator is no longer needed just to confirm whether the power disconnector has
opened or closed after a teleoperation command. Effectively, for tele-assisted installations, unnecessary
travel is reduced, implying quicker and cheaper reestablishment.

The main objective of this research is to improve power substations with RI by applying augmented
virtuality techniques and to demonstrate that this approach is not only feasible but also viable. In this
sense, the following specific objectives are enumerated:

1. to identify the barriers related to real-time 2D–3D registration for RI uses, considering a scenario
with multiple image sources and multiple virtual environments to be augmented;

2. to describe the registration process in terms of mathematical manipulations and pose estimation
algorithms;

3. to assess the quality of the registration according to some quantitative metrics, considering not only
if the virtual camera’s pose matches exactly the image capture conditions but also some poses with
small variations (different points of view); and

4. to provide an architecture capable of integrating field images with SCADA, so that states from these
two sources can be checked continuously.

The remaining of this text is structured as follows. Section 2 presents some recent work concerning
RI for power substations and some other environments. Some systems featuring 2D–3D registration are
presented as well. Section 3 gives some background on the mathematical operations for camera pose
estimation, along with the method used for the spatial registration. A method for defining the focal length
scale factor is presented in Section 4. The system architecture and its implementation’s usage are presented
in Section 5. The results are explained in Section 6 and discussed in Section 7, along with some conclusions.
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2. Related Work

Augmented virtual environments have already been used in urban video monitoring applications [4].
Hu et al. [16] proposed the control of virtual humanoid models’ positions, according to real humans’
positions captured by video cameras, for outdoor environments. For representative purposes, sending
only positions and orientations instead of full images is an interesting strategy, since it demands much
fewer network resources, comparing to real-time video streaming. Nonetheless, visual inspection is often
needed for better comprehension of the problems in the inspected area.

The 2D–3D registration techniques may also be applied in systems with multiple cameras.
Wu et al. [17] proposed a framework for the fusion of large-scale surveillance images with an associated
virtual environment. The system combines, in the same view: (i) a mosaic with images captured by
the surveillance cameras; (ii) an overall image sent by satellite equipment; and (iii) the corresponding
tridimensional model.

When multiple cameras are installed in far remote locations, a guided tour in the monitored
environment is particularly interesting to aid operation. Scene-graphs might be put in place for this
situation [18]. However, some faults need immediate attention, so waiting for the tour to complete a loop
is not an option.

Another application for inserting physical reality information into virtual environments is proposed
for the supervision of marine systems. The system deals with the problem of developing a SCADA
VR-based interface that reduces sensory overload and “provides situation awareness while maintaining
operator capabilities” [19]. However, only a single remote environment is monitored and field images are
not available for further visual inspection.

Concerning power tele-assisted substations, video monitoring systems with automatic image analysis
are important inspection tools. Color images can be submitted to algorithms capable of detecting
people [20], fire [21,22], people climbing ladders in forbidden areas [23], oil leakage in power transformers
and unwanted objects left in their nearby [24]. Pereira et al. [15] proposed a way of inferring disconnector
switches states by processing their images. The method consists of: (i) extracting a region of interest,
comprising the mobile parts of the device and the axes supporting them; (ii) applying a threshold, so that
the background is removed; (iii) establishing line equations through linear regression; and (iv) checking
the deflection angles to judge as either opened or closed (Figure 1). The solution proposed in our work
uses the images and the inferred states from their system.

(a) (b)

Figure 1. Checking deflection angle (adapted from [15]): (a) lines detection; (b) establishing base plane and
computing deflection angle.

Nevertheless, these systems lack 2D–3D registration for context-aware interpretation, as well as
SCADA integration for the detection of telemetry errors.

One common strategy for the detection of irregularities is the foreground–background segmentation.
Image segmentation is the computer vision process in which an image is “broken into some non-overlapped
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meaningful regions” [25]. In particular, the foreground–background segmentation is, for videos,
the separation of what is moving from what is static [26], whereas, for images, the system queries a
historical image database to define what is considered to be the image background [24]. This technique
can be used to detect motion near a device or to detect objects that, according to historical data, should not
be there. Some researchers even suggest the adoption of actions such as deactivating remote control in an
area whenever an object motion is detected there [27] (p. 64).

Thermal images are equally important, since “the thermal effect of power devices is one of the major
reasons leading to faults” [28]. Drones with thermal cameras have already been deployed to scan faults in
substations, storing pictures of insulators, which are later processed for failure diagnostics [14]. In addition
to all security issues related to drones in substations, this approach has the same limitations considering
SCADA integration and situation awareness.

Alternatively, field images can be augmented with thermal sensor data [29]. However, since telemetry
data are error-prone, in this case, the inspection will be restricted to failures visible in the captured color
images. It should be noted that, even with this limitation, the proposed system is integrated to SCADA
data with video monitoring. Augmented reality can also be used by field operators to better visualize
contextual SCADA data [30], although the scope of this work is the opposite integration: having more
field information in the operations centers.

Equipment inspection can also be realized by inspector robots [31]. Considerably more complex,
these systems combine: (i) the needed advanced techniques for the design of autonomous robots, such as
route planning, collision detection, battery management, environment mapping and information fusion;
(ii) machine learning; and (iii) failure detection employing computer vision routines.

Finally, when dealing with cameras equipped with pan–tilt–zoom (PTZ) control, a common scenario is
to capture multiple views, multiplexed in time, so that more than one asset can be surveilled. This approach
suffers from a limitation: servomotors’ motion, periodically changing their setpoints to allow different
poses, generate cumulative errors that must be constantly compensated. Online camera calibration has
been already evaluated for substation video monitoring [32].

Nevertheless, none of these works provides, at the same time: (i) support for multiple installations
and cameras, including both thermal and color images; (ii) integration with SCADA; and (iii) optimal
spatial registration without the need of in loco camera calibration. Calibrating many remote cameras by
taking pictures of the checkerboard pattern from many angles [33] would be impractical to the operations
center. Although requiring all sites to use the same camera device (or just a few models) could be an
alternative, this would make the system too restrictive in terms of compatibility. Therefore, optimizing
and inferring intrinsic parameters solely from the inspection images is an important feature for this kind
of application. Besides, a SCADA integration, combined with the spatial registration, can significantly
improve the user interface for RI systems, speeding up the visualization and contextualization of the faults
inferred from the image processing routines cited above.

3. 2D–3D Spatial Registration Formulation

This section discusses the problem of inserting images acquired from field cameras into the associated
virtual environments. An important requirement is to match some objects or points in the image with their
correspondences in the tridimensional model. If neither the real nor the virtual camera has significant
distortion and skew, one possible method for this kind of spatial registration is to estimate the camera
pose, considering the field camera’s image and the intrinsic parameters of the virtual camera. This can be
done by iterative and analytical methods. The overall registration quality directly affects the operator’s
interpretation speed and is tightly related to the accuracy of the estimated pose, thus making this estimation
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crucial for RI. In addition, the large-scale scenario with multiple remote environments and cameras imposes
additional constraints, needing fast spatial registration, not to compromise real-time rendering.

In this section, all vectors are column vectors and thus are transposed when displayed inline
in the text.

3.1. Coordinate Systems

The perspective transformation and the spatial registration provide mappings between the image
space and world space. The former relates to pixels coordinates, whereas the latter is defined based on a
global Cartesian coordinate system [34] (p. 77).

The following coordinate systems are used in this text.
Image homogeneous coordinate system (ICS):
In this coordinate system, a point Q =

(
qx, qy, λ

)
, with λ 6= 0, refers to a pixel in the image, located

at
(
qx/λ, qy/λ

)
. The vectorial function η (g) is used in this text to denote homogeneous coordinates

normalization (1):

η (g) =
1
λ
· g =

[
gx gy 1

]T
. (1)

World coordinate system (WCS):
The world positions are described with a standard right-handed (counter-clockwise) coordinate

system, with the z-axis in the vertical direction.
Game engine’s coordinate system (GCS):
The software package used for composing the substation scene, namely Unity 3D [35], has a

left-handed (clockwise) coordinate system with the y-axis in the vertical direction. Therefore, all results
expressed in WCS must still be transformed to the engine’s coordinate system.

3.2. Perspective Projection Transformation

The perspective projection is a particular kind of linear transformation, capable of mapping points
from world space to their correspondents in image space. Let P =

(
px, py, pz

)
be a point defined in world

space and Q =
(
qx, qy, λ

)
be the homogeneous coordinates of the pixel that is the result of the perspective

projection of P in the image plane.
Considering the finite projective camera model [36] (pp. 154–157), this transformation can be stated as:

qx

qy

λ

 = C [R | t]


px

py

pz

1

 , (2)

where C is the 3× 3 matrix of the camera intrinsic parameters, explained below and [R | t] is the 3× 4 joint
rotation–translation matrix divided up into the 3 × 3 rotation matrix R plus the translation vector t.

The camera matrix C is given by:

C =

 fx τ cx

0 fy cy

0 0 1

 , (3)

where
(

fx, fy
)

are the focal lengths, τ is the skew coefficient between the x and the y axis and
(
cx, cy

)
is

the optical center (principal point).
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Some simplifications might be applied to special cases [36] (pp. 154–157). If pixels are squares, we can
consider fx = fy. If there is no skew effect, then τ = 0. Besides, if the origin of the image coordinate
system is located precisely at the image center, then cx = cy = 0.

3.3. Camera Pose Estimation

Let I be the set of image pixels and W be the set of world space points. We are interested in a set
of n points in the image, {Qi ∈ I|1 ≤ i ≤ n}, and n points in world space, {Pi ∈W|1 ≤ i ≤ n}, such that
for each i there is a unique correspondence (Pi 7→ Qi). Stated another way, suppose we have both image
homogeneous coordinates (ICS) and their related world space coordinates (WCS) for some keypoints.

The problem of estimating the joint rotation–translation matrix, [R | t], from the keypoints and the
camera’s intrinsic parameters C is called Perspective-n-Point [37]. This is particularly useful for establishing
mappings (Pi 7→ Qi) , ∀Pi ∈ W and ∀Qi ∈ I, that is, not only for the keypoints, but also for all other
resulting image pixels.

Equation (2) can be reorganized splitting the joint rotation-translation matrix, [R | t], and adjusting the
matrices dimensions: qx

qy

λ

 = C · R

px

py

pz

+ t. (4)

Once the pose is estimated, Equation (4) can be used to evaluate the homogeneous coordinates of the
image pixel, given the coordinates of the point in world space.

The pose estimation is especially interesting for augmented and mixed reality applications since it
allows the computation of a virtual object’s pose in the image coordinate system.

However, even if the intrinsic parameters are unknown, they can still assume values, due to some
further simplifications, as explained in Section 3.2, treating the camera as if it were almost ideal. In such a
scenario, distortions are ignored. The principal point is defined in the image center and the focal length
elements on the camera matrix assume the same value, proportional to one of the image dimensions.

César et al. [38] compared several Perspective-n-Point (PNP) algorithms, revealing the techniques
known as Efficient Perspective-n-Point Camera Pose Estimation (EPnP) [39] and Pose from Orthography
and Scaling with Iterations (POSIT) [40] as the most robust. Both methods require the coordinates of four
or more non-coplanar keypoints in the virtual world space and their corresponding coordinates in the
image. The EPnP brings a non-iterative solution, of complexity O(n), from the evaluation of a weighted
sum of eigenvectors of a 12 × 12 matrix and the solution of a constant number of quadratic equations to
adjust the weights. In contrast, the POSIT technique first estimates the object’s pose by solving a linear
system. After this first estimation, the algorithm enters a loop where the parameters from a previous
iteration are used to re-calculate the keypoints projections, which will be used instead of the original ones
to repeat the pose estimation, resulting in a, presumably, more accurate result. Recently, a new method
for obtaining these camera parameters without having points’ correspondences has been proposed [41].
The system described in this paper uses the iterative PNP solver offered by the OpenCV library [42].

3.4. Rectangular Region and Virtual Camera Parameters

Section 3.3 described the problem of estimating the camera pose, allowing the retrieval of the complete
transformation from world space to image space. Stated another way, the method enables the mapping
(Pi 7→ Qi). The inverse problem, i.e., going from the image space to the world space, is used for augmented
virtuality systems and can be done analytically, once the camera pose is estimated, as shown in this section.
It should be noted that more than one camera model can fulfill this mapping by different poses, depending
on the focal length elements in (3). It is desired, however, to set the image as a texture for a rectangular region
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overlaid in the virtual environment and to teleport the virtual camera to a pose that is compatible with the VR
camera intrinsic parameters, so that the photo and its surrounding virtual environment match optimally.

Let p =
[

px py pz

]T
represent a point Pi in WCS andQ =

[
qx qy λ

]T
represent a point Qi in

ICS. It is straightforward manipulate (4) to isolate the p:

C−1 ·Q = C−1C · R · p + t

⇒ C−1 ·Q− t = R · p
⇒ R−1 ·

(
C−1 ·Q− t

)
= R−1 · R · p

⇒ p = R−1 ·
(

C−1 ·Q− t
)

(5)

Finally, let q be defined in ICS to represent the same pixel asQ, such that:

q = η (Q) =
1
λ
Q. (6)

Then, the right-hand side can be reorganized in the following two terms:

p = R−1 · C−1 · q︸ ︷︷ ︸
a

·λ− R−1 · t︸ ︷︷ ︸
b

(7)

Since the scalar λ is not bound to any specific value, the solution set corresponds to a line `, in its
parametric form:

` =

ax · λ− bx

ay · λ− by

az · λ− bz

 . (8)

Indeed, many points {Pi} in world space may result in the same projection Qi.

Image Overlay

The action of overlaying a photo into a virtual environment, for Augmented Virtuality applications,
requires determining the pose (position and orientation) of the rectangular region that will display the
image in the virtual environment.

Let v1 be an image of size w1 × h1 dots and v2 be the rectangular region of size w2 × h2 in world units.
Considering that the virtual environment has high geometrical fidelity, we must first assert that the target
rectangular region dimensions match the image storage aspect ratio, that is, w1/h1 = w2/h2.

Now, from the set of all possible lines extracted from (8), by setting values for q in (7), let us consider
`00, `w0, `0h, `wh, obtained by using the image vertices. Finally, let `cc be the line obtained by using the image
center point. All these lines, as well as all other lines obtained by (5) intercept at−b, which corresponds to
the estimated position of the camera (Figure 2). Indeed, a quick inspection on (7) reveals that the term −b
is equal to −R−1 · t, thus it does not depend on the image point Q.
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−b

v2
`00

`w0

`0h
`wh

object

Figure 2. Converging lines and rectangular area v2.

The result is a right bipyramid with a rectangular base and the apex vertex located at−b. The relevant
pyramid, associated with the camera’s viewing frustum, is the one that contains v2. Note that this
pyramid’s base should have the smallest distance to the virtual object. The other pyramid’s direction is
opposite to the camera and thus is ignored by the solution.

From the known variables and expressions, it is possible to determine the pyramid’s height h3,
as shown in Figure 3.

−b

`00 `w0

`0h

`wh

`cc

h2

w2

h3

d/2

w2

‖k · â00‖ ‖k · âw0‖

â00 âw0

Figure 3. Elements for calculating h3.

Let `ij denote a line extracted from (8), by using some image point Q specified as the position vector
q in (7). In addition, let aij be the direction vector for line `ij and âij be the unit vector obtained from aij.
The coordinates of −b are also known, from any line `ij. The target rectangular region dimensions, w2 and
h2, are also specified. Finally, the pyramid lateral faces are isosceles triangles. It is easy to determine the
value of the scalar k (9).

‖k · â00 − k · âw0‖ = w2

∴ k =
w2

‖â00 − âw0‖
(9)
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Since the diagonal d of the rectangular base is given by d =
√

w2
2 + h2

2, the pyramid’s height h3 can be
equally obtained with the Pythagorean theorem:

‖k · â00‖2 = h2
3 +

(
d
2

)2
, h3 > 0

∴ h3 =

√
‖k · â00‖2 −

(
d
2

)2
(10)

Then, it is possible to determine the v2 parameters needed to put it exactly in the pose that the photo
was captured, namely the position vector u (referring to the point U) and the coordinate axes θx, θy and θz

(Figure 4).

−b
â0h

â00

âw0

U
θxθy

θz , âcc

Figure 4. Determining the pose of the rectangular region v2.

The direction vector of `CC is normal to the plane that contains v2 and parallel to the pyramid axis,
defining the direction θz. The other directions can be easily calculated using the unit vectors from the
edges. The following equations show all four parameters:

u =− b + h3 · âcc (11)

θx =
âw0 − â00

‖âw0 − â00‖
, (12)

θy =
â0h − â00

‖â0h − â00‖
(13)

θz =âcc (14)

It should be noted that the unit vectors θ̂x, θ̂y and θ̂z are, in fact, the rows from the estimated R matrix.
Indeed, the plane containing the rectangular region and the estimated camera have the same orientation.

That way, the pose of v2 is determined so that the virtual environment can represent the conditions in
which the image was taken. The virtual environment camera is positioned at −b and oriented according
to the R matrix. Besides eventual distortions and other non-ideal parameters, the real camera is likely to
have a different field-of-view (FoV) from the virtual camera. Hence, the camera matrix is an important
source of registration errors. Combined with the Perspective-n-Point solver errors, this can lead to bad
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quality results. These errors can be reduced by either calibrating the camera or applying some optimization
algorithms. The latter approach is discussed in the next section.

4. Focal Length Scale Autoset Method

The RI cameras used in this work have either no mobility or fixed position presets, which is why the
keypoints’ coordinates are static.

A good consequence of this constraint is that there is no need for running the Perspective-n-Point
algorithm for every new image acquired. Once the VR environment knows the parameters for well
positioning the overlay image and the virtual camera, the real-time operation consists only of fetching the
new images and updating the overlay (a texture).

Taking into account the difficulties of having and maintaining intrinsic parameters calibration for each
remote camera of the system, it is reasonable to consider methods that do not require such procedures.

Thus, an iterative method for discovering the optimal focal length fx = fy was applied. Once good
results are achieved, the parameters’ values are stored in a database.

The values for fx and fy are obtained by multiplying the image height, h1, by some scale factor
fx,y, mapping from pixels to meters. The algorithm’s goal is to find the optimal value for fx,y inside a
numeric range.

Our method uses a mean distance metric for the objective function (to be minimized) and a
ternary-search variant.

Let us recall the symbols used in Sections 3.2 and 3.3, considering a set of keypoints coordinates
defined in the image, {qi ∈ P |1 ≤ i ≤ n} and in the world {pi ∈W |1 ≤ i ≤ n}, such that (pi 7→ qi).
Using the homogeneous coordinates normalization function (1), the mean Euclidean distance can be
formally stated as:

dPNP =
1
n

n

∑
i=1

∥∥∥η (qi)− η
(

ρ f (pi)
)∥∥∥ , (15)

where n is the number of keypoints, q is a vector with key point coordinates in the image coordinate system
and ρ f (pi) is the result of the perspective projection of the point located at pi in the overlay rectangular
region, considering the camera pose obtained with fx = fy = fx,y · h1.

The goal of Algorithm 1 is to find the optimal fx,y ∈ [ fmin, fmax], such that dPNP is minimum:

fx,y = arg min
1
n

n

∑
i=1

∥∥∥η (qi)− η
(

ρ f (pi)
)∥∥∥ (16)
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Algorithm 1 Ternary-search focal length scale factor optimization

1: procedure FINDOPTIMALF( fmin, fmax)

2: f1 ← fmin, f4 ← fmax

3: while ( f4 − f1 > ε) or iterations limit reached do

4: f2 ← f1 + ( f4 − f1)/3

5: f3 ← f1 + 2 ∗ ( f4 − f1)/3

6: error2 ← dPNP metric using values R2 and T2

7: error3 ← dPNP metric using values R3 and T3

8: if error2 < error3 then

9: f4 ← f3

10: else

11: f1 ← f2

12: end if

13: end while

14: if error2 < error3 then

15: return f2

16: else

17: return f3

18: end if

19: end procedure

In each iteration, the search range is subdivided into four uniformly spaced values f1, . . . , f4, and then
the metric is evaluated in the intermediate points f2 and f3, giving conditions to narrow the search range
to either [ f1, f3] or [ f2, f4]. The algorithm runs with a fixed number of iterations, as shown above, or until
a considerably small error is found.

5. System Architecture and User Interface

This section describes the system overall architecture, the database model for the field images, and the
user interface elements.

The solution deals with one or more substations with one or more cameras. Each camera is related to a
single asset of interest (circuit breaker, power switch or transformer). The relation is one-to-many: although
many cameras can be associated with the same asset, one single camera does not observe more than one
asset. Each substation collects images and other sensory data, sending the former to an image database
and the latter to the SCADA system. Both targets are located in a remote operations center. The remaining
nodes of the system architecture are the registration server and clients. The registration server is used to
handle 2D–3D registration requests, caching results to improve performance. The architecture is depicted
in Figure 5.

The registration web server was developed in Python 3, using the Flask micro-framework and the
SQLAlchemy object-relational mapper (ORM) [43]. The VR clients were made with the Unity 3D game
engine [35]. Finally, the image database was emulated with an SQLite [44] file associated with a dataset of
field photos.



Energies 2020, 13, 6209 12 of 24

Local Server

Camera 1

...

Camera n

Assets

Local Server

Camera 1

...

Camera n

Assets

Client 1

Registra�on Server

SCADA

Image
Database

Client i

Request

Response

Request

Response

Figure 5. Augmented virtuality system architecture.

5.1. Database Model

The augmented virtuality server stores data referring to the photos fetched from the image database
and the 2D–3D registration metadata. A simplified data model is presented in Figure 6.

camera

id : INTEGER

camera_group_id : INTEGER
mode : VARCHAR(10)
focal_length_scale : FLOAT
dav : FLOAT
plane_pos_x : FLOAT
plane_pos_y : FLOAT
plane_pos_z : FLOAT
plane_rot_x : FLOAT
plane_rot_y : FLOAT
plane_rot_z : FLOAT
plane_rot_w : FLOAT
unity_camera_pos_x : FLOAT
unity_camera_pos_y : FLOAT
unity_camera_pos_z : FLOAT

camera_group

id : INTEGER

substation : VARCHAR ( 30 )
asset : VARCHAR ( 20 )

keypoint

id : INTEGER

camera_id : INTEGER
name : VARCHAR(30)
xn : FLOAT
yn : FLOAT
x : FLOAT
y : FLOAT

photo

id : INTEGER

filepath : VARCHAR(255)
mtime : TIMESTAMP
camera_id : INTEGER

Figure 6. Backend simplified database model.
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Each substation has zero or more camera groups, which are sets of fixed-positioned cameras aimed at
the monitoring of one asset. A single camera with different position presets, multiplexed in time, is treated
as if it were multiple fixed cameras.

For each camera, a set of keypoints is defined. These are pixel coordinates (x, y) and normalized
coordinates (xn, yn) of the points Qi from the mappings (Pi 7→ Qi) explained in Section 3.3.

Finally, the optimal intrinsic parameters and the results of the 2D–3D registration (pose and quality metric)
are stored within the camera records. The plane rotation is stored as a quaternion

(
ω,
[
x y z

])
, thus using

four floating-point fields in the database. Considering fixed cameras, this means that the Perspective-n-Point
problem does not need to be executed on each request, but only during the calibration process.

5.2. SCADA Integration

The SCADA database stores both analog values, such as the voltage in a transformer, and digital
(i.e., “open” or “closed”) device states. The latter are used in our solution, specifically for the case of
disconnector switches.

In this sense, the VR environment application makes HTTP requests to a middleware, periodically
fetching a report with the digital states of all disconnector switches. For our RI goals, this telemetry data
is combined with the on-line images, providing the automatic detection of discrepancies among these
two sources. This is especially useful in cases where the switch is only partially opened, a condition
not detected by standard telemetry instrumentation devices. Experiments with the system have been
successfully done, where no action is taken if no error is detected. Otherwise, the system displays an alarm
and gives the option to perform the 2D–3D registration, as shown in the next section.

5.3. User Interface Prototype

On startup, the VR client query the list of field cameras from the server. A red marker is added above
the virtual instances of the monitored assets, indicating the initial state (no registration), as shown in
Figure 7.

Figure 7. Initial state—all cameras disabled.

These markers are interactive, triggering a configuration dialog when clicked. The dialog (Figure 8)
allows the selection of the camera (or none), shows some metadata obtained from the server and acts as an
entry point for the focal length autoset (described in Section 4) and the 2D–3D registration.
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Figure 8. Field camera configuration dialog.

The client evaluates the registration quality in real-time (as explained in Section 6.1), disabling the overlay,
whenever the error exceeds a threshold. In this scenario, the overlay is replaced by an icon indicating that
condition. With this feature, navigation is not blocked in the augmented virtuality environment. Once the
registration becomes poor, due to the high discrepancy between the virtual camera and the photo capture
conditions, the overlay is simply disabled, avoiding misinterpretations from the operator.

Finally, if the system detects a discrepancy between the state reported by the SCADA database and
the state inferred from the image, an alarm dialog is presented to the user (Figure 9).

Figure 9. Alarm dialog.

The alarms can be either ignored (Dismiss button) or iconified (OK button). Alternatively, the dialog
gives an option to teleport to the affected asset, for further inspection and contextualization. In this case,
the environment’s viewport is changed so that the photo is overlaid in the 3D model, leaving some space
on the screen edges to see the surroundings, using the camera parameters stored in the database.

Multiple incoming alarms can be iconified, resulting in alarm queues for each inspected device.
To avoid duplicates, the condition responsible for triggering each alarm is used for determining the alarm’s
lifecycle and identify. When this condition is no longer present, the system knows that a new, similar,
discrepancy is supposed to result in a new alarm dialog.
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6. Experimental Evaluation

The proposed method was developed and tested considering a virtual environment of a transmission
substation (Figure 10), from a partner power company. This substation has a pair of cameras (RGB and
Thermal) with PTZ control. They have five position adjustment presets, which, properly multiplexed in
time, can be used to monitor three distinct power switches assets. The thermal camera always captures,
in a single pose, the full geometry of the asset of interest. The color cameras, however, are adjusted to
zoom levels requiring more than one pose to capture some of the assets.

Figure 10. Power substation virtual environment.

The company kindly provided a dataset with 561 images captured by these cameras. From this set,
123 images were ignored since they correspond to images taken by RGB cameras without any favorable
light conditions, at night. A sample of the dataset is presented in Figure 11.

Figure 11. Thermal and RGB image dataset sample.

The images also have metadata for their timestamps, ranging from 31 December 2017 23:03 and
1 January 2018 22:46. This allows emulation of real-time data, by applying some time offset in the
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system clock. The thermal camera images’ size is 720 × 624 pixels, whereas RGB images’ dimensions are
1280 × 1024.

Since the method uses points’ correspondences, the prototype needs a convention for naming the
keypoints, used both in the image and in world space. The convention used for this model is illustrated
in Figure 12. Currently, no computer vision method was applied to detect these keypoints in the photos.
They were manually specified for each camera’s pose, using a single photo captured at that pose. Hence,
mobile cameras or PTZ cameras with significant repositioning errors are not considered in this work.

Finally, the test used a simulated SCADA subsystem to arbitrarily set equipment states and thus
allow triggering the alarm dialogs.

1 2

3
4

5 6

7
8

9 10

11

12

Figure 12. Power disconnector keypoints convention.

6.1. Registration Quality Metrics

The dPNP metric described in Section 4 measures the mean distance in pixels, which might not be an
intuitive unit for representing errors. A more generic alternative, then, is to obtain the relative errors for
each axis, resulting in values that are independent of the image dimensions. The mean relative errors are
given by:

ex% =
1

n · w1

n

∑
i=1

∣∣∣η (qi)x − η
(

ρ f (pi)
)

x

∣∣∣ · 100% (17)

ey% =
1

n · h1

n

∑
i=1

∣∣∣∣η (qi)y − η
(

ρ f (pi)
)

y

∣∣∣∣ · 100% (18)

where n is the number of keypoints, w1 is the image width, h1 is the image height, qi is a vector in ICS
whose coordinates of the pixel are related to the ith keypoint and ρ f (pi)] is the result of the perspective
projection of the WCS point located at pi, related to the ith keypoint, using the estimated camera pose.

Another metric consists of analyzing the keypoints positions once the virtual camera has been
“teleported” to the estimated pose and the rectangular region has been textured with the field image.
The Unity 3D scripting application programming interface (API) exposes a method to map a point in
world space to the corresponding pixel related to the current camera viewport. This can be used to extract
the keypoints’ coordinates of the virtual model in the final rendered image.
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For the rectangular region with the image overlay, invisible objects can be added as its children and
positioned to match the photo keypoints. Once the plane is positioned and oriented, after the 2D–3D
registration, the same world-to-screen utility method can be applied in these objects to extract their
positions in the rendered image.

Again, the mean Euclidean distance can be used, considering the image rendered by the AV application.
After 2D–3D registration succeeds, a screenshot is taken and the following parameter is calculated:

dAV =
1
n

n

∑
i=1

∥∥∥η (qi,AV)− η
(

qi,M

)∥∥∥ , (19)

where n is the number of keypoints, qi,AV is the ith key point pixel coordinates in the rectangular region
and qi,M is the ith key point pixel coordinates in the virtual model.

Relative errors for this metric are given below:

δx% =
1

n · w1

n

∑
i=1

∣∣∣η (qi,AV)x − η
(

qi,M

)
x

∣∣∣ · 100% (20)

δy% =
1

n · h1

n

∑
i=1

∣∣∣∣η (qi,AV)y − η
(

qi,M

)
y

∣∣∣∣ · 100% (21)

All three metrics dAV , δx% and δy% can be evaluated automatically by the VR application.

6.2. Performance Metrics

For measuring performance impact, one metric is related to the time elapsed between the instant just before
a request, from the virtual environment, and the moment after which the server response has been processed.

For that matter, two kinds of requests are considered: (i) the calibration request, aimed at computing
the optimal poses for the overlay plane and the virtual camera; and (ii) the image request, responsible for
retrieving the last image from the database and updating the virtual environment accordingly. The symbols
associated with these measurements are named ∆tcalib and ∆tphoto, respectively.

6.3. Results

Both calibration and registration were evaluated for nine different combinations of cameras and poses.
The experiments were named using a two-character code. The first character is either ‘T’ or ‘C’, for thermal
and color cameras, respectively. The second character is the index of the preset pose. Due to zoom levels,
the RGB camera needs more poses for capturing the full geometry of some assets. Table 1 summarizes the
conditions for each experiment.

Table 1. Experiments codes.

Code Camera Type Asset Detail

T1 thermal 1 full
T2 thermal 2 full
T3 thermal 3 full
C1 color 1 lines A and B
C2 color 1 lines B and C
C3 color 2 lines A and B
C4 color 2 lines B and C
C5 color 3 full

All tests described in this section were performed on a Core i5-7400 CPU with 16 GB DDR4 RAM and
no dedicated video card, running Windows 10 Home. Both the web server and the clients were deployed
on the same physical machine.
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The ternary-search algorithm was used to determine the optimal focal length scale factor. Figure 13
shows this behavior for 10 iterations, for the experiment T1 and the range fx,y ∈ [0.4, 4].
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Figure 13. Ternary-search iterations.

The range for the search algorithm was determined empirically, from the inspection of the dPNP
values in a much broader range, as shown in Figure 14 for experiment T1.
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Figure 14. Focal length scale factor impact on dPNP metric.

Data for other poses, along with some collected metrics, are summarized in Table 2. The algorithm was
parameterized for running at most 50 iterations, also stopping in the nth iteration whenever f4 − f1 < 10−5.

Table 2. Perspective-n-Point and calibration results.

Exp. n f dPNP ex% ey% ∆tcalib (s)
T1 32 1.34 6.83 0.52% 0.80% 1.093
T2 32 0.94 6.97 0.59% 0.72% 1.004
T3 30 1.10 10.45 1.03% 1.01% 1.119
C1 32 1.30 2.13 0.11% 0.15% 1.079
C2 32 1.80 0.95 0.02% 0.08% 1.039
C3 30 2.00 8.05 0.60% 0.14% 1.057
C4 32 1.79 0.24 0.01% 0.02% 0.968
C5 32 2.13 1.80 0.07% 0.14% 1.030
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Concerning the resulting rendered image after the registration, the keypoints’ coordinates in pixels
were extracted for both the rectangular region (overlay) and the virtual model instances. Figure 15 shows
the resulting coordinates for experiments T1 and C1.

300
320
340
360
380
400
420
440
460
480

800 850 900 950 1000 1050 1100 1150 1200

y

x

qi,AV

qi,M

(a)

320

340

360

380

400

420

440

600 700 800 900 1000 1100 1200 1300

y

x

qi,AV

qi,M

(b)

Figure 15. Keypoints discrepancy: (a) experiment T1; (b) experiment C1.

Table 3 gives the collected values for dAV , δx% and δy%, for all experiments, as well as the average
value for ∆tphoto, considering 20 requests.

The values obtained for ∆tphoto are reasonable for real time remote inspection, especially for far
locations with poor network bandwidth. It should be noted that the time needed to correctly interpret the
situation, after the 2D–3D registration is performed, might be considerably longer than just a fraction of a
second.

Table 3. Final registration results.

Exp. dAV δx% δy% ∆tphoto (ms)
T1 47.59 0.226% 0.509% 380.111
T2 34.78 0.370% 0.657% 389.519
T3 31.91 0.254% 0.735% 382.404
C1 118.37 0.130% 0.200% 449.535
C2 165.56 0.045% 0.137% 440.236
C3 176.75 0.318% 0.143% 449.562
C4 164.06 0.050% 0.132% 441.255
C5 194.87 0.092% 0.153% 448.221

In addition, the power disconnector and porticos were modeled with incomplete computer-aided
design (CAD) data, as opposed to more precise methods such as 3D scanning. This limitation directly
affects the registration quality. Thus, the quantitative metrics are focused in the keypoints and the
reprojection errors.

A custom shader was applied to the overlay plane to hide VR objects within its region. Figure 16
shows the rendered images for both standard and custom shaders. In the former, keypoints are highlighted
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with red crosses (virtual model) and green circles (overlay rectangular region). Some other registrations
are shown in Figure 17.

(a) (b)

Figure 16. 2D–3D registration for experiment T1: (a) custom shader and keypoints; (b) overlay.

(a) (b)

(c) (d)

Figure 17. Power disconnector registrations for other experiments: (a) T2; (b) C2; (c) T3; (d) C3.

7. Discussion

We evaluated the 2D–3D registration quality for the case of cameras without significant distortion
and proposed a simple iterative algorithm to determine the focal length scale factor parameter so that
keypoints correspondence is optimal. Other camera types, with significant skew factor, non-square pixels
and other kinds of distortion, could be handled in future work either by submitting them to calibration
methods [36] (p. 189) or by applying more complex optimization algorithms, with multiple parameters to
be estimated.

However, considering a company responsible for dozens of power substations and having multiple
inspection cameras with potentially different specifications, in-loco calibration is unpractical. To avoid
expensive travels to many far locations, we propose using an approximated camera matrix and refining
the focal length until an optimal value is found. In addition, with this approach, the deployment of the
augmented virtuality environments can be done without shutting down the image inspection system or
affecting the cameras’ poses just for calibration purposes. Environments without any camera installed
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remain VR-only and represent, in the proposed system’s perspective, future candidates for deploying the
RI system.

Once the optimal value for the focal length is determined, the PNP solver used in our system, from the
OpenCV library [42], presented reasonable solutions (Figure 15 and Table 2), even with a small number of
keypoints (just four in some poses for the RGB camera).

The overall matching depends on other factors, especially the virtual model’s fidelity. In our
virtual substation model, the porticos dimensions were not available as input data. However, the power
disconnector model was based on some CAD drawings, so that the chosen keypoints act as a reliable
ground-truth for evaluating the registration.

In this sense, the 2D–3D registration relative errors are arguably small, as shown in Figure 16a or
summarized in Table 3, with the metrics δx% and δy%. Since they are evaluated only after the rectangular
region v2 is positioned and oriented, following the mathematical model explained in Section 3, we can
infer that the model has revealed itself appropriate for the problem at hand. This has some advantages,
considering that “when the system model (or part of it) can be solved with analytical methods, considerable
gains in terms of efficiency, accuracy, and understanding are usually obtained” [45].

A drawback of our approach is that the focal length scale factor range must be provided by the user
during calibration. For experiments T3 and C3, which represent the pose capturing the furthest asset,
the range had to be narrowed, to avoid solutions having the overlay plane too far away from the VR
camera. Nonetheless, the calibration routine does not need to be run on every system startup, but only
for configuring new fixed cameras. Considering the time needed to run the optimization, ∆tcalib ≈ 1 s,
the process could be done in real-time, depending on the application. This is particularly useful for the
scenario of mobile cameras if the keypoints’ coordinates could also be extracted in real-time by computer
vision techniques.

The client–server architecture has the benefit of caching the last images from each camera so that,
if multiple clients are used in the operations center, fewer network requests are made to the image database.
In addition, since the focal length optimization is done occasionally and on the server-side, VR clients
can spend their processing resources on more important tasks, notably real-time rendering. However,
the system’s architecture performance remains to be tested as future work.

The proposed user interface combines interactive virtual objects placed near the monitored assets,
2D–3D spatial registration whenever the virtual camera’s pose is adequate, and customizable camera
settings for each device. Although currently tested only in one substation, it is already prepared for
multiple cameras and regions of interest.

Concerning the SCADA integration, faults can be better understood by allowing the user: (i) to be
notified whenever there is an inconsistency, as shown in Figure 9; and (ii) to immediately see the last field
image and, if desired, the 2D–3D spatial image registration using that image. This is already implemented,
but some user experiments are still required to provide a comprehensive evaluation of the feature.

Registration took approximately 384 ms for the thermal images and 486 ms for RGB images, including
the HTTP request and response times and the VR rendering. The slight difference is most likely due to the
image sizes: 720 × 624 for the former against 1280 × 1024 for the latter. Taking into account the trends on
5G mobile networks, this can be an issue once real-time video registration is needed. An alternative would
be to use the server only for the PNP solving and calibration, and to open a dedicated User Datagram
Protocol (UDP) video channel between the client and the substation, querying images and updating the
plane texture accordingly. For the RI of power substations, having the field image updated two times per
second seems adequate for nearly real-time operation.

Finally, since the registration metric dAV is computed in real-time by the client, it is possible to tolerate
small variations on the estimated virtual camera’s pose until the error exceeds a threshold. This feature is
already implemented in the system.

Further work consists of deploying the solution into an operations center and evaluating the
operators’ performance in the electrical system reestablishment, using power flow simulators. Additionally,
the system could be adapted and tested in other environments needing similar RI or teleoperation facilities,
such as construction machines [46], marine systems [19], or industrial boilers.
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